用户名: 密码: 验证码:
两种皮肤细胞对过氧化氢的不同反应及CD147在氧化应激所致人皮肤成纤维细胞衰老中的机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分:人皮肤原代角质形成细胞与HaCaT细胞对过氧化氢的不同反应
     目的:研究正常人皮肤原代角质形成细胞(NHEKs)与HaCaT细胞株对过氧化氢(H2O2)诱导的氧化应激的不同反应,为选择合适的皮肤细胞模型提供依据。
     方法:收集儿童包皮并分离培养原代角质形成细胞,复苏并培养HaCaT细胞,用150uM H2O2处理第2代人皮肤角质形成细胞和HaCaT细胞2小时后继续培养24小时,MTT法检测其细胞生长活性、比色法检测细胞凋亡相关酶caspase-3/7活性、流式细胞仪检测细胞周期中G1期细胞百分数、细胞凋亡百分数及细胞内ROS水平、WST法检测细胞内SOD酶活性水平、细胞衰老相关p-半乳糖苷酶试剂盒检测细胞中p-半乳糖苷酶阳性细胞百分数、Western blot检测衰老相关蛋白Klotho表达水平,并对相关数据进行统计分析。
     结果:经H2O2处理后NHEKs与HaCaT细胞活性均明显下降且呈浓度依赖和时间依赖关系,HaCaT细胞的抑制率高于NHEKs(p<0.05), HaCaT细胞内ROS水平、G1期细胞百分数与细胞凋亡相关酶caspase-3/7活性均高于NHEKs细胞,而NHEKs细胞内SOD酶活性水平则高于HaCaT细胞(p<0.05),H2O2处理后两种细胞衰老相关蛋白Klotho表达均下调,NHEKs与HaCaT细胞均均体积变大、圆顿等衰老表型,NHEKs细胞中SA-P-Gal阳性细胞百分数高于对照组(p<0.05),而处理前后HaCaT细胞中均检测不到SA-P-Gal阳性细胞。
     结论:NHEKs比HaCaT细胞更能耐受H2O2诱导的氧化应激,细胞经H2O2诱导后,NHEKs既有衰老样的表型,也能表达衰老相关p-半乳糖苷酶,而HaCaT细胞有衰老样的表型,但不表达衰老相关p-半乳糖苷酶。
     第二部分CD147对氧化应激所致人皮肤成纤维细胞衰老的影响
     目的:观察CD147对H202所致人皮肤成纤维细胞衰老的影响。
     方法:收集儿童包皮并分离培养原代成纤维细胞,构建CD147shRNA慢病毒干扰载体,转染第二代成纤维细胞并进行鉴定,100uM H2O2处理转染前后细胞2h,MTT法分别检测诱导后12、24、36、48h细胞生长活性、比色法检测诱导后24h细胞凋亡相关酶caspase-3/7活性、细胞衰老相关p-半乳糖苷酶试剂盒检测诱导后24h细胞中p-半乳糖苷酶活性水平、流式细胞仪检测诱导后24h细胞生长周期中G1期细胞百分数及细胞凋亡率,并对相关数据进行统计分析。结果:观察到干扰组(NHSFs-CD147shRNA组)细胞体积较正常变大、扁平等细胞衰老的形态学表现,其生长活性受到轻度抑制,细胞衰老相关p-半乳糖苷酶、细胞G1期百分数、细胞凋亡相关酶caspase-3/7活性及细胞凋亡率均轻度升高。各细胞组经H202处理后,空载体病毒转染组(NHSFs-virus+H2O2组)细胞较前变大、扁平,少数有多角形等细胞衰老的形态学表现,其细胞生长活性受到中度抑制,细胞衰老相关p-半乳糖苷酶、细胞G1期百分数、凋亡相关酶caspase-3/7活性及细胞凋亡率均中度升高,而CD147干扰组(NHSFs-CD147shRNA+H2O2)细胞体积比对照组明显变大、扁平,并出现多角形等细胞衰老的形态学表现,其生长活性更明显受到抑制。
     结论:在正常和氧化应激条件下,CD147对成纤维细胞的衰老均有着一定的调控作用,CD147可能是调控人皮肤细胞衰老的重要分子。
     第三部分CD147对氧化应激所致人皮肤成纤维细胞衰老的保护机制研究
     目的:探讨CD147对氧化应激所致人皮肤成纤维细胞衰老的可能机制。
     方法:收集儿童包皮并分离培养原代成纤维细胞,构建CD147shRNA慢病毒载体并转染第二代成纤维细胞,100uM H2O2处理细胞诱导其衰老,流式细胞仪检测细胞内ROS水平、NBT法检测细胞内SOD活性、Western blot检测处理后细胞衰老相关蛋白Klotho表达水平,并对相关数据进行统计分析。
     结果:干扰成纤维细胞中CD147表达后,其细胞内荧光强度稍升高,NHSFs-CD147shRNA组细胞内荧光强度几何均值为7.30±0.58,NHSFs-virus组细胞内荧光强度几何均值为6.87±0.42(P>0.05);细胞经H2O2处理后,NHSFs-virus+H2O2组细胞内荧光强度几何均值为17.62±1.12,较NHSFs-virus组升高(P<0.05),而NHSFs-CD147shRNA+H2O2组细胞内荧光强度几何均值28.91±1.33,较NHSFs-CD147shRNA组与NHSFs-virus+H2O2组明显升高(P<0.05)。CD147干扰前后,细胞内SOD活性无明显变化,NHSFs-virus组细胞内SOD活性为0.28±0.06U, NHSFs-CD147shRNA组细胞内SOD活性为0.26±0.03U(P>0.05);细胞经H202处理后,NHSFs-virus+H2O2组细胞内SOD活性为2.18±0.17U,较对照组NHSFs-virus明显升高(P<0.05),NHSFs-CD147shRNA+H2O2组细胞内SOD活性为0.88±0.06U,较对照组NHSFs-CD147shRNA轻度升高(P<0.05),而NHSFS-Virus+H202组细胞内SOD活性较NHSFs-CD147shRNA+H202组高(P<0.05)。细胞经H2O2处理后,NHSFs-virus+H202组细胞衰老相关蛋白Klotho的表达下调,而干扰细胞中CD147的表达后,H202处理前后均检测不到衰老相关蛋白Klotho的表达.
