用户名: 密码: 验证码:
基于彩色图像处理的硫化铜精矿泡沫特征与品位分析研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
铜精矿品位是硫化铜浮选生产过程参数之一,也是一项重要的浮选产品质量指标。现有的铜精矿品位检测方法存在着主观性强、检测周期长、数据校正复杂、成本较高等不足之处。本文以硫化铜精矿为研究对象,结合彩色图像处理方法,系统研究了硫化铜精矿在固相、固液两相、气固液三相体系中的彩色图像特征,揭示图像特征与铜精矿品位之间的变化规律,建立基于图像特征的精矿品位预测模型,为浮选生产的过程控制提供必要的技术支持。主要研究内容和成果如下:
     建立了基于硫化铜精矿粉末彩色显微图像颜色特征的品位预测模型。搭建了实验室彩色显微图像采集装置并获取硫化铜微粉图像;提出了色调保持不变的彩色图像增强方法,有效地实现彩色显微图像的降噪和增强处理;采用统计方法提取彩色显微图像的红色、绿色、蓝色、色调平均值、彩色向量角等颜色特征参数,建立了3个基于图像颜色特征的LS-SVR法的品位预测模型;评价模型的预测性能,结果表明,基于色调平均值的铜精矿品位预测模型为最佳。
     建立了基于硫化铜矿浆彩色图像特征的品位预测模型。针对硫化铜矿浆图像采集问题,设计了一套矿浆彩色图像采集试验装置和方法;提出了矿浆彩色图像的裁剪和增强等预处理方法,采用颜色比率和相对颜色度方法提取矿浆图像颜色特征,首次引入Tamura方法提取图像V分量纹理特征,然后利用相关系数方法对颜色和纹理特征进行降维;依据多元线性回归和GRNN方法研究矿浆图像特征和品位之间的内在关系,结果表明,基于GRNN法的品位预测模型的预测精度均优于基于多元线性回归法的品位预测模型的预测精度,且基于矿浆彩色图像纹理特征的GRNN的品位预测模型为最优。
     建立了基于硫化铜浮选泡沫彩色图像特征的铜精矿品位软测量模型。搭建了一套浮选泡沫视频图像采集试验装置,实现了硫化铜粗选和精选过程的泡沫彩色图像采集任务。研究了粗选和精选泡沫彩色图像的裁剪、去模糊化、降噪、增强等预处理方法,依据颜色直方图、颜色矩、相对颜色度等方法提取泡沫图像颜色特征,分别采用Tamura方法、WPT结合Tamura方法提取泡沫图像的H、S、V分量纹理特征;提出了一种多层聚类结合Lasso法的图像特征参数降维方法,并采用相关系数硬阈值法择取模型的辅助变量;采用多元线性回归、PLS、LS-SVR方法分别建立基于粗选和精选泡沫图像特征的品位软测量模型,评价这些模型的预测性能,结果表明,在硫化铜粗选过程中,基于粗选泡沫彩色图像颜色和纹理特征组合的LS-SVR的铜精矿品位软测量模型的预测精度为最优;在硫化铜精选过程中,基于精选泡沫彩色图像颜色特征的LS-SVR的铜精矿品位软测量模型的预测精度为最优;利用彩色图像处理方法可对铜精矿品位进行预测。
Copper concentrate grade is not only an important parameter in copper sulfideproductive process, but also a significant quality index of flotation product. There are manyshortages in copper concentrate grade detection methods, such as strong subjectivity, lowaccuracy, long detection period, data correction, high cost and so on. Copper sulfide was usedas an object of study in this paper. Based on color image processing methods, color imagefeature of copper sulfide concentrate was systematically studied in solid phase, solid-liquidphase, gas-solid-liquid phase environment. Relations between image feature and copperconcentrate grade was revealed and concentrate grade prediction model based on imagefeature was developed. This research could provide theoretical support for further study aboutcopper concentrate grade detection methods and technical support for process control inflotation. Main research contents and conclusions are as follows:
     Grade prediction model based on color microscopic image feature of copper sulfideconcentrate powder was developed. For the problems of fine particles in copper sulfide testsamples, a color microscopic image acquisition device was built, then a hue-preserving colorimage enhancement method was proposed to denoise and enhance color microscopic imageeffectively. Color microscopic image features such as color vector angle, average red, green,blue, and hue values were extracted by statistical approach. Furthermore, three concentrateprediction models were developed, base on LS-SVR method and image color feature.Comparative results of three models’ predictive performance indicated that copperconcentrate grate prediction model based on average hue value was an optimal model.
     Grade prediction model based on color image features of copper sulfide pulp wasconstructed. For image acquisition problem of copper sulfide pulp, a pulp color imageacquisition device and method was designed. Cropping and enhancing preprocess method forpulp image was studied. Color features of pulp image were extracted by color ratio andrelative color degree methods. Tamura method was firstly introduced to extract texturefeatures from V component, then dimensionality reduction for color and texture features wasconducted through correlation coefficient method. Moreover, linear and non-linear relationsbetween pulp image features and copper grade were studied by multiple linear regressionmethod and GRNN method. Study results showed that grade prediction model based onGRNN method had higher prediction accuracy than model based on multiple linear regressionmethod, and grade prediction model, based on GRNN method and texture features of pulpcolor image, was an optimal model.
     Copper concentrate grade soft-sensor models based on froth color image features incopper sulfide flotation process were developed. A video-image acquisition device forflotation froth was developed in order to accomplish color image task of rougher froth andcleaner froth of copper sulfide. Preprocess methods for rougher and cleaner froth, such ascropping, deblurring, denoising and enhancement, was studied. In addition, color histogram,color moments, relative color degree methods were used to extract color features from frothcolor image. And texture features of H, S and V component were extracted by Tamura methodand WPT combined with Tamura method. Then, dimensionality reduction method, which wasbased on multiple clustering method and Lasso method, was applied to image featureparameters. Combined with hard threshold method of correlation coefficient, secondaryvariable of soft sensor model was selected. Finally, through multiple linear regression method,PLS method and LS-SVR method, soft sensor model of copper concentrate grade weredeveloped, which based on image features of rougher and cleaner froth. Comparative resultsof these models’ predictive performance, results showed: in copper sulfide rougher flotationprocess, the soft sensor model of copper concentrate grade using LS_SVR method was anoptimal model, which was based on color and texture features of rougher froth image; incopper sulfide cleaner flotation process, the soft sensor method of copper concentrate gradeusing LS_SVR method was an optimal model, which was based on color features of cleanerfroth image; it could be concluded the grade of copper concentrate would be predicted byusing color image processing method.
引文
[1]胡熙庚.浮选理论与工艺[M].长沙:中南工业大学出版社,1991.
    [2]谢广元.选矿学[M].江苏徐州:中国矿业大学出版社,2001.
    [3]刘炯天.旋流—静态微泡柱分选方法及应用(之一)柱分选技术与旋流—静态微泡柱分选方法[J].选煤技术,2000(01):42-44.
    [4]刘炯天,王永田,曹亦俊,等.浮选柱技术的研究现状及发展趋势[J].选煤技术,2006(05):25-29.
    [5]岳辉.新型浮选柱在大红山铜矿选厂开发应用研究[D].昆明理工大学,2007.
    [6]刘小波.泡沫图像处理技术在矿物浮选作业中的应用[J].计算技术与自动化,2012(3):138-141.
    [7] Shean B J, Cilliers J J. A review of froth flotation control[J]. International Journal of MineralProcessing,2011,100(3–4):57-71.
    [8] Marais C, Aldrich C. Estimation of platinum flotation grades from froth image data[J]. MineralsEngineering,2011,24(5):433-441.
    [9]周开军,阳春华,牟学民,等.基于图像特征提取的浮选关键参数智能预测算法[J].控制与决策,2009(9):1300-1305.
    [10]何桂春,黄开启.浮选指标与浮选泡沫数字图像关系研究[J].金属矿山,2008(8):96-101.
    [11] Aldrich C, Marais C, Shean B J, et al. Online monitoring and control of froth flotation systems withmachine vision: A review[J]. International Journal of Mineral Processing,2010,96(1–4):1-13.
    [12]李启福,王雅琳,曹泊,等.基于滑窗B样条偏最小二乘的浮选过程质量指标软测量[J].中国科技论文,2012(4):294-301.
    [13]唐朝晖,孙园园,桂卫华,等.基于小波变换的浮选泡沫图像纹理特征提取[J].计算机工程,2011(18):206-208.
    [14]阳春华,周开军,牟学民,等.基于计算机视觉的浮选泡沫颜色及尺寸测量方法[J].仪器仪表学报,2009,30(4):717-721.
    [15]刘文礼,陈子彤,路迈西.煤泥浮选泡沫的数字图像处理[J].燃料化学学报,2002(3):198-203.
    [16]林小竹,谷莹莹,赵国庆.煤泥浮选泡沫图像分割与特征提取[J].煤炭学报,2007(3):304-308.
    [17] Ren C, Yang J. A novel color microscope image enhancement method based on HSV color space andcurvelet transform[J]. International Journal of Computer Science Issues,2012,9(6):272-277.
    [18] Zhang Y, Jiang K, Wang Y. Flotation concentrate grade prediction model based on RBF neuralnetwork immune evolution algorithm[C]. CCC2012, IEEE Computer Society,3319-3323.
    [19] Marais C, Aldrich C. The estimation of platinum flotation grade from froth image features by usingartificial neural networks[J]. Journal of the South African Institute of Mining and Metallurgy,2011,111(2):81.
    [20] Moolman D W, Aldrich C, Van Deventer J S J, et al. Digital image processing as a tool for on-linemonitoring of froth in flotation plants[J]. Minerals Engineering,1994,7(9):1149-1164.
    [21] Morar S H, Harris M C, Bradshaw D J. The use of machine vision to predict flotation performance[J].Minerals Engineering,2012,36–38(0):31-36.
    [22] Morar S H, Forbes G, Heinrich G S, et al. The use of a colour parameter in a machine vision system,Smart-Froth, to evaluate copper flotation performance at Rio Tinto’s Kennecott Utah CopperConcentrator[C], Centenary of Flotation Symposium. Australasian Institute of Mining and Metallurgy,147-151.
    [23] Reddick J F, Hesketh A H, Morar S H, et al. An evaluation of factors affecting the robustness ofcolour measurement and its potential to predict the grade of flotation concentrate[J]. MineralsEngineering,2009,22(1):64-69.
    [24] Liu J J, MacGregor J F, Duchesne C, et al. Flotation froth monitoring using multiresolutionalmultivariate image analysis[J]. Minerals Engineering,2005,18(1):65-76.
    [25] Bartolacci G, Pelletier Jr. P, Tessier Jr. J, et al. Application of numerical image analysis to processdiagnosis and physical parameter measurement in mineral processes—Part I: Flotation control basedon froth textural characteristics[J]. Minerals Engineering,2006,19(6–8):734-747.
    [26] Remes A, Saloheimo K, J ms-Jounela S L. Effect of speed and accuracy of on-line elemental analysison flotation control performance[J]. Minerals Engineering,2007,20(11):1055-1066.
    [27]梁栋华,于飞,赵建军,等.BFIPS—Ⅰ型浮选泡沫图像处理系统的应用与研究[J].有色金属(选矿部分),2011(1):43-45.
    [28]沃国经.FP-01浮选泡沫图像处理系统[J].有色冶金设计与研究,2003,24(S1):87-89.
    [29]曾荣,沃国经.图像处理技术在镍选矿厂中的应用[J].矿冶,2002(1):37-41.
    [30]张方方,王建平,王银宏.试析中国铜产业存在的问题与对策建议[J].中国矿业,2013(02):9-13.
    [31]宋鑫.我国铜工业可持续发展战略[J].矿业研究与开发,2009(02):98-101.
    [32]国家统计数据库.国土自然资源年度统计数据[EB/OL].http://219.235.129.58/welcome.do.
    [33]中国矿业年鉴编辑部.中国矿业年鉴(2011)[M].北京:中国地震出版社,2012.
    [34]唐宇,吴强,陈甲斌.国内铜矿市场供需形势及趋势分析[J].现代商业,2012(10):103.
    [35]周平,唐金荣,施俊法,等.铜资源现状与发展态势分析[J].岩石矿物学杂志,2012(05):750-756.
    [36]李立清,杨丽钦.浅谈铜资源的综合利用问题[J].金属矿山,2010(07):169-172.
    [37]李建荣.对我国铜矿未来发展形势的思考[J].广东科技,2012(03):143-145.
    [38]刘小舟.我国重要有色金属资源——铜矿的现状及展望[J].西北地质,2007(1):83-88.
    [39]美国地质调查局.2001-2012年铜业统计数据[EB/OL].http://minerals.usgs.gov/minerals/pubs/mcs/.
    [40]欧文军.基于泡沫图像的浮选过程监控系统研究与实现[D].中南大学,2010.
    [41]周开军.矿物浮选泡沫图像形态特征提取方法与应用[D].中南大学,2010.
    [42]何桂春,冯金妮,吴艺鹏,等.浮选泡沫图像处理技术研究现状与进展[J].有色金属科学与工程,2011(02):57-63.
    [43]苏成德.选矿操作技术解疑[M].河北:河北科学技术出版社,1999.
    [44] Nakhaei F, Mosavi M R, Sam A, et al. Recovery and grade accurate prediction of pilot plant flotationcolumn concentrate: Neural network and statistical techniques[J]. International Journal of MineralProcessing,2012,110:140-154.
    [45] Botha C P. An on-line machine vision flotation froth analysis platform[D]. University of Stellenbosch,1999.
    [46]罗晓玲.国内外铜矿资源分析[J].世界有色金属,2000(04):4-10.
    [47]陈远盘.X射线荧光光谱分析综述[J].分析化学,1979,7(4):304.
    [48]马竹梧.X射线测厚影响因素分析、技术进展及其在冶金工业中的应用(上)[J].冶金自动化,2011(01):1-5.
    [49]马光祖,梁国立.地质样品的X射线荧光光谱分析[J].岩矿测试,1992(Z1):37-43.
    [50]丁雪心.XRF测定铅锌矿选矿流程中铅、锌、铜[J].光谱学与光谱分析,1994(01):111-114.
    [51]黄进初,喻东,吴永红,等.高精度XRF技术在新疆某铜镍矿的应用[J].金属矿山,2010(06):137-138.
    [52] Jakhu M R. Process control in flotation plants[J]. IIME,1998:77-102.
    [53]曾云南.现代选矿过程在线品位分析仪的研究进展[J].有色设备,2008(5):12-15.
    [54] Aldrich C, Barkhuizen M. Analysis and identification of mineral process plant by use of singularspectrum analysis and neural network[C], The XXII international mineral processing congress, CapeTown.1627-1637.
    [55] Del Villar R, Desbiens A, Huard J F, et al. An experimental set-up for the study of flotation columnoptimization[C], Proceedings of Copper/Cobre2003International Conference,401-414.
    [56] Bergh L G, Yianatos J B. The long way toward multivariate predictive control of flotation processes[J].Journal of Process Control,2011,21(2):226-234.
    [57] Haavisto O, Kaartinen J. Multichannel reflectance spectral assaying of zinc and copper flotationslurries[J]. International Journal of Mineral Processing,2009,93(2):187-193.
    [58] Leroux D, Franklin M. A methodology for on-stream XRF analyzer calibration using statistics[J]. J.Miner. Process,1994:461-474.
    [59] Bergh L G, Yianatos J B. Flotation column automation: state of the art[J]. Control engineering practice,2003,11(1):67-72.
    [60] Nakhaei F, Sam A, Mosavi M R, et al. Prediction of XRF analyzers error for elements on-line assayingusing Kalman Filter[J]. International Journal of Mining Science and Technology,2012.
    [61] Suichies M, Leroux D, Dechert C, et al. An implementation of generalized predictive control in aflotation plant[J]. Control Engineering Practice,2000,8(3):319-325.
    [62]曾荣杰.库里厄系列载流X荧光分析仪的综述[J].有色冶金设计与研究,2003(S1).
    [63]曾云南.现代选矿过程在线品位分析仪的研究进展(续)[J].有色设备,2008(6):26-29.
    [64]宣乐信,曾云南.选矿厂选别作业自动控制的进展[J].金属矿山,2008,1:7-11.
    [65]李晓岚,曾云南.选矿自动化技术的新进展[J].金属矿山,2006,6:61-64.
    [66]张坤,冯禄平.WDPF-Ⅱ品位分析仪在彝良驰宏矿业选矿工艺的应用[J].现代矿业,2011(4):110-112.
    [67]郭生良,葛良全,赖万昌,等.XRF法快速测定铁钛精矿中的Fe,Ti品位[J].物探化探计算技术,2007,29(5):436-438.
    [68]周四春.携带式X荧光仪监控金铜矿石选矿应用研究[J].核技术,2001(6):515-520.
    [69]熊国林,孙芝地.选矿自动化中荧光分析仪的应用[J].矿冶,1999,8(3):84-87.
    [70]熊国林.X荧光分析仪在永平铜矿浮选工艺中的应用实践[J].江西有色金属,1999,13(1):26-28.
    [71]杨峰.新型在线品位分析仪Courier3SL在选矿中的应用[J].铜业工程,2002(1):39-41.
    [72]赵尔燕,邱林友.催化动力学反应——XRF测定高纯碳酸锂中的痕量银[J].稀有金属,1993(06):473-475.
    [73]徐清,刘晓端,汤奇峰,等.包头市表层土壤多元素分布特征及土壤污染现状分析[J].干旱区地理,2011(01):91-99.
    [74]关颖,赵海英,丁喜峰,等.不同产地的螺旋藻粉中元素含量分析[J].光谱学与光谱分析,2007(05):1029-1031.
    [75]康士秀,沈显生,黄宇营,等.青岛海藻重元素富集特性的SR-XRF分析及对海洋环境监测的应用[J].光谱学与光谱分析,2003(01):94-97.
    [76]乌利希,李金标.现代X射线荧光分析在过程控制中的应用[J].国外金属矿选矿,1999,36(5):40-42.
    [77]吉昂.X射线荧光光谱分析[M].科学出版社,2003.
    [78]马光祖,袁汉章.X射线荧光光谱分析[J].分析试验室,1989(4).
    [79]李忠义.X荧光分析仪数学模型的研究[J].有色金属,1980,2:12.
    [80]葛蝶如.ZPF在线品位分析仪检测精度分析[J].金属矿山,1994(1):47-50.
    [81] Wills B A, Napier-Munn T J. Wills’ Mineral Processing Technology[M].7th edition. Elsevier, Ltd,2006.
    [82] Oestreich J M, Tolley W K, Rice D A. The development of a color sensor system to measure mineralcompositions[J]. Minerals engineering,1995,8(1):31-39.
    [83]黄胜国.浮选泡沫精矿品位图像识别研究[D].长沙:中南大学,2004.
    [84]杨春兰.基于数字图像处理技术测定煤泥水浓度[D].安徽理工大学,2006.
    [85]张传俊.计算机图像处理在煤泥水浓度测定中的研究[D].安徽理工大学,2007.
    [86]王光辉.煤泥浮选过程模型仿真及控制研究[D].中国矿业大学,2012.
    [87]任传成,杨建国.机器视觉技术在浮选精矿品位软测量中的研究现状[J].有色金属(选矿部分),2014(01):70-73.
    [88] Moolman D W, Aldrich C, Van Deventer J, et al. The interpretation of flotation froth surfaces by usingdigital image analysis and neural networks[J]. chemical engineering science,1995,50(22):3501-3513.
    [89] Wright B A. The development of a vision-based flotation froth analysis system[D]. University of CapeTown,1999.
    [90] Kaartinen J, Haavisto O, Hy tyniemi H. On-line colour measurement of flotation froth[C], IASTEDInternational Conference on Intelligent Systems and Control, Honolulu, Hawaii, USA.164-169.
    [91] Hatonen J, Hyotyniemi H, Miettunen J, et al. Using image information and partial least squaresmethod to estimate mineral concentrations in mineral flotation[C], IPMM'99.459-464.
    [92] Bonifazi G, Massacci P, Meloni A. Prediction of complex sulfide flotation performances by acombined3D fractal and colour analysis of the froths[J]. Minerals engineering,2000,13(7):737-746.
    [93] Bonifazi G, Serranti S, Volpe F, et al. Characterisation of flotation froth colour and structure bymachine vision[J]. Computers&Geosciences,2001,27(9):1111-1117.
    [94] Bonifazi G, Massacci P, Meloni A. A3D froth surface rendering and analysis technique tocharacterize flotation processes[J]. International journal of mineral processing,2002,64(2):153-161.
    [95] Hargrave J M, Hall S T. Diagnosis of concentrate grade and mass flowrate in tin flotation from colourand surface texture analysis[J]. Minerals Engineering,1997,10(6):613-621.
    [96]刘丽,匡纲要.图像纹理特征提取方法综述[J].中国图象图形学报,2009,14(4):622-635.
    [97]黄胜国,杨英杰.浮选泡沫图像识别系统的设计与实现[J].工业控制计算机,2006(6):62-63.
    [98] Haralick R M, Shanmugam K, Dinstein I H. Textural features for image classification[J]. Systems,Man and Cybernetics, IEEE Transactions on,1973(6):610-621.
    [99]张奕奎,陈凌,王飞.基于图象识别的浮选控制系统[J].工矿自动化,2002(1):14-16.
    [100] Fogel I, Sagi D. Gabor filters as texture discriminator[J]. Biological cybernetics,1989,61(2):103-113.
    [101]刘金平,桂卫华,牟学民,等.基于Gabor小波的浮选泡沫图像纹理特征提取[J].仪器仪表学报,2010(8):1769-1775.
    [102] Duchesne C. Multivariate Image Analysis in Mineral Processing[M].Sbárbaro D, Del Villar R.Springer London,2010:85-142.
    [103]任传成,杨建国.浮选过程精矿品位软测量技术的研究进展[J].矿山机械,2013(08):8-12.
    [104]哈格雷夫J. M.,哈尔S. T.,魏超.根据泡沫的颜色和表面结构判断锡矿物浮中选的精矿品位和泡沫中的固体流量[J].国外选矿快报,1998(2):5-8.
    [105] G·伯尼法兹,左焕莹,李长根.用3D分形和颜色分析相结合的方法预测复杂硫化矿物浮选指标[J].国外金属矿选矿,2000(12):35-38.
    [106]汪中伟,梁栋华.基于浮选泡沫图像特征参数的应用研究[J].矿冶,2011(2):82-84.
    [107] Suykens J A, Vandewalle J. Least squares support vector machine classifiers[J]. Neural processingletters,1999,9(3):293-300.
    [108] J. A. K. Suykens T V G J. Least squares support vector machines[M]. Singapore: World ScientificPub. Co., Singapore,2002.
    [109] Suykens J A K. Nonlinear modelling and support vector machines[C], IMTC2001. Proceedings ofthe18th IEEE.2001:287-294.
    [110] Specht D F. A general regression neural network[J]. Neural Networks, IEEE Transactions on,1991,2(6):568-576.
    [111]韩力群.人工神经网络理论、设计及应用[M].北京:化学工业出版社,2002.
    [112]史峰,王小川,郁磊,等.MATLAB神经网络30个案例分析[M].北京:北京航空航天大学出版社,2010.
    [113] Kulkarni S G, Chaudhary A K, Nandi S, et al. Modeling and monitoring of batch processes usingprincipal component analysis (PCA) assisted generalized regression neural networks (GRNN)[J].Biochemical Engineering Journal,2004,18(3):193-210.
    [114] Wold H. Estimation of principal components and related models by iterative least squares[J].Multivariate analysis,1966,1:391-420.
    [115]王惠文.偏最小二乘回归方法及其应用[M].国防工业出版社,1999.
    [116]邓念武,徐晖.单因变量的偏最小二乘回归模型及其应用[J].武汉大学学报(工学版),2001,34(2):14-16.
    [117]覃新闻,李智录,李波.基于偏最小二乘回归的融雪型洪水预报模型[J].水文,2006,5:38-40.
    [118] The Mineral Chalcopyrite[EB/OL]. http://www.galleries.com/Chalcopyrite.
    [119] The Mineral Bornite[EB/OL]. http://www.galleries.com/Bornite.
    [120] The Mineral Covellite[EB/OL]. http://www.galleries.com/Covellite.
    [121] The Mineral Magnetite[EB/OL]. http://www.galleries.com/Magnetite.
    [122] Al-Samaraie M F, Al Saiyd N A M. Colored Satellites Image Enhancement Using Wavelet andThreshold Decomposition[J]. International Journal of Computer Science Issues,2011,8(5).
    [123] Khashandarag A S, Khashandarag A S, Oskuei A R, et al. A Hybrid Method for Color ImageSteganography in Spatial and Frequency Domain[J]. International Journal of Computer ScienceIssues,2012,8(3):113-120.
    [124] Gupta A, Chanda B. A hue preserving enhancement scheme for a class of colour images[J]. PatternRecognition Letters,1996,17(2):109-114.
    [125] Gao M, Bridgman P, Kumar S. Computer Aided Prostate Cancer Diagnosis Using ImageEnhancement and JPEG2000[C], Applications of Digital Image Processing XXVI,323-334.
    [126] Alban E, Leveelahti L, Heiskanen K M, et al. Color enhancement and edge detection for confocalmicroscopy fluorescent images[C], NORSIG2004,9-12.
    [127] Osman M K, Mashor M Y, Jaafar H, et al. Performance comparison between RGB and HSI linearstretching for tuberculosis bacilli detection in ziehl-neelsen tissue slide images[C], ICSIPA09, IEEEComputer Society,357-362.
    [128] Ma J, Plonka G. The curvelet transform[J]. Signal Processing Magazine, IEEE,2010,27(2):118-133.
    [129] Donoho D L, Duncan M R. Digital curvelet transform: strategy, implementation, and experiments.
    [130]杨永勇,林小竹.彩色图像增强的几种方法研究比较[J].北京石油化工学院学报,2006,14(3):43-47.
    [131]赵晓丽,孙宪坤.基于视觉特性的彩色图像增强算法研究[J].计算机工程与设计,2009,30(19):4458-4460.
    [132] Asmare M H, Asirvadam V S, Izhar L I. Color Space Selection for Color Image EnhancementApplications.[C], ICSAP. IEEE Computer Society,208-212.
    [133] Candes E J, Donoho D L. New tight frames of curvelets and optimal representations of objects withpiecewise singularities[J]. communications on pure and applied mathematics,2004,57(2):219-266.
    [134] Candes E, Demanet L, Donoho D, et al. Fast discrete curvelet transforms[J]. Multiscale modeling andsimulation,2006,5(3):861-899.
    [135]杨家红,许灿辉,王耀南.基于快速曲波变换的图像去噪算法[J].计算机工程与应用,2007,43(6):31-33.
    [136] Starck J L, Cand E S E J, Donoho D L. The curvelet transform for image denoising[J]. ImageProcessing, IEEE Transactions on,2002,11(6):670-684.
    [137] Mohl B, Wahlberg M, Madsen P T. Ideal spatial adaptation via wavelet shrinkage[J]. The Journal ofthe Acoustical Society of America,2003,114:1143-1154.
    [138] Ali A D, Swami P D, Singhai J. Modified curvelet thresholding algorithm for image denoising[J].Journal of Computer Science,2010,6(1):18-23.
    [139] Sakuldee R, Udomhunsakul S. Objective measurements of distorted image quality evaluation[C],ICCCE2008. International Conference on. IEEE,1046-1051.
    [140]郎文杰.基于指数阈值的小波包变换图像去噪方法[J].长春理工大学学报(自然科学版),2009,32(3):484-486.
    [141] Li Q, He C. Application of wavelet threshold to image de-noising[C], ICICIC'06. First InternationalConference on. IEEE,693-696.
    [142] Ford A, Roberts A. Colour space conversions[J]. Westminster University, London,1998,1998:1-31.
    [143] Tkalcic M, Tasic J F. Colour spaces: perceptual, historical and applicational background[C],EUROCON,2003,304-308.
    [144]贾艳阳.硫化铜矿浮选的矿浆电位调控及工艺优化[D].徐州:中国矿业大学,2013.
    [145]赵全友,潘保昌,郑胜林,等.一种颜色保持的彩色图像增强新算法[J].计算机应用,2008(2):15-17.
    [146]李小霞,李铖果,邹建华,等.一种新的低照度彩色图像增强算法[J].计算机应用研究,2011(9):3554-3555.
    [147] Ahmad I S, Reid J F. Evaluation of colour representations for maize images[J]. Journal ofAgricultural Engineering Research,1996,63(3):185-195.
    [148]蔡鸿昌,崔海信,高丽红,等.基于颜色特征的叶片含水率与比叶重估算模型初探[J].中国农学通报,2006(08):532-535.
    [149] Tamura H, Mori S, Yamawaki T. Textural Features Corresponding to Visual Perception[J]. Systems,Man and Cybernetics, IEEE Transactions on,1978,8(6):460-473.
    [150]吕晓琪,郭金鸽,赵宇红,等.基于图像分割的Tamura纹理特征算法的研究与实现[J].中国组织工程研究,2012(17):3160-3163.
    [151]周荐龙.基于Tamura纹理特征的乳腺癌医学图像检索系统[J].科协论坛,2012(11):102-104.
    [152] Elfadel I M, Picard R W. Gibbs random fields, cooccurrences, and texture modeling[J]. PatternAnalysis and Machine Intelligence, IEEE Transactions on,1994,16(1):24-37.
    [153]杨金秀,胡旺联.统计学原理[M].中南大学出版社,2006.
    [154]刘烔天,樊民强.试验研究方法[M].中国矿业大学出版社,2006.
    [155]廖薇.基于神经网络和遗传规划的汇率预测技术研究[D].华东师范大学,2010.
    [156]周开利,康耀红.神经网络模型及其MATLAB仿真程序设计[M].清华大学出版社,2005.
    [157]刘庆华,张为公,龚宗洋.广义回归神经网络在汽车换档机械手运动轨迹测量中的应用[J].仪器仪表学报,2008(02):361-364.
    [158]杨小辉,徐颖强,李世杰,等.广义回归神经网络(GRNN)在AMT挡位判别中的应用[J].机械设计与制造,2009(05):72-74.
    [159]张如意,王学雷.基于GRNN的酱油种曲孢子数预测模型[J].中国调味品,2012(10):30-33.
    [160]李聪.基于GRNN网络的短期与超短期负荷预测[D].东北电力大学,2010.
    [161] Stricker M A, Orengo M. Similarity of color images[C], International Society for Optics andPhotonics,381-392.
    [162] Huang J, Kumar S R, Mitra M, et al. Image indexing using color correlograms[C], Computer Visionand Pattern Recognition,1997,762-768.
    [163] Swain M, Ballard D H. Color indexing[J]. International journal of computer vision,1991,7(1):11-32.
    [164] Ma W, Zhang H J. Benchmarking of image features for content-based retrieval[C], Signals, Systems&Computers,1998,253-257.
    [165] Murala S, Gonde A B, Maheshwari R P. Color and texture features for image indexing andretrieval[C], IACC2009. IEEE International. IEEE,1411-1416.
    [166]戴天虹.基于计算机视觉的木质板材颜色分类方法的研究[D].哈尔滨:东北林业大学,2008.
    [167]李林,赵莹,蒋先刚,等.基于直方图和颜色矩的胃癌细胞颜色特征表达与识别[J].江西科学,2010,28(005):626-629.
    [168] Chapelle O, Haffner P, Vapnik V N. Support vector machines for histogram-based imageclassification[J]. Neural Networks, IEEE Transactions on,1999,10(5):1055-1064.
    [169] Gonzalez R C, Woods R E, Eddins S L. Digital image processing using MATLAB[M]. GatesmarkPublishing Knoxville,2009.
    [170] Sergyan S. Color histogram features based image classification in content-based image retrievalsystems[C], Applied Machine Intelligence and Informatics, IEEE,221-224.
    [171] Wikipedia. YCbCr color space[EB/OL]. http://en.wikipedia.org/wiki/YCbCr.
    [172] Wikipedia. Lab color space[EB/OL]. http://en.wikipedia.org/wiki/CIELAB.
    [173] Wyszecki G, Stiles W S. Color science: Concepts and methods, quantitative data and formulae[J].John Wiley&Sons, New York,1982.
    [174] About the Lab Gamut, Integer Encoding of Lab[EB/OL].http://www.brucelindbloom.com/index.html?LabGamutDisplayHelp.html.
    [175]何清法.基于内容的图像分析与检索关键技术的研究[D].中国科学院研究生院,2001.
    [176] Krishnamoorthi R, Sathiya Devi S. A simple computational model for image retrieval with weightedmultifeatures based on orthogonal polynomials and genetic algorithm[J]. Neurocomputing,2013,116(0):165-181.
    [177] Laine A, Fan J. Texture classification by wavelet packet signatures[J]. Pattern Analysis and MachineIntelligence, IEEE Transactions on,1993,15(11):1186-1191.
    [178] Coifman R R, Wickerhauser M V. Entropy-based algorithms for best basis selection[J]. InformationTheory, IEEE Transactions on,1992,38(2):713-718.
    [179]孙延奎.小波分析及其应用[M].北京:机械工业出版社,2005.
    [180] Wood J C, Johnson K M. Wavelet packet denoising of magnetic resonance images: importance ofRician noise at low SNR[J]. Magnetic Resonance in Medicine,1999,41(3):631-635.
    [181] Yen G G, Lin K. Wavelet packet feature extraction for vibration monitoring[J]. Industrial Electronics,IEEE Transactions on,2000,47(3):650-667.
    [182] Garcia C, Tziritas G. Face detection using quantized skin color regions merging and wavelet packetanalysis[J]. Multimedia, IEEE Transactions on,1999,1(3):264-277.
    [183] Bradie B. Wavelet packet-based compression of single lead ECG[J]. Biomedical Engineering, IEEETransactions on,1996,43(5):493-501.
    [184] Li W, Zhu X. A new image fusion algorithm based on wavelet packet analysis and PCNN[C],Proceedings of2005International Conference on. IEEE,5297-5301.
    [185]陈浩.基于多尺度变换的多源图像融合技术研究[D].长春:中国科学院,2010.
    [186] Wickerhauser M V. Lectures on wavelet packet algorithms[C], Lecture notes. Citeseer,31-99.
    [187] Mallat S G. A theory for multiresolution signal decomposition: the wavelet representation[J]. PatternAnalysis and Machine Intelligence, IEEE Transactions on,1989,11(7):674-693.
    [188] Daubechies I. Orthonormal bases of compactly supported wavelets[J]. Communications on pure andapplied mathematics,1988,41(7):909-996.
    [189] Haar A. Zur theorie der orthogonalen funktionensysteme[J]. Mathematische Annalen,69(3):331-371.
    [190] Daubechies I. Ten lectures on wavelets[M]. SIAM,1992.
    [191]董长虹,高志,余啸海.Matlab小波分析工具箱原理与应用[M].国防工业出版社,2004.
    [192]吴森,韦灼彬.基于ABAQUS和小波包能量谱的钢桁架损伤预警[J].广西大学学报(自然科学版),2010(01):64-67.
    [193]李虹.基于机器视觉路面状态识别关键技术研究[D].吉林大学,2009.
    [194] Lucy L. An iterative technique for the rectification of observed distributions[J]. The astronomicaljournal,1974,79(6):745-754.
    [195] Richardson W H. Bayesian-based iterative method of image restoration[J]. JOSA,1972,62(1):55-59.
    [196] Hansen P C, Nagy J G, O'Leary D P. Deblurring images: matrices, spectra, and filtering[M]. Siam,2006.
    [197] Mesarovic V Z, Galatsanos N P, Katsaggelos A K. Regularized constrained total least squares imagerestoration[J]. Image Processing, IEEE Transactions on,1995,4(8):1096-1108.
    [198] Afonso M V, Bioucas-Dias J M, Figueiredo M A. Fast image recovery using variable splitting andconstrained optimization[J]. Image Processing, IEEE Transactions on,2010,19(9):2345-2356.
    [199] Chambolle A. An algorithm for total variation minimization and applications[J]. Journal ofMathematical imaging and vision,2004,20(1-2):89-97.
    [200] Chan T F, Golub G H, Mulet P. A nonlinear primal-dual method for total variation-based imagerestoration[J]. SIAM Journal on Scientific Computing,1999,20(6):1964-1977.
    [201] Rudin L I, Osher S, Fatemi E. Nonlinear total variation based noise removal algorithms[J]. Physica D:Nonlinear Phenomena,1992,60(1):259-268.
    [202] Yang J, Zhang Y, Yin W. An efficient TVL1algorithm for deblurring multichannel images corruptedby impulsive noise[J]. SIAM Journal on Scientific Computing,2009,31(4):2842-2865.
    [203] Bioucas-Dias J, Figueiredo M, Oliveira J. Adaptive total-variation image deconvolution: Amajorization-minimization approach[C], Proc. EUSIPCO.1-4.
    [204] Kim B. Numerical optimization methods for image restoration[D]. Stanford University,2002.
    [205] Ng M K. Iterative methods for Toeplitz systems[M]. Oxford University Press,2004.
    [206] Chan S H, Khoshabeh R, Gibson K B, et al. An augmented Lagrangian method for total variationvideo restoration[J]. Image Processing, IEEE Transactions on,2011,20(11):3097-3111.
    [207] Wahlberg B, Boyd S, Annergren M, et al. An ADMM algorithm for a class of total variationregularized estimation problems[J]. arXiv preprint arXiv:1203.1828,2012.
    [208] Li C. An efficient algorithm for total variation regularization with applications to the single pixelcamera and compressive sensing[D]. Citeseer,2009.
    [209] Nayak R, Bhavsar J, Chaudhari J, et al. Object tracking in Curvelet Domain with dominant CurveletSubbands[J]. International Journal of Engineering Research and Applications,2012,2(3):1219-1225.
    [210] Wei L, Sun Y, Yin B. Face recognition using common vector based on curvelet transform[C],Proceedings of the International Multiconference of Engineers and Computer Scientist.1-6.
    [211] Tibshirani R. Regression shrinkage and selection via the lasso[J]. Journal of the Royal StatisticalSociety. Series B (Methodological),1996:267-288.
    [212]游文杰,吉国力,袁明顺,等.一类小样本的统计方法建模及其可视化[J].数学的实践与认识,2013(07):68-75.
    [213]孙文凯.多重共线性问题评述[J].山东经济,2010(04):118-126.
    [214]王惠文,朱韵华.PLS回归在消除多重共线性中的作用[J].数理统计与管理,1996(06):48-52.
    [215]马雄威.线性回归方程中多重共线性诊断方法及其实证分析[J].华中农业大学学报(社会科学版),2008(02):78-81.
    [216]百度百科.多重共线性[EB/OL].http://baike.baidu.com/view/1334455.htm.
    [217] Fung G M, Mangasarian O L. A feature selection Newton method for support vector machineclassification[J]. Computational optimization and applications,2004,28(2):185-202.
    [218]施万锋,胡学钢,俞奎.一种面向高维数据的迭代式Lasso特征选择方法[J].计算机应用研究,2011(12):4463-4466.
    [219]施万锋,胡学钢,俞奎.一种面向高维数据的均分式Lasso特征选择方法[J].计算机工程与应用,2012(01):157-161.
    [220]张春青,邹卫霞,梁志霞.基于分层聚类法的视频摘要技术[J].济南大学学报(自然科学版),2004(02):161-163.
    [221]赵璐,邬立,万军伟.分层聚类在岩溶水系统分析中的应用[J].勘察科学技术,2008(04):45-48.
    [222]罗帅,陈林.基于Protégé的高考志愿填报本体构建及应用研究[J].软件导刊,2013(01):64-65.
    [223]钟金花.基于Lasso方法的上海经济增长影响因素实证研究[J].统计与决策,2013(01):154-156.
    [224]张尔俊,马立平.我国碳排放现状与碳排放影响因素研究[J].今日中国论坛,2012(12):192-193.
    [225]曲婷,王静.基于Lasso方法的平衡纵向数据模型变量选择[J].黑龙江大学自然科学学报,2012(06):715-722.
    [226] Efron B, Hastie T, Johnstone I, et al. Least angle regression[J]. The Annals of statistics,2004,32(2):407-499.
    [227]孙逸敏.利用SPSS软件分析变量间的相关性[J].新疆教育学院学报,2007,23(2):120-123.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700