用户名: 密码: 验证码:
矿井回风热能回收热湿传递研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
矿井回风中含有大量的余热资源,矿井回风热能回收系统与水源热泵系统联合应用为有效回收回风中的余热资源创造了条件。针对热能回收系统中的关键环节——热湿交换单元在评价、设计和应用中存在的主要问题,本文以热湿交换单元内气-水热湿传递为主要研究对象,提出了单元的性能评价方法、最优传热途径及结构的设计方法,为热湿传递理论及工程应用提供了理论参考。
     首先在已有的扩散塔及喷水室性能评价指标的基础上,分析了传统的“双效率”法的不适用性,提出了适用于评价饱和线附近以水为处理对象的热湿交换单元的性能指标,并推导了相应的无量纲理论表达式,为理论及实验研究提供了理论依据。
     在已有的水滴运动规律及受力分析的基础上,详细推导了下喷式和上喷式热湿交换单元内水滴的运动规律;提出了避免漂水损失和悬浮现象的条件式;分析了初参数对水滴运动规律的影响;得到在一定条件下,增大气流速度有利于延长水滴停留时间的结论;提出了挡水板与上喷式喷嘴距离的计算方法。
     综合一维下喷式水滴运动方程、传热传质模型、湿空气-水的分析模型及分析模型,通过对模型的数值求解,研究了夏季工况和冬季工况热湿交换单元内热湿传递过程推动力的变化情况及影响因素,提出了降低热湿传递过程“不可逆”损失的最优热湿传递途径,为湿空气-水热学分析理论以及优化方案的设计提供理论参考。
     以上述理论研究成果为依据,利用流场模拟软件对工程设计中常用热湿交换单元物理模型进行完善,提出了一种流场较优的结构设计方案。
     最后综合本文的研究成果,提出了一种适用于回风热能回收系统的下喷式热湿交换单元的设计方法,为工程应用提供了设计依据。
Mine exhaust air contains abundantly residual heat that can utilize the coupledsystems, which consist of Mine Exhaust Air Heat Recovery System (MEAHRS) andWater Source Heat Pump system, to extract the useful energy source. Considering themajor problems of the Heat and Mass Transfer Unit (HMTU) and analyzingsimultaneous heat and mass transfer of the air-water two phase flow, this paper hasproposed an approach to evaluate its performance, a method to maximize heat transferoutput and a way to design its structure. This research can provide theoretical andexperimental foundations for heat and mass transfer.
     The traditional double-efficiency method to evaluate the performance of theHMTU in terms of the informed assessment index for diffusion tower and spray airwashers is inadequate, therefore an evaluation index which is applicable to heat andmass transfer inside HMTU between the moist air which the relative humidity is near90%and water is present and another expression of heat exchange efficiencycorrelation is developed for specific HMTU design.
     On the basis of the force balance on water droplet, the motion theory of waterdroplet inside counterflow and upstream-spray HMTU is explicitly derived, Therequirement about how to avoid water loss by drift and water droplets suspension isproposed and the water’s initial conditions which influenced the droplets’ trajectory isanalyzed, and the calculation approach of the distance between the drift eliminatorsand the nozzle of the upstream spray is represent. At specified conditions, increasedthe air inlet velocity can prolong the water droplets’ heat exchange time.
     Combining the equation of water droplet motion, heat and mass transfer and theexergy and entransy analysis models of moist air and water, after solving the equationby numerical method and researching the influence factor and driven power of heatand mass transfer inside HMTU, the optimum process of heat and mass transfer whichcan reduce the irreversibility is developed.
     Utilize CFD software to reform the physical model of the UMTU in terms of theabove theoretical foundations and to design a UMTU which its interior flow field is more suitable.
     Summarizing the research outcomes, a design approach which is reliable forcounterflow HMTU on MEAHRS is recommended, and this also can support todesign engineering application.
引文
[1]毛艳丽,陈妍,郭艳玲.世界煤炭资源现状及钢铁公司的煤炭安全策略[J].冶金管理,2009,(3):44-40.
    [2] Balat M. Coal in the Global Energy Scene[J]. Energy Sources, Part B:Economics, Planning, and Policy,2010,5(1):50-62.
    [3]中国煤炭协会.国内煤炭发展面临四大风险[J].西部资源,2012,(2):19.
    [4]廖春良.“十二五”时期中国能源结构的演变[J].上海经济,2010,(12):40-43.
    [5]杜雪明,陈其慎,李建武,等.全球煤炭供需格局[J].中国矿业,2011,20(12):5-7.
    [6] Zhang H J, Xiang L, Li G H, et al. Comparison of Coalfields and Coal MiningGeological Conditions of the Main Coal Producing Countries in the World[J].Coal Geology&Exploration,2007,35(6):1-9.
    [7]徐哲.深部煤炭资源开采的工作面微气候研究[D].大连:大连理工大学建筑工程学院,2009.
    [8]王志军.高温矿井地温分布规律及其评价系统研究[D].青岛:山东科技大学资源与环境工程学院,2006.
    [9]任泽平,安风楼.中国能源消耗的国际比较与节能潜力分析[J].发展研究,2011,(11):18-24.
    [10]吕向阳,赵建康.水源热泵技术在矿井系统中的应用[J].节能与环保,2010(8):43-45.
    [11] Peterson W O, Walker J N, Duncan G A, et al. Composition of Coal Mine Air inRelationship to Greenhouse Environment Control[J]. Transactions of the ASAE,1975,18(1):140-144.
    [12] BP.世界能源统计年鉴[M].北京:中国统计出版社,2012.
    [13]国家统计局,2012年国民经济和社会发展统计公报[EB/OL].http://www.sxcoal.com/coal/3068819/articlenew.html/,2013-02-22.
    [14]许为权.热质交换过程与设备[M].北京:清华大学出版社,1999.
    [15] Jicha M, Baklik J, Karki K C, et.al. Numerical Study on Direct ContactEvaporative Cooling Using Lagrangian Approach[C]//Institution of MechanicalEngineers Conference Publications. Medical Engineering Publications LTD,1995,392-397.
    [16]李莎.高速空调喷水室典型处理过程的工程实验研究[D].天津:天津大学环境科学与工程学院,2006.
    [17] Wanlker J N, Peterson W O, Duncan G A, et.al. Temperature and Humidity in aGreenhouse Ventilated with Coal Mine Air[J]. Transactions of the ASAE,1975,19:311-317.
    [18] Marsh L S, Singh S. Economics of Greenhouse Heating With a Mine AirAssisted Heat Pump[J]. Transactions of the ASAE,1994,37(6):1959-1963.
    [19] Smith L, Henry, Arthur David C. Mine Ventilation: Waste Heat Recovery[J].CIM Bulletin,1996,89(998):126-130.
    [20]朱晓彦.矿井回风热能回收利用的方法及装置:中国, ZL200620078177.4[P].2008-02-20.
    [21]辛嵩,王伟,盛振兴.一种矿井回风余热能回收装置:中国,ZL200820174785.4[P].2009-10-14.
    [22]邸建友,范建国,莫技,等.矿井乏风热能利用装置:中国,ZL200820017343.9[P].2009-02-04.
    [23]姬洵,孙潇,权犇,等.利用水源热泵全面回收矿井排风中的余热资源[J].建筑节能,2010,38(12):8,9,18.
    [24]王建学,裴伟,牛永胜,等.一种矿井回风源热泵系统:中国,ZL20102061988.4[P].2010-11-09.
    [25]王玉怀,张军,牛永胜,等.一种矿井回风综合处理扩散塔:中国, ZL201020202327.4[P].2010-05-24.
    [26] Hugo D S, Kostas F, Jacek P. Economics of Exhaust Air Heat Recovery Systemsfor Mine Ventilation[J]. International Journal of Mining, Reclamation andEnvironment,2012,26(3):185-198.
    [27] Liu J. Waste Heat Utility Technology in Coal Mine[C]//2ndInternationalConference on Civil Engineering, Architecture and Building Materials, AppliedMechanics and Materials. Yantai China,2012:2723-2726.
    [28]连之伟.热质交换原理与设备[M].北京:中国建筑工业出版社,2011.
    [29] Merkel F. Verdunstungshuhlung[J]. Zeitschrift des Vereines DeutscherIngenieure (V.D.I.),1925,(70):122-128.
    [30] Baker D R, Shryock H A. A Comprehensive Approach to the Analysis ofCooling Tower Performance[J]. Journal of Heat Transfer,1961,(83):339-350.
    [31] Stoecker W F, Jones J W. Refrigeration and Air Conditioning (second Ed.)[M].New York: Mcgraw-Hill Inc,1982.
    [32] Jaber H, Webb R L. Design of Cooling Towers by Effectiveness-NTUMethod[J]. Heat Transfer,1989,111(4):837-843.
    [33] Jin G, Cai W, Lu L, et al. A Simplified Modeling of Mechanical Cooling Towerfor Control and Optimization of HVAC Systems[J]. Energy ConversionManagement,2007,48(2):355-365.
    [34] Niksiar A, Rahimi A. Energy and Exergy Analysis for Concurrent Gas SprayCooling Systems based on the Results of Mathematical Modeling andSimulation[J]. Energy,2009,34(1):14-21.
    [35] Santos J C, Medeiros J M, Dos Santos J C, et al. Analytical Solution for theSimultaneous Heat and Mass Transfer Problem in Air Washers[J]. InternationalJournal of Refrigeration,2011,34(1):353-361.
    [36] Majumdar A K, Singhal A K, Palding D B. Numerical Modeling of Wet CoolingTowers-Part1:Mathematical and Physical Models[J]. Journal of HeatTransfer-Transactions of the ASME,1983,105(3):723-735.
    [37] Dowy J A, Karabash N S. Experimental Determination of Heat and MassTransfer Coefficient in Rigid Impregnated Cellulose Evaporative Media[J].ASHRAE Transactions,1988,93(2):382-395.
    [38] Dai Y J, Sumathy K. Theoretical Study on a Cross Flow Direct EvaporativeCooler Using Honeycomb Paper as Packing Material[J]. Applied ThermalEngineering,2002,22(13):1417-1430.
    [39] Liao C M, Chiu K H. Wind Tunnel Modeling the system Performance ofAlternative Evaporative Cooling Pads in Taiwan Region[J]. Building andEnvironment,2002,37(2):17-187.
    [40] Feddaoui M, Mir A, Belahmidi E. Numerical Simulation of Mixed ConvectionHeat and Mass Transfer with Liquid Film Cooling along an Insulated VerticalChannel[J]. Heat and Mass Transfer,2003,39:445-453.
    [41] Johannes C, Kloppers D G. Cooling Tower Performance Evaluation: Merkel,Poppe, and E-NTU Methods of Analysis[J]. Journal of Engineering for GasTurbines and Power,2005,127:1-7.
    [42] Fisenko S P. Mathematical Modeling of Heat and Mass Transfer Taking Place inEvaporative Cooling of Water Drops in a Cooling Tower[J]. JournalEngineering of Thermophys,1993,65(2):154-159.
    [43] Erens P J, Mercker J H, Dreyer A A. Evaporation from AcceleratingDroplets[C]//Proceedings of the10th International Heat Transfer Conference.Brighton,1994:305-310.
    [44] Fisenko S P, Petruchik A I, Solodukhin A D. Evaporative Cooling of Tower in aNatural Draft Cooling Tower[J]. International Journal of Heat and MassTransfer,2002,45(23):4683-4694.
    [45] Williamson N, Armfleld S, Behnia M. Numerical Simulation of Flow in aNatural Draft Wet Cooling Tower the Effect of Radial Thermo FluidFields[J]. Applied Thermal Engineering,2008,28(2-3):178-189.
    [46]赵元宾.侧风对于自然通风逆流湿式冷却塔传热传质影响机制的研究[D].济南:山东大学能源与动力工程学院,2009.
    [47] ASHRAE. ASHRAE System and Equipment Handbook[M]. ATLANTA:American Society of Heating, Referigerating and Air-Conditioning EngineersInc.,2000.
    [48]魏仕英. WFL系列喷雾推进通风冷却塔[J].化工设计,1997(1):187-193.
    [49] Satoshi Y. Experimental Performance of the Shower Cooling Tower In Japan[J].Renewable Energy,1996,10(2-3):179-183.
    [50]李鸿莉.无填料喷雾冷却塔的研究与应用[J].工业水处理,2003,23(8):56-58.
    [51] Mansour M A, Cook M J, Taki A H, et al. Use of Computational Fluid Dynamicsfor Modeling Passive Downdraught Evaporative Cooling[C]//Proceeding ofVentilation and Cooling18thAIVC Conference. Athen, Greece,1997.
    [52] Fisenko S P, Brin A A, Petruchik A I. Evaporative Cooling of Tower in aMechanical Draft Cooling Tower[J]. International Journal of Heat and MassTransfer,2004,47(1):165-177.
    [53]齐晓霓.无填料冷却塔的理论与实验研究[D].上海:上海交通大学机械与动力工程学院,2007.
    [54]陈彦雷.机械通风逆流式无填料冷却塔内热交换过程的数值模拟[D].成都:西南交通大学机械工程学院,2009.
    [55]张寅平,朱颖心,江亿.水-空气处理系统全热交换模型和性能分析[J].清华大学学报(自然版),1999,39(10):35-38.
    [56]宋垚臻.空气与水顺流直接接触热质交换过程模型计算及分析[J].农业工程学报,2006,22(1):6-10.
    [57]李刚,黄翔,颜苏芊.喷水室热质传递的理论分析[J].纺织高校基础科学学报,2002,15(4):337-340.
    [58] Wiksten R, Assad M H. Heat and Mass Transfer Characteristics in a SprayChamber[J]. International Journal of Refrigeration,2007,30(7):1207-1214.
    [59]李新禹,金星.喷水室两相流热质传递研究[J].纺织学报,2010,31(2):120-124.
    [60]李维,郁履方.对影响喷水室热湿交换诸因素的实验研究[J].中国纺织大学学报,1992,18(2):58-64.
    [61] Braun J E, Klein S A, Mitchel J W. Effectiveness Models for Cooling Towersand Cooling Coils[J]. ASHRAE transactions,1989,95:164-74.
    [62] Lebrun J, Silva C A, Trebilcock F, et al. Simplified Models for Direct andIndirect Contact Cooling Towers and Evaporative Condensers[J]. BuildingServices Engineering Research Technology,2004,25(1):25-31.
    [63] Stabat P, Marchio D. Simplified Model for Indirect-Contact EvaporativeCooling Tower Behavior[J]. Applied Energy,2004,78(4):433-51.
    [64] Hasan A. Going Below the Wet-Bulb Temperature by Indirect EvaporativeCooling: Analysis Using a Modified E-NTU Method[J]. Applied Energy,2012,89(1):237-245
    [65] Camdali U, Erisen A, Celen F. Energy and Exergy Analyses in a Rotary Burnerwith Pre-Calcination in Cement Production[J]. Energy Conversion AndManagement,2004,45(18-19):3017-3031.
    [66] Muangnoi T, Asvapoositkul W, Wongwises S. Effects of Inlet Relative Humidityand Inlet Temperature on the Performance of Counter Flow Wet Cooling Towerbased on Exergy Analysis[J]. Energy Conversion and Management,2008,49(10):2795-2800.
    [67] Ren C Q, Li N P, Tang GF. Principles of Exergy Analysis in HVAC andEvaluation of Evaporative Cooling Schemes[J]. Building and Environment,2002,37(11):1045-1055.
    [68]过增元,梁新刚,朱宏晔.——描述物体传递热量能力的物理量[J].自然科学进展,2006,16(10):1288-1296.
    [69] Guo Z Y, Zhu H Y, Liang X G. Entransy A Physical Quantity Describing HeatTransfer Ability[J]. International Journal of Heat and Mass Transfer,2007,50(13-14):2545-2556.
    [70] Al-Juwayhel F, El-Dessouky H, Ettouney H. Experimental Evaluation of One,Two, and Three Stage Evaporative Cooling Systems[J]. Heat and Mass TransferEngineering,2004,25(6):72-86.
    [71]丁杰,任承钦.间接蒸发冷却方案的比较研究[J].建筑热能通风空调,2006,25(4):100-103.
    [72]杨世明,陶文铨.传热学(第三版)[M].北京:高等教育出版社,1998.
    [73]胡帼杰,过增元.传热过程的效率[J].工程热物理学报,2011,32(6):1005-1008.
    [74]江亿,刘晓华,谢晓云.室内热湿环境营造系统的热学分析框架[J].暖通空调,2011,41(3):1-12.
    [75]傅秦生,肖跃雷,冯霄.[J].华北电力大学学报,2003,30(5):1007-2691.
    [76] Cammarata G, Fichera A, Mammino L, et al, Exergonomic Optimization of anAir Conditioning System[J]. Journal of Energy Resources Technology,1997,119(2):62-69.
    [77] Fratzscher W. Exergy and Possible Applications[J]. Revue Generable Thermique,1997,36(9):680-696.
    [78] Bejan A. Advanced Engineering Thermodynamics[M]. New York: Wiley,1997.
    [79]李震,江亿,刘晓华,等.[J].暖通空调,2005,35(1):97-102.
    [80] Qureshi B A, Zubair S M. Application of Exergy Analysis to VariousPsychometric Processes[J]. International Journal of Energy Research,2003,27(12):1079-1094.
    [81] Shukuya M, Hammache A. Introduction of the Concept of Exergy-for a BetterUnderstanding of Low-Temperature Heating and High-Temperature CoolingSystem[J]. VTT TIEDOTTEITA,2002:1-41.
    [82] Liley P E. Flow Exergy of Moist Air[J]. Exergy, International Journal,2002,2(1):55-57.
    [83] Muangnoi T, Asvapoositkul W, Wongwises S. An Exergy Analysis on thePerformance of a Counter Flow Wet Cooling Tower[J]. Applied ThermalEngineering,2006,27(56):910-917.
    [84] Farmahini-Farahani M, Delfani S, Esmaeelian J. Exergy Analysis ofEvaporative Cooling to Select the Optimum System in Diverse Climates[J].Energy,2012,40(1):250-257.
    [85]袁芳,陈群.间接蒸发冷却系统传热传质性能的优化准则[J].中国科学,2012,57(1):88-94
    [86] Bertola V, Cafaro E. A Critical Analysis of the Minimum Entropy ProductionTheorem and its Application to Heat and Fluid Flow[J]. International Journal ofHeat and Mass Transfer,2008,51(7-8):1907-1912.
    [87] Hesselgreaves J E. Rationalization of Second Law Analysis of HeatExchangers[J]. International Journal of Heat and Mass Transfer,2000,43(22):4189-4204.
    [88] Jiang Y, Xie X Y, Liu X H. Themological Principle of Moist Air Heat andMoisture Conversion Processes[J]. Heating Ventilating and Air Conditioning,2011,41(3):51-64.
    [89] Shah R K, Shiepko T. Entropy Generation Extreme and Their Relationship withHeat Exchanger Effectiveness-Number of Transfer Unit Behavior for ComplexFlow Arrangements[J]. Journal of Heat Transfer-Transactions of the ASME,2004,126(6):994-1002.
    [90]陈群,吴晶,任建勋.对流换热过程的热力学优化与传热优化[J].工程热物理学报,2008,29(2):271-274.
    [91] Chen Q, Wang M R, Pan N, et al. Irreversibility of Heat Conduction in ComplexMultiphase Systems and its Application to Effective Thermal Conductivity ofPorous Media[J]. International Journal of Nonlinear Sciences and NumericalSimulation,2009,10(1):57-66.
    [92] Chen Q, Wang M R, Pan N, et al. Optimization Principles for Convective HeatTransfer[J]. Energy,2009,34(9):1199-1206.
    [93] Liu W, Liu A C, Jia H, Fan A W, et al. Entransy Expression of the Second Lawof Thermodynamics and its Application to Optimization in Heat TransferProcess[J]. International Journal of Heat and Mass Transfer,2011,54(13-14):3049-3059.
    [94] Chen Q, Ren J X, Meng J A. Field Synergy Equation for Turbulent HeatTransfer and its Application[J]. International Journal of Heat and Mass Transfer,2007,50(25-26):5334-5339.
    [95] Liang X G, Cheng X T. Entransy Flux of Thermal Radiation and its Applicationto Enclosures with Opaque Surfaces[J]. International Journal of Heat and MassTransfer,2011,54(1-3):269-278.
    [96] Guo Z Y, Liu X B, Tao W Q, et al. Effectiveness-Thermal Resistance Methodfor Heat Exchanger Design and Analysis[J]. International Journal of Heat andMass Transfer,2010,53(13-14):2877-2884.
    [97] Chen Q, Ren J X, Guo Z Y. Field Synergy Analysis and Optimization ofDecontamination Ventilation Designs[J]. International Journal of Heat andMass Transfer,2008,51(3-4):873-881.
    [98] Chen Q, Yang K D, Wang M R, et al. A New Approach to Analysis andOptimization of Evaporative Cooling System I: Theory[J]. Energy,2010,35(6):2448-2454.
    [99] Chen Q, Pan N, Guo Z Y. A New Approach to Analysis and Optimization ofEvaporative Cooling System II: Applications[J]. Energy,2011,36(5):2890-2898.
    [100]江亿,谢晓云,刘晓华.湿空气热湿转换过程的热学原理[J].暖通空调,2011,41(3):51-64.
    [101]谢晓云,江亿.蒸发冷却制备冷水流程的热学分析[J].暖通空调,2011,41(3):65-76.
    [102]王晓东,翟志红,李双会.矿井主通风机节能研究的现状与展望[J].煤矿安全,2002,33(8):31-33.
    [103]程根银,朱锴,汪永高.矿井主要通风机节能与降噪[M].北京,煤炭工业出版社,1998.
    [104]傅贵,吴友富.论扩散塔对主扇装置通风能力的影响[J].煤矿安全,1992,(6):35-36.
    [105]蒋军成,张惠忱,周延.改造扩散塔提高主通风机装置运行效益[J].江苏煤炭,1994(3):25-28.
    [106]王海桥,赵云盛,陈世强.矿井主要通风机扩散塔结构形式及其性能评价[J].矿业安全与环保,2008,35(5):25-27.
    [107]王英敏,栾昌才.主扇扩散塔型式及通风阻力的研究[J].煤矿安全,1980,(4):01-07.
    [108]陶峰,陈钰.扩散弯道合理流型的设计研究[J].能源技术,2002,23(4):147-150.
    [109]陈世强,王海桥,李轶群,等.矿井主要通风机扩散器结构优化及实验[J].煤炭学报,2009,34(12):1681-1686.
    [110]王英敏.矿内空气动力学与矿井通风系统[M].北京:冶金工业出版社,1994.
    [111]潘地林,程小东,邓昌球.矿井主要通风机扩散弯道合理流型的研究[J].煤矿安全,2005,36(11):1-4.
    [112]孙德方,夏福芳.矿井主要通风机扩散器性能测定及分析[J].煤矿开采,2000,(2):59-61.
    [113]任保明,刘桂仁,陈建峰.矿用通风机出口扩散器的合理配置[J].风机技术,2005,(1):21-22.
    [114]黄翔,王天富.空调工程[M].北京:机械工业出版社,2006.
    [115]郁履方.关于喷水室中热湿交换效率的研究[J].空调专辑,1987,13(1):26-33.
    [116]薛殿华.高速喷水室及其热工计算问题[J].暖通空调,1987,(5):25-27,33.
    [117]殷平.喷水室热工计算的一种方法[J].制冷学报,1987,(4):49-55.
    [118]李德文,郭胜均.中国煤矿粉尘防治的现状及发展方向[J].金属矿山(增刊),2009,11:747-752.
    [119]吕扬.冷却塔水损失变化规律及节水方法的研究[D].济南:山东大学环境科学与工程学院,2009.
    [120]李静海,欧阳洁,高士秋,等.颗粒流体复杂系统的多尺度模拟[M].北京:科学出版社,2005.
    [121] Levich V G. Physicochemical Hydrodynamics[M]. Englewood Cliffs, NJ:Prentice-Hall,1962.
    [122]闫俊海,张小松,周斌.单个水滴蒸发过冷过程的特性分析[J].东南大学学报(自然科学版),2012,42(4):664-669.
    [123]齐晓霓.无填料冷却塔的理论与实验研究[D].上海:上海交通大学机械与动力工程学院,2007.
    [124]齐晓霓,刘震炎,李丹丹.中空冷却塔热力计算模型初探[J].工业水处理,2007,27(8):61-65.
    [125]汤传义.水的表面张力与温度的关系[J].安庆师范学院学报(自然科学版),2000,6(1):74-75.
    [126] Ranz W E, Marshall W R. Evaporation from Drops—Part2[J]. ChemicalEngineering Progress,1952,48(3):173-180.
    [127] Bird R B, Stewart W E, Lightfoot E N. Transport Phenomenon[M]. New York:Wiley,1960.
    [128]张华,练继建.湾塘水电站泄露雾化的数值计算[J].水利学报,2003,(4):223-224.
    [129] Wark K. Advanced Thermodynamics for Engineers[M]. New York: Mcgaw-Hill,1995.
    [130] Arezou Niksiar, Amir Rahimi. Energy and Exergy for Concurrent Gas SprayCooling Systems based on the Results Mathematical Modeling andSimulation[J]. Energy,2009,34(1):14-21.
    [131] Bejan A. Thermodynamic Engineering Thermodynamics[M]. New York: JohnWiley&Sons,1997.
    [132]柳雄斌,孟继安,过增元.基于耗散的换热器热阻分析[J].自然科学进展,2008,18(10):1186-1190.
    [133]陈群,任建勋.对流换热过程的广义热阻及其与耗散的关系[J].科学通报,2008,53(14):1730-1736.
    [134]中华人民共和国住房和城乡建设部. GB50736-2012民用建筑供暖通风与空气调节设计规范[S].北京:中国建筑工业出版社,2012.
    [135]庄楚强,何春雄.应用数理统计基础(第三版)[M].广州:华南理工大学出版社,2006.
    [136]刘文卿.实验设计[M].北京:清华大学出版社,2005.
    [137]王海桥,陈世强,钟武,等.主扇扩散塔结构与出口能量损失实验研究[J].湖南科技大学学报(自然科学版),2008,23(4):1-5.
    [138]陈世强,王海桥,冯涛,等.节能型矿井主通风机扩散器:中国,CN101135323A[P].2008-03-05.
    [139]周华慧.矿井回风余热能回收换热装置的换热性能研究[D].邯郸:河北工程大学城市建设学院,2012.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700