     结论:在氧化应激条件下,CD147通过与皮肤成纤维细胞内增加的SOD一起加速对细胞内ROS的清除,减少ROS在细胞内的聚集,从而减轻细胞因氧化应激所致的损伤和衰老,该过程可能与Klotho蛋白相关,CD147可能通过调控细胞衰老相关蛋白Klotho表达而延缓细胞衰老。
Part One Differential Response of Normal Human Epidermal Keratinocytes and HaCaT Cells to Hydrogen Peroxide-induced Oxidative Stress
     Objective To investigate the different response of Normal Human Epidermal Keratinocytes and HaCaT cells to hydrogen peroxide-induced oxidative stress.
     Methods Normal Human epidermal keratinocytes (NHEKs) were obtained from children's foreskins and HaCaT cells were cultured. We examined changes of cell viability, intracellular reactive oxygen species (ROS) and superoxide dismutase (SOD), caspase-3/7levels, cellular apoptosis, the percent of cells arrested in G1phase, senescence associated β-galactosidase (SA-β-Gal) positive cells and the senescence-related protein klotho in NHEKs and HaCaT cells after H2O2treatment. Statistical analysis was performed using SPSS13.0software.
     Results The viability of NHEKs and HaCaT cells decreased in a concentration-dependent and time-dependent manner after exposure to H2O2. The inhibitory effect of150uM H2O2on cell viability was greater in HaCaT cells than in NHEKs (p<0.05). Intracellular ROS, the percent of cells arrested in G1phase and caspase-3/7levels increased more significantly in HaCaT cells than in NHEKs, while intracellular SOD increased more significantly in NHEKs than in HaCaT cells after exposure to150uM H2O2(P<0.05). After H2O2treatment, cells became bigger and uneven in shape, which represents a senescence phenotype. SA β-Gal positive cells increased significantly in NHEKs after treatment with H2O2(P<0.05). Klotho was significantly downregulated in both NHEKs and HaCaT cells after H2O2treatment. However, we didn't observe SA-β-Gal positive HaCaT cells even after treatment with H2O2.
     Conclusions NHEKs are more resistant to H2O2-induced oxidative stress than HaCaT cells. HaCaT cells have senescence phenotypes, but do not express p-galactosidase.
     Part Two Effects of CD147on Oxidative Stress-induced Senescence in Human Skin Fibroblasts
     Objective
     To investigate the effects of CD147on senescence of oxidative Stress induced by hydrogen peroxide in human skin fibroblasts.
     Methods
     Normal human skin fibroblasts (NHSFs) were obtained from children's foreskins. We use lentivirus encoding CD147siRNA to silence the CD147expression in NHSFs. U6-vshRNA-CMV-PUR lentivirus encoding CD147shRNA was constructed. NHSFs were infected with empty lentivirus or lentivirus encoding CD147shRNA, respectively. Cells were treated with100uM H2O2, we examined changes of cell viability with the MTT assay, senescence associated β-galactosidase (SA-β-Gal) positive cells, caspase-3/7levels, cellular apoptosis and the percent of cells arrested in G1phase in NHSFs-virus and NHSFs-CD147shRNA cells and after H2O2treatment or un-treatment. Statistical analysis was performed using SPSS13.0software.
     Results
     We observed the mild morphological changes related to senescence and associated with a mild increase in the number of SAβ-Gal positive cells in NHSFs-CD147shRNA cells without H2O2exposure, after H2O2treatment, NHSFs-virus cells became bigger and uneven in shape and the percentage of SA P-Gal positive cells increased moderately, representing a senescence phenotype, which was further amplified in NHSFs-CD147shRNA treated cells. The viability of NHSFs-virus treated cells decreased moderately at12,24,36,48h after H2O2treatment, which was further expanded in NHSFs-CD147shRNA cells with H2O2treatment. However, we found that NHSFs-CD147shRNA cells without H2O2exposure can also result in a mild decrease in cell viability. The cells arrested in G1phase resulted in a mild increase in NHSFs-CD147shRNA cells without H2O2exposure, after H2O2treatment, the percentage of cells arrested in G1phase was increased moderately in NHSFs-virus cells, which was further potentiated in NHSFs-CD147shRNA cells. NHSFs-CD147shRNA without H2O2exposure could induce in a mild increase in the caspase-3/7activity, after H2O2treatment, the caspase-3/7activity and the apoptotic rate was increased moderately in NHSFs-virus treated cells, which was further intensified in NHSFs-CD147shRNA cells.
     Conclusions
     Our results provide a new understanding that CD147may play important roles in protecting NHSFs from senescence under both normal conditions and oxidative stress. The results presented in this study are consistent with the speculation that CD147also plays an regulate-skin aging function.
     Part Three The Defense Mechanism Study of against Oxidative Stress-induced Senescence in Human Skin Fibroblasts
     Objective
     To investigate the defense mechanism of CD147on senescence of oxidative Stress induced by hydrogen peroxide in human skin fibroblasts
     Methods
     Normal human skin fibroblasts (NHSFs) were obtained from children's foreskins. We use lentivirus encoding CD147siRNA to silence the CD147expression in NHSFs. U6-vshRNA-CMV-PUR lentivirus encoding CD147shRNA was constructed. NHSFs were infected with empty lentivirus or lentivirus encoding CD147shRNA, respectively. Cells were treated with100uM H2O2, we examined changes of intracellular ROS levels, SOD activity and the senescence-related protein klotho in NHSFs-virus and NHSFs-CD147shRNA cells and after H2O2treatment or un-treatment. Statistical analysis was performed using SPSS13.0software.
     Results
     We observed the intracellular ROS level (Geo Mean) in NHSFs-virus was increased moderately after H2O2treatment (NHSFs-virus+H2O2:17.62±1.12, NHSFs-virus:6.87±0.42, P<0.05), which was further enlarged in NHSFs-CD147shRNA (NHSFs-CD147shRNA+H2O2:28.91±1.33, P<0.05). Whereas NHSFs-CD147shRNA without H2O2exposure can only enhance the intracellular ROS level slightly (NHSFs-CD147shRNA:7.30±0.58, P>0.05). In addition, after H2O2treatment, intracellular SOD level increased moderately in NHSFs-CD147shRNA treated cells (NHSFs-CD147shRNA+H2O2:0.88±0.06, NHSFs-virus:0.28±0.06), which was further augmented in NHSFs-virus cells (NHSFs-virus+H2O2:2.18±0.17, P<0.05). In contrast, CD147suppression alone produced no effect in NHSFs-CD147shRNA cells without H2O2exposure (NHSFs-CD147shRNA:0.26±0.03, P>0.05). However, klotho expression was not detected before or after treatment with H2O2in NHSFs-CD147shRNA.
     Conclusions
     CD147can exacerbate the oxidative stress-induced senescence induced by H2O2by increasing ROS accumulation and destroying the intrinsic antioxidant defenses in NHSFs. This process may be related to klotho protein. CD147might play a crucial role in anti-oxidation and anti-aging via modulating klotho in NHSFs. We believe that the relationship of CD147and klotho and the exact mechanisms of CD147in senescence of NHSFs might be a novel and potent way to study skin aging.
引文
[1]Hazane-Puch F, Bonnet M, Valenti K et al. Study of fibroblast gene expression in response to oxidative stress induced by hydrogen peroxide or UVA with skin aging. Eur J Dermatol,2010,20:308-320.
    [2]Kovacs D, Raffa S, Flori E, et al. Keratinocyte growth factor down-regulates intracellular ROS production induced by UVB. Journal of Dermatological Science,2009,54:106-113
    [3]Cohen M P, Kohen R. Exposure of human keratinocytes to ischemia, hyperglyce-mia and their combination induces oxidative stress via the enzymes inducible nitric oxide synthase and xanthine oxidase. Journal of Dermatological Science,2009,55:82-90.
    [4]Lei W, Wei L, Suzanne H, et al. Nitric oxide synthase activation and oxidative stress, but not intracellular zinc dyshomeostasis, regulate ultraviolet B light-induced apoptosis. Life Sciences,2010,86:448-454.
    [5]Gonzalez-Dosal R, Horan KA, et al. Paludan SR. Mitochondria-derived reactive oxygen species negatively regulates immune innate signaling pathways triggered by a DNA virus, but not by an RNA virus. Biochem Biophys Res Commun,2012,418(4):806-810.
    [6]Mathis KW, Venegas-Pont M, Masterson CW. Oxidative stress promotes hypertension and albuminuria during the autoimmune disease systemic lupus erythematosus. Hypertension,2012,59(3):673-679.
    [7]Ikeda J, Mamat S, Tian T, et al. Reactive oxygen species and aldehyde dehydroge-nase activity in Hodgkin lymphoma cells. Lab Invest,2012, 92(4):606-614.
    [8]Hegyi B, Kudlik G, Monostori E, et al. Activated T-cells and pro-inflammatory cytokines differentially regulate prostaglandin E2 secretion by mesenchymal stem cells. Biochem Biophys Res Commun,2012,419(2):215-20.
    [9]Kim TH, Oh S, Kim SS, et al. Recombinant human prothrombin kringle-2 induces bovine capillary endothelial cell cycle arrest at G0-G1 phase through inhibition of cyclin D1/CDK4 complex:modulation of reactive oxygen species generation and up-regulation of cyclin-dependent kinase inhibitors. Angiogenesis,2005,8(4):307-314.
    [10]Shahab U, Ahmad S, Moinuddin. Hydroxyl radical modification of collagen type II increases its arthritogenicity and immunogenicity. PLoS One,2012, 7(2):e31199.
    [11]Furukawa A, Tada-Oikawa S, Kawanishi S, et al. H2O2 accelerates cellular senescence by accumulation of acetylated p53 via decrease in the function of SIRT1 by NAD+depletion. Cell Physiol Biochem,2007,20(1-4):45-54.
    [12]Haendeler J, Hoffmann J, Diehl JF, et al. Antioxidants inhibit nuclear export of telomerase reverse transcriptase and delay replicative senescence of endothelial cells. Circ Res,2004,94(6):768-775.
    [13]Gu BH, Minh NV, Lee SH, et al. Deoxyschisandrin inhibits H2O2-induced apoptotic cell death in intestinal epithelial cells through nuclear factor-kappa B. Int J Mol Med,2010,26:401-406.
    [14]Fan X, Hussien R, Brooks GA. H2O2-induced mitochondrial fragmentation in C2C12 myocytes. Free Radic Biol Med,2010,49:1646-54.
    [15]Yin H, Zhu M. Free radical oxidation of cardiolipin:chemical mechanisms, detection and implication in apoptosis, mitochondrial dysfunction and human diseases. Free Radic Res,2012, [Epub ahead of print].
    [16]Hazane-Puch F, Bonnet M, Valenti K et al. Study of fibroblast gene expression in response to oxidative stress induced by hydrogen peroxide or UVA with skin aging. Eur J Dermatol,2010,20:308-20.
    [17]Mesaros C, Arora JS, Wholer A, et al.8-Oxo-2'-Deoxyguanosine as a Biomarker of Tobacco Smoking-Induced Oxidative Stress. Free Radic Biol Med, 2012, [Epub ahead of print].
    [18]Tabima DM, Frizzell S, Gladwin MT. Reactive oxygen and nitrogen species in pulmonary hypertension. Free Radic Biol Med,2012,52(9):1970-1986.
    [19]Macip S, Igarashi M, Fang L, et al. Inhibition of p21-mediated ROS accumulation can rescue p21-induced senescence. EMBO J,2002,21, 2180-2188.
    [20]Kim YC, Kim BG, Lee JH. Thymosin β(10) Expression Driven by the Human TERT Promoter Induces Ovarian Cancer-Specific Apoptosis through ROS Production. PLoS One,2012,7(5):e35399.
    [21]Singh BR, Singh BN, Khan W, et al. ROS-mediated apoptotic cell death in prostate cancer LNCaP cells induced by biosurfactant stabilized CdS quantum dots. Biomaterials,2012,33(23):5753-5767.
    [22]Frippiat C, Dewelle J, Remacle J, et al. Signal transduction in H2O2-induced senescence-like phenotype in human diploid fibroblasts. Free Radic Biol Med. 2002,33(10):1334-46.
    [23]Gong K, Xie J, Yi H, et al. CS055 (Chidamide/HBI-8000), a novel histone deacetylase inhibitor, induces G1 arrest, ROS-dependent apoptosis and differentiation in human leukaemia cells. Biochem J,2012,443(3):735-746.
    [24]Shuvaev VV, Han J, Yu KJ et al. PECAM-targeted delivery of SOD inhibits endothelial inflammatory response. FASEB J 2011,25:348-357.
    [25]Lee HC, Wei YH. Mitochondria and aging. Adv Exp Med Biol,2012, 942:311-327.
    [26]Poljsak B, Dahmane R. Free radicals and extrinsic skin aging. Dermatol Res Pract,2012,2012:135206.
    [27]Kato E, Sasaki Y, Takahashi N, et al. Sodium dl-a-tocopheryl-6-O-phosphate inhibits PGED production in keratinocytes induced by UVB, IL-1β and peroxidants. Bioorg Med Chem,2011,19(21):6348-6355.
    [28]Ines D, Sonia B, Fatma BA, et al. Date seed oil inhibits hydrogen peroxide-induced oxidative stress in human epidermal keratinocytes. Int J Dermatol,2010,49(3):262-268.
    [29]Chen QM, Tu VC, Liu J. Measurements of hydrogen peroxide induced premature senescence:senescence-associated beta-galactosidase and DNA synthesis index in human diploid fibroblasts with down-regulated p53 or Rb. Biogerontology,2000, 1(4):335-339.
    [30]Pereira U, Boulais N, Lebonvallet N et al. Development of an in vitro coculture of primary sensitive pig neurons and keratinocytes for the study of cutaneous neurogenic inflammation. Exp Dermatol,2010,19:931-935.
    [31]Boukamp P, Petrussevska RT, Breitkreutz D et al. Normal keratinization in a spontaneously immortalized aneuploid human keratinocyte cell line. J Cell Biol, 1988,106:761-771.
    [32]唐桦.AQP3在不同年龄段正常人皮肤组织及角质形成细胞、成纤维细胞中的表达:[博士学位论文].长沙:中南大学,2008.
    [33]Ismail NS, Pravda EA, Li D, et al. Angiopoietin-1 reduces H2O2-induced increases in reactive oxygen species and oxidative damage to skin cells. J Invest Dermatol,2010,130(5):1307-1317.
    [34]Dumont P, Burton M, Chen Q M, et al. Induction of replicative senescence biomarkers by sublethal oxidative stresses in normal human fibroblast. Free Radic Biol Med,2000,28,361-373.
    [35]Luo P, Chen T, Zhao Y, et al. Protective effect of Homer 1a against hydrogen peroxide-induced oxidative stress in PC 12 cells. Free Radic Res,2012, 46(6):766-776.
    [36]Wang Y, Zhao L, Wang Y, et al. Curculigoside isolated from Curculigo orchioides prevents hydrogen peroxide-induced dysfunction and oxidative damage in calvarial osteoblasts. Acta Biochim Biophys Sin (Shanghai),2012, 44(5):431-41.
    [37]Marionnet C, Pierrard C, Lejeune F, et al. Different oxidative stress response in keratinocytes and fibroblasts of reconstructed skin exposed to non extreme daily-ultraviolet radiation. PLoS One,2010,5(8):e12059.
    [38]Chen QM, Liu J, Merrett JB. Apoptosis or senescence-like growth arrest: influence of cell-cycle position, p53, p21 and bax in H2O2 response of normal human fibroblasts. Biochem J,2000,347,543-551.
    [39]Shuvaev VV, Han J, Yu KJ et al. PECAM-targeted delivery of SOD inhibits endothelial inflammatory response. FASEB J,2011,25:348-357.
    [40]Kojima T, Wakamatsu TH, Dogru M, et al. Age-related dysfunction of the lacrimal gland and oxidative stress:evidence from the cu,zn-superoxide dismutase-1 (sod1) knockout mice. Am J Pathol,2012,180(5):1879-1896.
    [41]Dimri GP, Lee X, Basile G et al. A biomarker that identifies senescent human cells in culture and in aging skin in vivo. Proc Natl Acad Sci U S A,1995,92: 9363-9367.
    [42]Jiao S, Meng F, Zhang J, et al. STAT1 mediates cellular senescence induced by angiotensin Ⅱ and H2O 2 in human glomerular mesangial cells. Mol Cell Biochem,2012,365(1-2):9-17.
    [43]Huang J, Bai YX, Han SW, et al. A human TERT C-terminal polypeptide sensitizes HeLa cells to H2O2-induced senescence without affecting telomerase enzymatic activity. Biochem Biophys Res Commun,2003,301:627-632.
    [44]Linge A, Weinhold K, Blasche R, et al. Downregulation of caveolin-1 affects bleomycin-induced growth arrest and cellular senescence in A549 cells. Int J Biochem Cell Biol,2007,39:1964-1974.
    [45]Salmon M, Dedessus Le Moutier J, Wenders F, et al. Role of the PLA2-independent peroxiredoxin VI activity in the survival of immortalized fibroblasts exposed to cytotoxic oxidative stress. FEBS Lett,2004,57:26-32.
    [46]Wang Y, Sun Z. Current understanding of klotho. Aging Res Rev,2009,8: 43-51.
    [47]Kuro-o M, Matsumura Y, Aizawa H, et al. Mutation of the mouse klotho gene leads to a syndrome resembling ageing. Nature,1997,390:45-51.
    [48]Kurosu H, Yamamoto M, Clark JD, et al. Suppression of aging in mice by the hormone Klotho. Science,2005,309:1829-1833.
    [1]Woo DK, Shadel GS. Mitochondrial stress signals revise an old aging theory. Cell,2011,144(1):11-2.
    [2]Ben-Porath I, Weinberg RA. The signals and pathways activating cellular senescence. Int J Biochem Cell Biol.2005,37:961-976.
    [3]Muller FL, Lustgarten MS, Jang Y, et al. Trends in oxidative aging theories. Free Radic Biol Med.2007,43(4):477-503.
    [4]Paradies G, Petrosillo G, Paradies V, et al. Oxidative stress, mitochondrial bioenergetics, and cardiolipin in aging. Free Radic Biol Med,2010,48(10): 1286-1295.
    [5]Gil Del Valle L. Oxidative stress in aging:Theoretical outcomes and clinical evidences in humans. Biomed Pharmacother,2010 Sep 25. [Epub ahead of print]
    [6]Guachalla LM, Rudolph KL. ROS induced DNA damage and checkpoint responses:influences on aging? Cell Cycle,2010,9(20):4058-4060.
    [7]Wesierska-Gadek J, Wojciechowski J, Ranftler C, et al. Role of p53 tumor suppressor in ageing:regulation of transient cell cycle arrest and terminal senescence. J Physiol Pharmacol,2005,56 (1):15-28.
    [8]Moolmuang B, Tainsky MA. CREG1 enhances p16 (INK4a)-induced cellular senescence. Cell Cycle,2011,10 (3):518-530.
    [9]Kurz DJ, Decary S, Hong Y, et al. Chronic oxidative stress compromises telomere integrity and accelerates the onset of senescence in human endothelial cells. J Cell Sci,2004,117 (Pt 11):2417-2426.
    [10]童坦君,张宗玉.衰老机制及其学说.生理科学进展,2007,38(1):14-18.
    [11]Cho EJ, Okamoto T, Yokozawa T. Therapeutic efficacy of Kangen-karyu against H2O2-induced premature senescence. J Pharm Pharmacol,2008,60 (11): 1537-1544.
    [12]Lim Y, Lee E, Lee J, et al. Down-regulation of asymmetric arginine methylation during replicative and H2O2-induced premature senescence in WI-38 human diploid fibroblasts. J Biochem,2008,144 (4):523-529.
    [13]Hsieh CC, Papaconstantinou J. Dermal fibroblasts from long-lived Ames dwarf mice maintain their in vivo resistance to mitochondrial generated reactive oxygen species (ROS). Aging (Albany NY),2009,1(9):784-802.
    [14]Hazane-Puch F, Bonnet M, Valenti K, et al. Study of fibroblast gene expression in response to oxidative stress induced by hydrogen peroxide or UVA with skin aging. Eur J Dermatol,2010,20 (3):308-320.
    [15]Baumann L. Skin ageing and its treatment. J Pathol,2007,211(2):241-251.
    [16]Bickers DR, Athar M. Oxidative Stress in the Pathogenesis of Skin Disease. Journal of Investigative Dermatology,2006,126:2565-2575.
    [17]Suganuma K, Nakajima H, Ohtsuki M, et al. Astaxanthin attenuates the UVA-induced up-regulation of matrix-metalloproteinase-1 and skin fibroblast elastase in human dermal fibroblasts. J Dermatol Sci,2010,58(2):136-142.
    [18]Miyauchi T, Kanekura T, Yamaoka A, et al. Basigin, a new, broadly distributed member of the immunoglobulin superfamily, has strong homology with both the immunoglobulin V domain and the beta-chain of major histocompatibility complex class II antigen. J Biochem,1990,107:316-323.
    [19]Kanekura T, Miyauchi T, Tashiro M, et al. Basigin, a new member of the immunoglobulin superfamily:genes in different mammalian species, glycosylation changes in the molecule from adult organs and possible variation in the N-terminal sequences. Cell Struct Funct 1991; 16:23-30
    [20]Kanekura T, Chen X. CD147/basigin promotes progression of malignant melanoma and other cancers. J Dermatol Sci,2010,57 (3):149-154.
    [21]Lu H, Kuang YH, Su J, et al. CD 147 is highly expressed on peripheral blood neutrophils from patients with psoriasis and induces neutrophil chemotaxis. J Dermatol,2010,37 (12):1053-1056.
    [22]Kanekura T, Chen X, Kanzaki T. Basigin (CD 147) is expressed on melanoma cells and induces tumor cell invasion by stimulating production of matrix metalloproteinases by fibroblasts. Int J Cancer,2002,99 (4):520-8.
    [23]Chen X, Lin J, Kanekura T, et al. A small interfering CD147-targeting RNA inhibited the proliferation, invasiveness, and metastatic activity of malignant melanoma. Cancer Res,2006:66:11323-11330.
    [24]Li J, Peng LF, Wu LSh, et al. Depletion of CD 147 sensitizes human malignant melanoma cells to hydrogen peroxide-induced oxidative stress. J Dermatol Sci, 2010,58(3):204-210.
    [25]Juan Su, Xiang Chen, Takuro Kanekura. A CD147-targeting siRNA inhibits the proliferation, invasiveness, and VEGF production of human malignant melanoma cells by down-regulating glycolysis. Cancer Letters,2009,273: 140-147.
    [26]Gatenby RA, Gillies RJ. Glycolysis in cancer:A potential target for therapy. Int J Biochem Cell Biol,2007,39:1358-1366.
    [27]Rofstad EK, Mathiesen B, Kindem K, et al. Acidic extracellular pH promotes experimental metastasis of human melanoma cells in athymic nude mice. Cancer Res,2006,66:6699-6707.
    [28]Kuang YH, Chen X, Su J, et al. RNA interference targeting the CD 147 induces apoptosis of multi-drug resistant cancer cells related to XIAP depletion. Cancer Lett,2009,276:189-195.
    [29]Chen X, Kanekura T, Tsuyama S, et al. Ultrastructural localization of basigin in normal human epidermis. Histochem Cell Biol,2001,115(6):465-470.
    [30]陈翔,李吉,谢红付,等.CD147在角质形成细胞分化过程中的表达和作用.中华皮肤科杂志,2003,36(6)318-321.
    [31]李吉,谢红付,易梅,等.亲环素A和CD147在皮肤衰老过程中表达的研究.中南大学学报(医学版),2011,36(3):33-36.
    [32]唐桦.AQP3在不同年龄段正常人皮肤组织及角质形成细胞、成纤维细胞中的表达:[博士学位论文].长沙:中南大学,2008.
    [33]Liu L, Xie H, Chen X, et al. Differential response of normal human epidermal keratinocytes and HaCaT cells to hydrogen peroxide-induced oxidative stress. Clin Exp Dermatol,2012 Mar 22, [Epub ahead of print]
    [34]Naesens M. Replicative senescence in kidney aging, renal disease, and renal transplantation. Discov Med,2011,11 (56):65-75.
    [35]Oplander C, Volkmar CM, Paunel-Gorgulu A, et al. Whole body UVA irradiation lowers systemic blood pressure by release of nitric oxide from intracutaneous photolabile nitric oxide derivates. Circ Res,2009,105(10):1031-1040.
    [36]Furukawa A, Tada-Oikawa S, Kawanishi S, et al. H2O2 Accelerates Cellular Senescence by Accumulation of Acetylated p53 via Decrease in the Function of SIRT1 by NAD+Depletion. Cell Physiol Biochem,2007,20:45-54.
    [37]Borlon C, Chretien A, Debacq-Chainiaux F, et al. Transient increased extracellular release of H2O2 during establishment of UVB-induced premature senescence. Ann N Y Acad Sci,2007,1119:72-77.
    [38]Dimri GP, Lee X, Basile G et al. A biomarker that identifies senescent human cells in culture and in aging skin in vivo. Proc Natl Acad Sci U S A 1995,92: 9363-9367.
    [39]Olguin-Martinez M, Mendieta-Condado E, Contreras-Zentella M, et al. Rate of oxidant s tres s regulates balance between rat gas trie mucosa proliferation and apoptosis. Free Radic Biol Med,2006,4(8):1325-1337.
    [40]氧化应激对大鼠真皮成纤维细胞生物学行为的影响,中国组织工程研究与临床康复,2007,11(32):6428-6432.
    [1]Svobodova A, Zdarilova A, Walterova D, et al. Flavonolignans from Silybum marianum moderate UVA-induced oxidative damage to HaCaT keratinocytes. J Dermatol Sci,2007,48(3):213-224.
    [2]Urso C, Caimi G Oxidative stress and endothelial dysfunction. Minerva Med, 2011,102(1):59-77.
    [3]Bickers DR, Athar M. Oxidative Stress in the Pathogenesis of Skin Disease. Journal of Investigative Dermatology,2006,126:2565-2575.
    [4]Gonenc A, Hacrsevki A, Aslan S, et al. Increased oxidative DNA damage and impaired antioxidant defense system in patients with gastrointestinal cancer. Eur J Intern Med,2012,23(4):350-354.
    [5]Ledirac N, Antherieu S, Caron JC, et al. Effects of organochlorine insecticides on MAP kinase pathways in human HaCaT keratinocytes:key role of reactive oxygen species. Toxicol Sci,2005,86(2):444-452.
    [6]Alimonti A, Nardella C, Chen Z, et al. A novel type of cellular senescence that can be enhanced in mouse models and human tumor xenografts to suppress prostate tumorigenesis. J Clin Invest,2010,120 (3):681-693.
    [7]Mikhelson VM, Gamalei IA. Telomere shortening is the main mechanism of natural and radiation aging. Radiats Biol Radioecol,2010,50 (3):269-275.
    [8]Agrawal SK, Agrawal M, Sharma PR, et al. Induction of apoptosis in human promyelocytic leukemia HL60 cells by an extract from Erythrina suberosa stem bark. Nutr Cancer,2011,63(5):802-813.
    [9]Gosselin K, Martien S, Pourtier A, et al. Senescence-associated oxidative DNA damage promotes the generation of neoplastic cells. Cancer Res,2009,69 (20): 7917-7925.
    [10]Kumawat M, Sharma TK, Singh N, et al. Study of changes in antioxidant enzymes status in diabetic post menopausal group of women suffering from cardiovascular complications. Clin Lab,2012,58(3-4):203-207.
    [11]Schauen M, Hornig-Do HT, Schomberg S, et al. Mitochondrial electron transport chain activity is not involved in ultraviolet A (UVA)-induced cell death. Free Radic Biol Med,2007,42(4):499-509.
    [12]Ma W, Nunes I, Young CS, et al. Catalase enrichment using recombinant adenovirus protects alphaTN4-1 cells from H2O2. Free Radic Biol Med,2006, 40(2):335-340.
    [13]Kuro-o M, Matsumura Y, Aizawa H, et al. Mutation of the mouse klotho gene leads to a syndrome resembling ageing. Nature,1997,390:45-51.
    [14]Wang Y, Sun Z. Current understanding of klotho. Aging Res Rev 2009,8: 43-51.
    [15]Kurosu H, Yamamoto M, Clark JD et al. Suppression of aging in mice by the hormone Klotho. Science,2005,309:1829-1833.
    [16]Alexander RT, Woudenberg-Vrenken TE, Buurman J, et al. Klotho prevents renal calcium loss. J Am Soc Nephrol,2009,20(11):2371-2379.
    [17]Rakugi H, Matsukawa N, Ishikawa K, et al. Anti-oxidative effect of Klotho on endothelial cells through cAMP activation, Endocrine,2007, 1(1):82-87.
    [18]Li XH, Ha CT, Fu D, Xiao M. et al. REDD1 Protects Osteoblast Cells from Gamma Radiation-Induced Premature Senescence. PLoS One,2012, 7(5):e36604.
    [19]Lawless C, Jurk D, Gillespie CS, et al. A stochastic step model of replicative senescence explains ROS production rate in ageing cell populations. PLoS One, 2012,7(2):e32117.
    [20]Curtis C, Landis GN, Folk D, et al. Transcriptional profiling of MnSOD-mediated lifespan extension in Drosophila reveals a species-general network of aging and metabolic genes. Genome Bio,8(12):R262.
    [21]Sugiura H, Yoshida T, Mitobe M, et al. Klotho reduces apoptosis in experimental ischaemic acute kidney injury via HSP-70. Nephrol Dial Transplant,2010,25(1):60-68.
    [22]Hamna Y, Kashihara N, Satoh M, et al. Amelioration of progressive renal injury by genetic manipulation of Klotho gene. Proc Nail Acad Sci USA,2007, 104(7):2331-2336.
    [23]de Oliveira RM. Klotho RNAi induces premature senescence of human cells via ap53/p21 dependent pathway. FEBS Lett,2006,580(24):5753-5758.
    [24]Farrow EG, Summers LJ, Schiavi SC, et al. Altered renal FGF23-mediated activity involving MAPK and Wnt:effects of the Hyp mutation. J Endocrinol, 2010,207(1):67-75.
    [25]Ikushima M, Rakugi H, Ishikawa K, et al. Anti-apoptotic and anti-senescence effects of Klotho on vascular endothelial cells. Biochem Biophys Res Commun, 2006; 339:827-832.
    [1]Woo DK, Shadel GS. Mitochondrial stress signals revise an old aging theory. Cell,2011,144(1):11-2.
    [2]Muller FL, Lustgarten MS, Jang Y, et al. Trends in oxidative aging theories. Free Radic Biol Med.2007,43(4):477-503.
    [3]Makpol S, Abdul Rahim N, Kien Hui C, et al. Inhibition of mitochondrial cytochrome C release and suppression of caspases by gamma-tocotrienol prevent apoptosis and delay aging in stress-induced premature senescence of skin fibroblasts. Oxid Med Cell Longev,2012,2012:785743.
    [4]Schauble S, Klement K, Marthandan S, et al. Quantitative model of cell cycle arrest and cellular senescence in primary human fibroblasts. PLoS One,2012,7 (8):e42150.
    [5]Mendoza J, Sebastian A, Allan E, et al. Differential cytotoxic response in keloid fibroblasts exposed to photodynamic therapy is dependent on photosensitiser precursor, fluence and location of fibroblasts within the lesion. Arch Dermatol Res,2012,304 (7):549-62.
    [6]Alexis AF, Alam M. Racial and ethnic differences in skin aging:implications for treatment with soft tissue fillers. J Drugs Dermatol,2012,11 (8):30-2.
    [7]Suganuma K, Nakajima H, Ohtsuki M, et al. Astaxanthin attenuates the. UVA-induced up-regulation of matrix-metalloproteinase-1 and skin fibroblast elastase in human dermal fibroblasts. J Dermatol Sci,2010,58(2):136-142.
    [8]L Baumann. Skin ageing and its treatment. Journal of Pathology,2007,211: 241-251.
    [9]Kappes UP, Luo D, Potter M, et al. Short-and long-wave UV light (UVB and UVA) induce similar mutations in human skin cells. J Invest Dermatol,2006, 126 (3):667-675.
    [10]Levakov A, Vuckovic N, Dolai M, et al. Age-related skin changes. Med Pregl, 2012,65(5-6):191-5.
    [11]Robert L, Labat-Robert J, Robert AM. Physiology of skin aging.2009,57(1): 336-341.
    [12]过氧化物酶体增殖激活物受体δ在皮肤自然衰老过程中的表达及意义.钟连生,刘彦群,魏志平,等.中国中西医结合皮肤性病学杂志,2008,7(1):10-12.
    [13]李吉,谢红付,易梅,等.亲环素A和CD147在皮肤衰老过程中表达的研究.中南大学学报(医学版),2011,36(3):203-206.
    [14]唐桦,李吉,谢红付,等.AQP3在不同年龄段正常人皮肤组织中的表达及意义.中国现代医学杂志,2010,28(22):23-26.
    [15]Flynn JM, Czerwieniec GA, Choi SW, et al. Proteogenomics of synaptosomal mitochondrial oxidative stress. Free Radic Biol Med,2012,53 (5):1048-60.
    [16]Paunel AN, Dejam A, Thelen S, et al. Enzyme-independent nitric oxide formation during UVA challenge of human skin:characterization, molecular sources, and mechanisms. Free Radic Biol Med,2005,38 (5):606-15.
    [17]Miquel J. Can antioxidant diet supplementation protect against age-related mitochondrial damage. Ann NY Acard Sci,2002,959:508-516.
    [18]Park CH, Kim JW. Effect of advanced glycation end products on oxidative stress and senescence of trabecular meshwork cells. Korean J Ophthalmol,2012, 26 (2):123-31.
    [19]Baynes JW, Thorpe SR. Role of oxidative stress in diabetic complications:a new perspective on an old paradigm. Diabetes,1999,48:1-9.
    [20]Buckingham EM, Klingelhutz AJ. The role of telomeres in the ageing of human skin. Exp Dermatol,2011,20 (4):297-302.
    [21]Wang YN,Wu W,Peng GP,et al. Telomerase expression is not involved in aging process of human keratinocytes induced by UVB irradiation. Zhejiang Da Xue Xue Bao Ti Xue Ban,2009,38(3):283-8.
    [22]Diego VP, Curran JE, Charlesworth J, et al. Systems genetics of the nuclear factor-κB signal transduction network. I. Detection of several quantitative trait loci potentially relevant to aging. Mech Ageing Dev,2012,133(1):11-9.
    [23]Bohr VA. Repair of oxidative DNA damage in nuclear and mitochondrial DNA, and some changes with aging in mammalian cells. Free Radic Bio Med,2002; 39 (9):804-12.
    [24]Danko MJ, Kozlowski J, Vaupel JW, et al. Mutation accumulation may be a minor force in shaping life history traits. PLoS One.2012,7(4):e34146.
    [25]Eleftherianos I, Castillo JC. Molecular mechanisms of aging and immune system regulation in Drosophila. Int J Mol Sci,2012,13 (8):9826-44.
    [26][26] Fadini GP, Ceolotto G, Pagnin E, et al. At the crossroads of longevity and metabolism:the metabolic syndrome and lifespan determinant pathways.2011, Aging Cell,10(1):10-7.
    [27]陈培利,童坦君,张宗玉.p16基因甲基化在人二倍体成纤维细胞衰老中的作用.中华老年医学杂志,2001,20(1):44-46.
    [28]Guachalla LM, Rudolph KL. ROS induced DNA damage and checkpoint responses:influences on aging? Cell Cycle,2010,9(20):4058-4060.
    [29]Wesierska-Gadek J, Wojciechowski J, Ranftler C, et al. Role of p53 tumor suppressor in ageing:regulation of transient cell cycle arrest and terminal senescence. J Physiol Pharmacol,2005,56 (1):15-28.
    [30]Moolmuang B, Tainsky MA. CREG1 enhances p16 (INK4a)-induced cellular senescence. Cell Cycle,2011,10 (3):518-530.
    [31]Kurz DJ, Decary S, Hong Y, et al. Chronic oxidative stress compromises telomere integrity and accelerates the onset of senescence in human endothelial cells. J Cell Sci,2004,117 (Pt 11):2417-2426.
    [32]Ido Y, Duranton A, Lan F, et al. Acute activation of AMP-activated protein kinase prevents H2O2-induced premature senescence in primary human keratinocytes. PLoS One,2012,7(4):e35092.
    [33]Haferkamp S, Iran SL, Becker TM, et al. The relative contributions of the p53 and pRb pathways in oncogene-induced melanocyte senescence. Aging (Albany NY),2009,1 (6):542-56.
    [34]田黎明β-catenin抗氧化应激所致人皮肤成纤维细胞衰老的机制研究:[博 士学位论文].长沙:中南大学,2011.
    [35]Xie H, Liu L, Shi W, et al. Down regulation of CD147 boosts the premature senescence in human skin fibroblasts by destroying the redox balance and inhibiting klotho. J Dermatol Sci,2011,64 (3):243-5.
    [36]Shin MH, