用户名: 密码: 验证码:
面向水煤浆气化装置的过程建模与操作优化技术
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
煤炭是我国的基础能源和主要工业原料之一。化学工业每年的煤炭消费量在四亿吨以上。煤炭气化过程是对煤炭进行化学加工的一个重要方法,是实现煤炭洁净利用的关键技术。水煤浆加压气化技术是当今具有代表性的主流煤炭气化技术之一。作为煤化工的源头、全厂能量转换的核心,气化装置的运行状况十分重要。目前,采用先进的控制方法优化装置的运行状况的研究尚处于起步阶段。加快进行煤炭气化过程建模、流程模拟、控制优化等自动化关键技术的研究对提高装置的运转效率、提高煤炭资源利用率、实现节能降耗具有重要意义。本课题以水煤浆气化装置为研究对象,探讨复杂化工过程的建模和优化方法,提出了几种改进的智能优化算法应用于水煤浆气化装置过程建模与操作优化问题中。同时,设计并开发了水煤浆气化操作优化系统应用软件。本文的主要研究成果如下:
     (1)针对水煤浆气化装置优化配煤问题,建立了混煤质量指标预测模型。其中,采用最小二乘支持向量机(LS-SVM)建立混煤灰熔点预测模型,描述混煤灰熔点与灰成分之间复杂的非线性关系。同时,提出了一种多种群竞争型协同文化差分进化算法(MCCDE),算法中建立了基于差分进化算法的竞争型协同策略及竞争适应度评判方法,并引入了文化算法的部分思想。将MCCDE算法与其它五种变异策略的DE算法通过八种典型测试函数优化问题进行比较,验证了该算法的有效性。最后,将MCCDE算法用于优化LS-SVM模型的超参数。仿真结果表明,该方法建立的模型比其它3种比较方法建立的模型具有更好的泛化能力。
     (2)结合(1)中建立的混煤质量指标预测模型,建立了一个管理级视角下的配煤优化模型。模型综合考虑了原煤的采购成本、库存成本、实施配煤的操作成本等,在满足装置对煤质要求的前提下,实现用煤总成本最低控制。根据配煤优化模型的特点,将粒子群优化算法、文化算法和协同进化算法进行改进和结合,取长补短,提出了协同文化框架及其进化机制,并建立了基于粒子群算法的协同文化算法(CECBPSO)。采用正交试验的方法分析讨论了该算法的参数对其性能的影响。同时,将CECBPSO算法与其它四种算法优化八个典型测试函数的结果进行比较。最后,对某煤化工厂水煤浆配煤优化问题进行仿真分析,采用CECBPSO算法求解配煤优化模型,计算结果验证了模型和算法的可行性。
     (3)根据群搜索优化算法适于解决高维多峰函数优化问题的特点,在基本群搜索算法中引入了差分进化算法和混沌局部搜索的思想,提出了一种改进的群搜索差分进化算法(DEGSO),与其它四种算法通过标准测试函数的仿真比较验证了算法的性能。将DEGSO算法用于优化神经网络的权值和阈值,建立了“德士古合成气”CO、H2和CO2气体含量软测量模型(DEGSO-NN),实现以低成本及时、在线获得“德士古合成气”组分含量。采用某德士古气化装置现场实际数据进行仿真研究,结果表明,同另外两种方法相比,基于DEGSO的神经网络软测量模型具有最高的训练效率和泛化能力。
     (4)根据膜系统计算模型的分布式、极大并行性和不确定性特征,将粒子群算法引入到膜计算模型的框架中,提出了膜计算粒子群优化算法(MCBPSO)。该算法中,多个群体在膜系统的不同膜结构中并行搜索,同时,建立了协同和变异机制以提高其性能。采用正交试验的方法对MCBPSO的参数选择进行了研究,并与其它四种算法采用五种测试函数进行测试比较。针对德士古气化炉操作优化问题的特点,引入了区域优化的概念,建立了工况评判标准和操作优化模型,将MCBPSO用于优化模型的求解。最后,采用某化工厂德士古气化炉实际运行数据进行仿真,经过操作优化计算,能够获得优化的控制参数,并提高气化炉有效气产率。
     (5)针对某甲醇合成企业德士古水煤浆气化系统,开发了水煤浆气化操作优化系统应用软件。软件具有混煤指标预测、配煤操作优化计算、气化炉炉膛温度软测量、德士古合成气组分软测量、气化炉工况操作优化等功能,同时能够进行模型的自动更新以及记录报表的自动生成与存储。水煤浆气化操作优化系统应用软件能够实现将建模、控制、优化技术应用于实际生产中,以提高装置的经济效益。
Coal is China's basic energy and one of the main industrial raw materials. Over four hundred million tons of coal is used by chemical industry each year. Gasification is one of the most important methods and key technology of coal for clean use. Currently, coal water slurry (CWS) gasification technology is a representative technology of coal gasification.As the headstream and energy conversion core, the running status of gasification unit is very important. Nowadays, researches on process modeling and operation optimization for CWS gasification unit using advanced control methods are still at the initial stage. It is of great significance for improving the unit operation efficiency and enhancing coal resource utilization ratio to speed up the researches on coal gasification automation technology, such as process modeling, process simulation, and optimization. In this dissertation, for CWS gasification process, complex chemical process intelligent modeling approaches and optimization algorithms are studied. Based on these methods, several improved intelligent optimization algorithms are proposed and used in coal gasification process modeling and operation optimization problem. Meanwhile, the CWS gasification operation optimization system software is designed and developed. The main results in this dissertation can be summarized as follows:
     (1) It appears that the coal-blending optimization is a vital part of the optimal operation of coal gasification process. For this problem, a series of mixed coal quality target prediction models are constructed. One of them is mixed coal ash fusion temperature prediction model, which is established based on least squares support vector machine (LS-SVM) to describe the complex nonlinear relationship between ash fusion temperature and ash components. Meanwhile, a multi-population competitive co-evolutionary cultural differential evolution (MCCDE) algorithm is proposed. In MCCDE, a competitive co-evolutionary strategy based on differential evolution and a fitness value evaluation method are designed. And some ideas from cultural algorithm are also introduced into MCCDE. Five differential evolution algorithms with different mutation strategy and eight typical benchmark functions are adopted to verify the performance of MCCDE algorithm. Finally, MCCDE algorithm is used to optimize the hyper-parameters of LS-SVM. The simulation results indicate that the model based on MCCDE-LS-SVM has stronger generalization.
     (2) Combined with the mixed coal quality target prediction models established in (1), a process model from a management and decision-making perspective is constructed to solve the problem of CWS gasification coal-blending optimization. The model takes into account mixed-coal indicators, inventory costs, market prices, operating costs and consumptions of stockpiling and transit. According to the process model, a co-evolutionary mechanism between two cultural algorithms is established, and a hybrid co-evolutionary cultural algorithm based on particle swarm optimization (CECBPSO) is proposed in order to fully use the advantages of co-evolutionary algorithm (CEA), cultural algorithm (CA) and particle swarm optimization (PSO). Factorial Design (FD) approach is used in this paper in order to get a guideline on how to tune the designed parameters in CECBPSO. Meanwhile, extensive computational studies are also carried out to evaluate the performance of CECBPSO on eight benchmark functions, compared with other four intelligent optimization algorithms. Finally, CECBPSO algorithm is employed to solve the problem of coal-blending optimization process model of a fertilizer. The calculation results validate the feasibility of the coal-blending optimization model and CECBPSO algorithm.
     (3) The Group Search Optimization (GSO) algorithm has good performance in high-dimension multi-modal optimization problems. In this paper, differential evolution and chaotic local optimizer are introduced into basic GSO algorithm, and an improved Differential Evolution Based Group Search Optimization (DEGSO) algorithm is proposed. Compared with other four evolutionary algorithms on function optimization problems, the performances of DEGSO are satisfactory. In addition, DEGSO algorithm is applied to optimize the weights and thresholds of neural network, and three DEGSO-NN based soft sensor models are established for estimating the percentage compositions of CO, H2 and CO2 of Texaco gasifier syngas. The simulation results indicate that soft sensor modeling method based on DEGSO-NN has higher training efficiency and stronger generalization than the other two compared methods.
     (4) Membrane computing is a new branch of natural computing with the features of distribution and great parallelism. Considering the features of membrane computing and PSO, a hybrid algorithm MCBPSO is proposed. In MCBPSO, PSO is introduced into the computing model of membrane system. Multi-populations iterate in different membrane structures in parallel. Meanwhile, cooperation and mutation strategy are also established in the hybrid algorithm to improve the performance. Influencing rules of parameter selection of MCBPSO are studied through orthogonal design experiments. Also, the performance of MCBPSO is evaluated by five test functions. For Texaco coal gasification operation optimization problem, the concept of regional optimization is introduced, running status evaluating standard is designed, and operation optimization model is constructed. MCBPSO algorithm is used to solve the problem of operation optimization model. Finally, simulations with a Texaco gasification unit for example testified that optimized operation variables can be found and the effective gas rate can be increased by the optimization model and algorithm.
     (5) For a real-world Texaco CWS gasification process of a methanol synthesis system, the CWS gasification operation optimization system software is designed and developed. The software provides functions of mixed-coal qualities prediction, coal-blending optimization, soft sensing of furnace box temperature and syngas percentage compositions, gasifier running status optimization. Process models can be updated automatically. Record reports also can be created and stored periodically. Modeling, control and optimization technologies can be used in practical production to gain more economic benefits through the use of the CWS gasification operation optimization system software.
引文
[1]李志坚.“我国资源型化工产业发展分析报告会”特别报导(一):煤资源与煤气化技术的选择[J].化学工业,2008,26(4):1-6.
    [2]刘漫丹等.炼油、石化、煤化生产过程自动化关键技术[C].中国自动化学会.2009中国自动化大会暨两化融合高峰会议论文集.2009:1-22.
    [3]Schlinger W. G. Coal Gasification Development and Commercialization of the Texaco Coal Gasification Process[C]. Proceedings of Annual International Conference on Coal Gasification, Liquefaction and Conversion to Electricity, NASA Conference Publication, 1979:118-142.
    [4]沈浚.合成氨[M].北京:化学工业出版社,2001.
    [5]Liu H. F. et al. Prediction of droplet size distribution in sprays of prefilming air-blast atomizers[J]. Chemical Engineering Science,2006,61(6):1741-1747.
    [6]韩启元,许世森.大规模煤气化技术的开发与进展[J].热力发电,2008,37(1):4-8,12.
    [7]宋迪,潘水雀.水煤浆加压气化技术的进展[J].石油化工应用,2007,26(6):3-7.
    [8]刘卫平.煤气化技术的发展和现状[J].氮肥技术,2007,28(5):7-11,41.
    [9]龚欣,于遵宏,王辅臣等.水煤浆气化技术在中国的应用及其发展[J].节能与环保,2001,(5):21-23.
    [10]张继臻.优化配煤技术在水煤浆加压气化中的应用[J].煤化工,2000,(1):41-47,50.
    [11]高聚中,韩伯奇.水煤浆加压气化煤种评价模型[J].煤化工,1998,(2):17-23.
    [12]安徽淮化股份有限公司.一种适用于Texaco水煤浆加压气化用煤的配煤方法[P].中国专利:CN101845330A,2010-9-29.
    [13]周新建.水煤浆颗粒级配的研究[J].煤炭学报,2001,26(5):557-570.
    [14]陈良勇等.高浓度水煤浆的流变特性与壁面滑移效应试验研究[J].燃烧科学与技术,2008,14(4):317-322.
    [15]赵国华,陈良勇,段钰锋.弯管内水煤浆流动阻力的数值实验研究[J].华东电力,2007,35(10):6-9.
    [16]赵国华等.温度对高浓度水煤浆流变特性的影响[J].锅炉技术,2007,38(6):74-78.
    [17]任远等.水煤浆流经渐缩管段的局部阻力特性[J].动力工程,2008,28(4):651-656.
    [18]邹立壮,朱书全.不同分散剂对煤成浆性的促进作用[J].煤炭学报,2003,28(6):636-640.
    [19]周明松,杨东杰,邱学青.不同来源木质素磺酸钠对水煤浆流变特性的影响[J].高校化学工程学报,2007,21(3):386-391.
    [20]吴玉新等.用简化PDF模型对气化炉运行特性的分析[J].中国电机工程学报,2007,27(32):57-62.
    [21]吴玉新等.简化PDF模型对Texaco气化炉的三维数值模拟[J].化工学报,2007,58(9):2369-2374.
    [22]李政等Texaco煤气化炉数学模型的研究——建模部分[J].动力工程,2001,21(2):1161-1165.
    [23]汪洋,于广锁,于遵宏.运用Gibbs自由能最小化方法模拟气流床煤气化炉[J].煤炭转化,2004,27(4):27-33.
    [24]侯祥松等.基于平衡常数法的Texaco气化模型[J].煤炭转化,2004,27(3):49-52,57.
    [25]亢万忠.粉煤气化炉的模拟计算及其分析[J].石油化工设计,2008,25(1):29-33.
    [26]Chejne F., Hernandez J. P. Modelling and simulation of coal gasification process in fluidised bed[J]. Fuel,2002,81(13):1687-1702.
    [27]Yu G. S. et al. Experimental studying and stochastic modeling of residence time distribution in jet-entrained gasifier[J]. Chemical Engineering and Processing:Process Intensification,2002,41(7):595-600.
    [28]汤忠等.流化床气化炉稀相段反应模拟(1)—模型建立[J].燃烧科学与技术,1998,4(2):150-156.
    [29]Vicente W. et al. An Eulerian model for the simulation of an entrained flow coal gasifier[J]. Applied Thermal Engineering,2003,23(15):1993-2008.
    [30]王学武等.基于混沌RBF神经网络的气化炉温度软测量系统[J].化工自动化及仪表,2006,33(5):48-50,54.
    [31]王新刚,侍洪波.一种改进的FNN及其在德士古炉温软测量中的应用[J].工业控制计算机,2006,19(3):9-11.
    [32]郭庆华等.基于BP神经网络预测气流床气化炉炉膛温度的试验研究[J].计算机与应用化学,2007,24(5):617-620.
    [33]屈强等.气化炉炉体关键部位温度分布研究[J].煤炭转化,2003,26(1):53-56.
    [34]段合龙等.水冷壁气化炉温度分布及影响因素分析[J].化学工程,2007,35(8):17-21.
    [35]张志文等.遗传算法优化BP网络及其在灰渣粘度预测中的应用[J].计算机与应用化学,2007,24(5):609-613.
    [36]梁钦锋等.应用炉膛压力诊断气流床气化炉的火焰状态[J].煤炭转化,2005,28(1):30-36.
    [37]白泉,李政,倪维斗.气化炉自动建模系统研究[J].动力工程,2002,22(6):2088-2092.
    [38]吴科,吕剑虹,向文国.ALSTOM气化炉的模糊增益调度预测控制[J].动力工程,2008,28(2):229-237.
    [39]Nobakhti A., Wang H. A simple self-adaptive Differential Evolution algorithm with application on the ALSTOM gasifier[J]. Applied Soft Computing,2008,8(1):350-370.
    [40]项友谦.煤气化过程的模型和模拟与优化操作[J].煤炭转化,2002,25(2):60-63,90.
    [41]Coetzer R. L. J., Keyser M. J. Experimental design and statistical evaluation of a full-scale gasification project[J]. Fuel Processing Technology,2003,80(3):263-278.
    [42]贺根良,门长贵.气流床气化炉操作温度的探讨[J].煤化工,2007,35(4):8-11.
    [43]Richalet J. et al. Model predictive heuristic control:Applications to industrial processes[J].Automatica,1978,14(5):413-428.
    [44]俞金寿.工业过程先进控制技术[M].上海:华东理工大学出版社,2008.
    [45]潘立登.先进控制与在线优化技术及其应用[M].北京:机械工业出版社,2009.
    [46]方崇智,萧德云.过程辨识(第一版)[M].北京:清华大学出版社,1998.
    [47]Waterman, D. A. A guide to expert systems[M]. United States:Addison-Wesley Pub. Co., 1986.
    [48]Jackson P. Introduction to Expert Systems(3rd Edition)[M]. United States:Addison-Wesley Pub. Co.,1998.
    [49]Liao S. H. Expert System Methodologies and Applications-a Decade Review from 1995 to 2004[J]. Expert Systems With Applications,2005,28(1):93-103.
    [50]Zadeh L. A. Fuzzy sets [J]. Information and Control.1965, (8):338-353.
    [51]Mamdani E. H. Application of fuzzy algorithms for control of simple dynamic plant [C]. Proceedings of the Institution of Electrical Engineers,1974,121(12):1585-1588.
    [52]Takagi T., Sugeno M. Fuzzy Identification of Systems and Its Applications to Modeling and Control[J]. IEEE Transactions on Systems, Man, and Cybernetics.1985,15(1): 116-132.
    [53]韩力群.人工神经网络理论、设计及应用[M].北京:化学工业出版社,2002.
    [54]Willis M. J. et al. Artificial neural network in process engineering[C]. IEE Proceedings D Control Theory and Applications, USA,1991,138(3):256-266.
    [55]McCulloch W. S., Pitts W. A logical calculus of the ideas immanent in nervous activity[J]. Bulletin of Mathematical Biology.1943,5(4):115-133.
    [56]Hebb D. O. The organization of behavior [M]. New York:Wiley,1949.
    [57]Rosenblatt F. The perceptron:a probabilistic model for information storage and o-rganization in the brain[J]. Psychological Review.1958,65(6):386-408.
    [58]Hopfield J. J. Neural networks and physical systems with emergent collective computational abilities[C]. Proceedings of the National Academy of Science, USA,1982, 79:2254-2558.
    [59]Rumelhart D. E., Mcclelland J. L. Parallel Distributed Processing:Explorations in the Microstructure of Cognition[J]. Computational models of cognition and perception,1986, 1(1):318-362.
    [60]Rumelhart D. E., McClelland J. L., PDP Research Group. Parallel distributed processing: explorations in the microstructure of cognition[M]. A Bradford Book,1986.
    [61]Moody J., Darken C. Learning with localized receptive fields[C]. Proceedings of the 1988 Connectionist Models Summer School, Hinton, Sejnowski, and Touretzsky, eds. Morgan Kaufmann,133-143.
    [62]Moody J., Darken C. J. Fast learning in network of locally-tuned processing units[J]. Neural Computation,1989,1(2):281-294.
    [63]Takagi H. Fusion technology of fuzzy theory and neural networks-survey and future directions[C]. Proceedings of International Conference on Fuzzy Logic and Neural Networks,1990,13-26.
    [64]You W. et al. Effect of Chromium on CCT Diagrams of Novel Air-Cooled Bainite Steels Analyzed by Neural Network[J]. Journal of iron and steel research international(钢铁研究学报:英文版),2007,14(4):39-42.
    [65]钱宇等.化工过程集成型智能故障诊断系统研究与开发[J].华南理工大学学报:自然科学版,2002,30(11):138-143,148.
    [66]袁荣华,王毅,陈春刚.神经网络技术在试验精馏塔控制中的应用[J].西安交通大学学报,2002,36(9):987-990.
    [67]高雪鹏,丛爽.BP网络改进算法的性能对比研究[J].控制与决策,2001,16(2):167-171.
    [68]Nikolaev N. Y., Iba H. Learning polynomial feedforward neural networks by genetic programming and backpropagation [J]. IEEE Transactions on Neural Networks,2003, 14(2):337-350.
    [69]Wang W. L., Ren M. Soft-sensing method for wastewater treatment based on BP neural network[C]. Proceedings of the World Congress on Intelligent Control and Automation, 2002,3:2330-2332.
    [70]Weymaere N., Martens J. P. A fast and robust learning algorithm for feedforward neural networks[J]. Neural Networks,1991,4(3):361-369.
    [71]Vapnik V. N., Chervonenkis A. Y. On the uniform convergence of relative frequencies of events to their probabilites[J]. Theory of Probability and its Application.1971,16(2): 264-280.
    [72]Vapnik V. Estimation of dependences based on empirical data[M]. Berlin:Springer,1982.
    [73]Cortes C., Vapnik V. Support-vector networks[J]. Machine Learning.1995,20(3): 273-297.
    [74]Suykens J. A. K., Vandewalle J. Least squares support vector machine classifiers[J]. Neural Processing Letters.1999,9(3):293-300.
    [75]Lin C. F., Wang S. D. Fuzzy support vector machines[J]. IEEE Transactions on Neural Networks.2002,13(2):464-471.
    [76]Zhang X. Y., Liu Y. C. Performance Analysis of Support Vector Machines with Gauss Kernel[J]. Computer Engineering,2003,29 (8):23-25.
    [77]Duan K., Keerthi S. S., Poo A. N. Evaluation of simple performance measures for tuning SVM hyperparameters[J]. Neurocomputing.2003,51:41-59.
    [78]Zhang Q., Lee K. J., Whangbo T. K. K-mean and double cross-validation algorithm for LS-SVM in sasang typology classification[C]. Proceedings of the IEEE International Conference on Automation and Logistics,2007,426-430.
    [79]Cawley G. C., Talbot N. L. C. Fast exact leave-one-out cross-validation of sparse least-squares support vector machines[J]. Neural Networks,2004,17(10):1467-1475.
    [80]An S. J., Liu W. Q., Venkatesh S. Fast cross-validation algorithms for least squares support vector machine and kernel ridge regression[J]. Pattern Recognition,2007,40(8): 2154-2162.
    [81]Kang Y. W. et al. Dynamic temperature modeling of an SOFC using least squares support vector machines[J]. Journal of Power Sources,2008,179(2):683-692.
    [82]Yan X. T., Wu M. Q., Sun B. An adaptive LS-SVM based differential evolution algorithm[C].2009 International Conference on Signal Processing Systems, Singapore, 2009,406-409.
    [83]林碧华,顾幸生.基于差分进化算法-最小二乘支持向量机的软测量建模[J].化工学报,2008,59(7):1681-1685.
    [84]Guo X. C. et al. A novel LS-SVMs hyper-parameter selection based on particle swarm optimization[J]. Neurocomputing,2008,71(16-18):3211-3215.
    [85]徐用懋,张猛.流程工业的综合自动化技术概述[J].自动化博览,2003,(z1):59-62.
    [86]万百五,林杰.大规模工业过程的稳态递阶控制综述[J].自动化学报,1990,16(2):186-192.
    [87]王武义,万百五,韩崇昭.工业过程随机稳态优化控制的二次近似方法[J].控制与决策,1992,7(5):349-354.
    [88]王武义,韩崇昭,万百五.工业过程稳态随机优化理论研究与算法[J].控制理论与应用,1993,10(6):657-662.
    [89]许立俭,万百五,韩崇昭.工业过程随机稳态优化控制算法的鲁棒性分析[J].控制与决策,1994,9(1):14-19.
    [90]黄正良,万百五,韩崇昭.双线性系统稳态模型估计及其强一致性分析[J].自动化学报,1995,21(5):562-569.
    [91]黄正良,万百五,韩崇昭.大规模工业过程稳态优化控制新方法——自适应双迭代算法[J].控制与决策,1992,7(6):437-442.
    [92]黄正良,万百五.大规模工业过程非凸稳态优化控制的两级协调法[J].控制与决策,1996,11(1):9-15.
    [93]张豫华,万百五,韩崇昭.大工业过程稳态优化的模糊双迭代法[J].控制理论与应用,2008,25(6):1032-1036.
    [94]黄正良等.非凸稳态优化控制新方法——双迭代法[J].控制理论与应用,1996,13(1):18-23.
    [95]于乃润,万百五.纯滞后工业过程稳态优化中的迭代学习控制[J].控制与决策,1997,12(2):163-166.
    [96]阮小娥,万百五,高红霞.具有滞后的饱和非线性工业控制系统的迭代学习控制[J].自动化学报,2001,27(2):219-223.
    [97]Ruan X. E., Li H. Q., Wan B. W. The Local-Symmetrical-Double-Integral-Type Iterative Learning Control for Dynamics of Industrial Processes with Time Delay in Steady-State Optimization[J]. Acta Automatica Sinica,2003,29(1):125-129.
    [98]罗旭光,万百五.工业过程广义稳态优化控制研究[J].自动化学报,1999,25(1):38-44.
    [99]罗旭光,万百五.工业过程广义稳态优化控制算法的收敛性研究[J].自动化学报,2000,26(3):382-386.
    [100]罗旭光,万百五.广义稳态的工业过程及其优化控制[J].控制与决策,2004,19(7):721-725.
    [101]顾佳晨,万百五.具有模糊约束的大工业过程的关联平衡法[J].控制与决策,2001,16(B11):661-664.
    [102]阮小娥,万百五,高红霞.非线性工业过程控制系统的迭代学习控制与收敛性分析[J].控制理论与应用,2002,19(1):73-79.
    [103]Ruan X. E., Chen F. M., Wan B. W. Decentralized Iterative Learning Controllers for Nonlinear Large-scale Systems to Track Trajectories with Different Magnitudes[J]. Acta Automatica Sinica,2008,34(4):426-432.
    [104]阮小娥,万百五.工业过程稳态优化进程中的噪声平滑型迭代学习控制[J].控制与决策,2002,17(4):419-422.
    [105]Sarker R., Mohammadian M., Yao X. Evolutionary Optimization[M]. USA:Kluwer Academic Publishers,2002.
    [106]Holland J. H. Adaptation in natural and artificial system[M]. USA:Michigan University Press,1975.
    [107]Ines A. V. M. et al. Combining remote sensing-simulation modeling and genetic algorithm optimization to explore water management options in irrigated agriculture [J]. Agricultural Water Management.2006,83(3):221-232.
    [108]Gundogdu O., Gokdag M., Yuksel F. A traffic noise prediction method based on vehicle composition using genetic algorithms[J]. Applied Acoustics,2005,66(7):799-809.
    [109]Bhunia A. K. et al. An application of tournament genetic algorithm in a marketing oriented economic production lot-size model for deteriorating items [J]. International Journal of Production Economics,2009,119(1):112-121.
    [110]Harris S. D. et al. The optimization of reaction rate parameters for chemical kinetic modeling of combustion using genetic algorithms[J]. Computer Methods in Applied Mechanics and Engineering,2000,190(8-10):1065-1090.
    [111]王磊,黄道.化工故障诊断中基于遗传算法优化的SOM网络[J].计算机工程与应用,2006,42(31):188-190.
    [112]Preechakul C., Kheawhom S. Modified genetic algorithm with sampling techniques for chemical engineering optimization [J]. Journal of Industrial and Engineering Chemistry, 2009,15(1):110-118.
    [113]Tao J., Wang N. DNA computing based RNA genetic algorithm with applications in parameter estimation of chemical engineering processes[J]. Computers & Chemical Engineering,2007,31(12):1602-1618.
    [114]Eberhart R., Kennedy J. A new optimizer using particle swarm theory[C]. Proceedings of the International Symposium on Micromechatronics and Human Science,1995,39-43.
    [115]Kennedy J., Eberbart R. Particle swarm optimization[C]. Proceedings of the IEEE international conference on neural networks, Ⅳ,1995,1942-1948.
    [116]Li B. B., Wang L., Liu B. An effective PSO-based hybrid algorithm for multi-objective permutation flow shop scheduling [J]. IEEE Transactions on Systems, Man, and Cybernetics Part A:Systems and Humans,2008,38(4):818-831.
    [117]Wang Y. S. et al. Cultural-based particle swarm optimization algorithm[J]. Journal of Dalian University of Technology,2007,47(4):539-544.
    [118]Shi Y., Eberhart R. C. Fuzzy adaptive particle swarm optimization[C]. Proceedings of the 2001 Congress on Evolutionary Computation,2001,101-106.
    [119]Hu X. H., Eberhart R. C. Multi-objective optimization using dynamic neighborhood particle swarm optimization[C]. Proceedings of the 2002 Congress on Evolutionary Computation,2002,1677-1681.
    [120]Juang C. F. A hybrid of genetic algorithm and particle swarm optimization for recurrent network design[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics,2004,34(2),997-1006.
    [121]李爱国等.粒子群优化算法[J].计算机工程与应用,2002,38(21):1-3.
    [122]Liu B. et al. Improved Particle Swarm Optimization Combined with Chaos[J]. Chaos, Solitons and Fractal,2005,25(5):1261-1271.
    [123]Xu W., Gu X. S. A hybrid particle swam optimization approach with prior crossover differential evolution[C]. Proceedings of the 1st ACM/SIGEVO Summit on Genetic and Evolutionary Computation,2009,671-677.
    [124]Metropolis N. et al. Equation of state calculations by fast computing machines[J]. The Journal of Chemical Physics,1953,21(6):1087-1092.
    [125]Kirkpatrick S. et al. Optimization by simulated annealing[J]. Science,1983,220(4598): 671-680.
    [126]Geman S., Geman D. Stochastic relaxation, gibbs distributions, and the bayesian restoration of images[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1984, PAMI-6(6):721-741.
    [127]杨若黎,顾基发.一种高效的模拟退火全局优化算法[J].系统工程理论与实践,1997,(5):29-35.
    [128]Ingber L., Rosen B. Genetic Algorithms And Very Fast Simulated Reannealing:A Comparison[J]. Mathematical and Computer Modeling,1992,16(11):87-100.
    [129]Laarhoven P. J. M., Aarts E. H. L. Simulated annealing:theory and applications[M]. Holland:Kluwer Academic Publishers,1987.
    [130]Aarts E., Korst J. Simulated annealing and Boltzmann machines:a stochastic approach to combinatorial optimization and neural computing[M]. New York:John Wiley & Sons, 1989.
    [131]康立山等.非数值并行算法(第一册):模拟退火算法[M].北京:科学出版社,1994.
    [132]Coelho L. D. S., Souza R. C. T., Mariani V. C. Improved differential evolution approach based on cultural algorithm and diversity measure applied to solve economic load dispatch problems[J]. Mathematics and Computers in Simulation,2009,79(10):3136-3147.
    [133]Reynolds R. G. An Introduction to Cultural Algorithms[C]. Proceedings of the Third Annual Conference on Evolutionary Programming,1994,131-139.
    [134]Lin C. J., Chen C. H., Lin C. T. A Hybrid of Cooperative Particle Swarm Optimization and Cultural Algorithm for Neural Fuzzy Networks and Its Prediction Applications [J]. IEEE Transactions on Systems, Man and Cybernetics Part C:Applications and Reviews, 2009,39(1):55-68.
    [135]Iacoban R., Reynolds R. G., Brewster J. Cultural swarms:modeling the impact of culture on social interaction and problem solving[C]. Proceedings of the 2003 IEEE Swarm Intelligence Symposium, Indianapolis, IN, USA,2003,205-211.
    [136]Jin X., Reynolds R. G. Using knowledge-based evolutionary computation to solve non-linear constraint optimization problems:a cultural algorithm approach[C]. Proceedings of the 1999 Congress on Evolutionary Computation, Washington, DC, USA,1999, 1672-1678.
    [137]Reynolds R. G., Zhu S. Knowledge-based function optimization using fuzzy cultural algorithms with evolutionary programming [J]. IEEE Transactions on Systems, Man, and Cybernetics, Part B:Cybernetics,2001,31(1):1-18.
    [138]Gao F. et al. Hybrid Model of Genetic Algorithm and Cultural Algorithms for Optimization Problem[J]. Lecture Notes in Computer Science,2006,4247:441-448.
    [139]王奕首等.文化粒子群优化算法[J].大连理工大学学报,2007,47(4):539-544.
    [140]马卫,朱娴,朱庆保.基于文化的连续蚂蚁优化算法的研究[J].计算机应用研究,2009,26(7):2442-2445,2449.
    [141]Ricardo L. B., Coello C. A. Cultured differential evolution for constrained optimization [J]. Computer Methods in Applied Mechanics and Engineering,2006,195(33-36): 4303-4322.
    [142]Darwin C. The Origin of Species By Means of Natural Selection; or the Preservation of Favored Races in the Struggle for Life[M]. New York:Book League of America,1929.
    [143]Potter M. A. The design and analysis of a computational model of cooperative coevolution[D]. Fairfax, VA, USA:George Mason University,1997.
    [144]Potter M. A., Jong K. A. D. A cooperative coevolutionary approach to function optimization [J]. Lecture Notes in Computer Science,1994,866:249-257.
    [145]Potter M. A., Jong K. A. D. Cooperative Coevolution:An Architecture for Evolving Coadapted Subcomponents[J]. Evolutionary computation,2000,8(1):1-29.
    [146]Rosin C. D., Belew R. K. Methods for Competitive Co-evolution:Finding Opponents Worth Beating[C]. Proceedings of the Sixth International Conference on Genetic Algorithms,1995,373-380.
    [147]Yang Z. Y., Tange K., Yao X. Large scale evolutionary optimization using cooperative coevolution[J]. Information Sciences,2008,178(15):2985-2999.
    [148]Liu B. et al. A memetic co-evolutionary differential evolution algorithm for constrained optimization[C]. IEEE Congress on Evolutionary Computation, Singapore,2007, 2996-3002.
    [149]Gu J. W. et al. A novel competitive co-evolutionary quantum genetic algorithm for stochastic job shop scheduling problem [J]. Computers and Operations Research,2010, 37(5):927-937.
    [150]He S., Wu Q. H., Saunders J. R. A novel group search optimizer inspired by animal behavioural ecology[C]. IEEE Congress on Evolutionary Computation,2006,1272-1278.
    [151]He S., Wu Q. H., Saunders J. R. Group Search Optimizer: An Optimization Algorithm Inspired by Animal Searching Behavior [J]. IEEE Transactions on Evolutionary Computation,2009,13(5):973-990.
    [152]He S., Li X. L. Application of a group search optimization based Artificial Neural Network to machine condition monitoring[C]. IEEE Symposium on Emerging Technologies and Factory Automation,2008,1260-1266.
    [153]Shen H. et al. An improved group search optimizer for mechanical design optimization problems[J]. Progress in Natural Science,2009,19(1):91-97.
    [154]Liu F. et al. The Group Search Optimizer and its Application on Truss Structure Design[C]. Proceedings-4th International Conference on Natural Computation,2008, 688-692.
    [155]Paun G., Rozenberg G., Salomaa A. Handbook of Membrane Computing[M]. Oxford: Oxford University Press,2009.
    [156]张葛祥,潘林强.自然计算的新分支——膜计算[J].计算机学报,2010,33(2):208-214.
    [157]Paun G et al. On the power of membrane division in P systems[J]. Theoretical Computer Science,2004,324(1):61-85.
    [158]Bernardini F., Gheorghe M. Cell communication in tissue P systems:universality results[J]. Soft Computing,2005,9(9):640-649.
    [159]Krishna S. N. Universality results for P systems based on brane calculi operations [J]. Theoretical Computer Science,2007,371(1-2):83-105.
    [160]孙庶.动力配煤几个主要煤质指标可加性的论证[J].煤炭技术,2009,28(5):164-166.
    [161]姚强,岑可法.多煤种配煤特性的试验研究[J].动力工程,1997,17(2):16-20.
    [162]赵亮,熊友辉,夏利民.配煤对可磨性指数的影响规律研究[J].热力发电,2006,35(2):54-54,66.
    [163]王艳柳,张晓慧.煤灰熔融性对气化用煤的影响[J].煤质技术,2009,(4):55-58.
    [164]闫博,张忠孝,陈龙.高温气化过程中降低煤灰熔点的实验研究[J].洁净煤技术,2007,13(5):71-74.
    [165]焦发存等.配煤对煤灰熔融特性影响的实验研究[J].煤炭转化,2006,29(1):11-14,18.
    [166]李建中等.支持向量机技术在动力配煤中灰熔点预测的应用[J].煤炭学报,2007,32(1):81-84.
    [167]舒红宁等.基于煤灰成分的非线性结渣模糊综合预测模型的研究[J].电站系统工程,2006,22(4):11-12.
    [168]白鹏等.支持向量机理论及工程应用实例[M].西安:电子科技大学出版社,2008.
    [169]Suykens J. A. K. et al. Least Squares Support Vector Machines[M]. Singapore:World Scientific Publishers,2002.
    [170]Price K. V., Storn R. M., Lampinen J. A. Differential evolution:a practical approach to global optimization[M]. Germany:Springer-Verlag Berlin Heidelberg,2005.
    [171]Jin X., Reynolds R. G. Using knowledge-based system with hierarchical architecture to guide the search of evolutionary computation[C].11th IEEE International Conference on Tools with Artificial Intelligence,1999,29-36.
    [172]Angeline P. J., Pollack J. B. Competitive environments evolve better solutions for complex tasks[C]. Proceedings of the 5th International Conference on Genetic Algorithm, 1993,264-270.
    [173]Qin A. K., Huang V. L., Suganthan P. N. Differential Evolution Algorithm With Strategy Adaptation for Global Numerical Optimization[J]. IEEE Transactions on Evolutionary Computation,2009,13(2):398-417.
    [174]Das S. et al. Differential Evolution Using a Neighborhood-Based Mutation Operator[J]. IEEE Transactions on Evolutionary Computation,2009,13(3):526-553.
    [175]Storn R., Price K. Differential evolution:a simple and efficient heuristic for global optimization over continuous spaces [J]. Journal of Global Optimization,1997,11: 341-359.
    [176]Eberhart R. C., Shi Y. Particle swarm optimization:developments, applications and resources[C]. Proceedings of the 2001 Congress on Evolutionary Computation, Seoul, Korea,2001,81-86.
    [177]Li X., Engelbrecht A. P. Particle swarm optimization:an introduction and its recent developments[C]. Proceedings of the 2007 GECCO conference companion on Genetic and evolutionary computation,2007,3391-3414.
    [178]Krohling R. A., Coelho L. D. S. Coevolutionary Particle Swarm Optimization Using Gaussian Distribution for Solving Constrained Optimization Problems[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part B:Cybernetics,2006,36(6): 1407-1416.
    [179]Franken N., Engelbrecht A. P. Particle swarm optimization approaches to coevolve strategies for the iterated prisoner's dilemma[J]. IEEE Transactions on Evolutionary Computation,2005,9(6):562-579.
    [180]Ho S. Y. et al. OPSO:Orthogonal Particle Swarm Optimization and Its Application to Task Assignment Problems[J]. IEEE Transactions on Systems, Man and Cybernetics, Part A:Systems and Humans,2008,38(2):288-298.
    [181]Liu B., Wang L., Jin Y. H. An Effective PSO-Based Memetic Algorithm for Flow Shop Scheduling[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part B:Cybernetics, 2007,37(1):18-27.
    [182]Ciuprina G., loan D., Munteanu I. Use of intelligent-particle swarm optimization in electromagnetic[J]. IEEE Transactions on Magnetics,2002,38(2):1037-1040.
    [183]Zhan Z. H. et al. Adaptive Particle Swarm Optimization[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part B:Cybernetics,2009,39(6):1362-1381.
    [184]Eberhart R. C., Shi Y. Guest Editorial Special Issue on Particle Swarm Optimization[J]. IEEE Transactions on Evolutionary Computation,2004,8(3):201-203.
    [185]Clerc M., Kennedy J. The particle swarm-explosion, stability, and convergence in a multidimensional complex space [J]. IEEE Transactions on Evolutionary Computation, 2002,6(1):58-73.
    [186]Shi Y, Eberhart R. C. A modified particle swarm optimizer[C]. IEEE World Congress on Computational Intelligence, Anchorage, AK, USA,1998,69-73.
    [187]Shi Y, Eberhart R. C. Empirical study of particle swarm optimization[C]. Proceedings of the 1999 Congress on Evolutionary Computation, Washington, DC, USA,1999, 1945-1950.
    [188]Ratnaweera A., Halgamuge S. K., Watson H. C. Self-organizing hierarchical particle swarm optimizer with time-varying acceleration coefficients[J]. IEEE Transactions on Evolutionary Computation,2004,8(3):240-255.
    [189]Alatas B., Akin E., Ozer A. B. Chaos embedded particle swarm optimization algorithms[J]. Chaos, Solitons & Fractals,2009,40(4):1715-1734.
    [190]Bergh F. V. D., Engelbrecht A. P. A cooperative approach to particle swarm optimization[J]. IEEE Transactions on Evolutionary Computation,2004,8(3):225-239.
    [191]Liang J. J. et al. Comprehensive learning particle swarm optimizer for global optimization of multimodal functions [J]. IEEE Transactions on Evolutionary Computation, 2006,10(3):281-295.
    [192]陈贵敏,贾建援,韩琪.粒子群优化算法的惯性权值递减策略研究[J].西安交通大学学报,2006,40(1):53-56,61.
    [193]Trelea I. C. The particle swarm optimization algorithm:convergence analysis and parameter selection[J]. Information Processing Letters,2003,85(6):317-325.
    [194]Montgomery D. C. Design and Analysis of Experiments (6th edition)[M]. New York: John Wiley & Sons,2005.
    [195]Shi Y., Eberhart R. C. Parameter selection in particle swarm optimization [J]. Lecture Notes in Computer Science,1998,1447:591-600.
    [196]Zhang W. J., Xie X. F. DEPSO:hybrid particle swarm with differential evolution operator[C]. Proceedings of IEEE International Conference on Systems, Man and Cybernetics,2003,4:3816-3821.
    [197]He S. et al. A particle swarm optimizer with passive congregation[J]. BioSystems,2004, 78(1-3):135-147.
    [198]Qin G, Liu F., Li L. J. A Quick Group Search Optimizer with Passive Congregation and its Convergence Analysis[C]. IEEE International Conference on Computational Intelligence and Security,2009,249-253.
    [199]俞金寿.软测量技术及其应用[J].自动化仪表,2008,29(1):1-7.
    [200]Paun G. Computing with membranes [J]. Journal of Computer and System Sciences, 2000,61(1):108-143.
    [201]Paun G., Rozenberg G. A guide to membrane computing[J]. Theoretical Computer Science,2002,287(1):73-100.
    [202]黄亮.膜计算优化方法研究[D].浙江大学,杭州,2007.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700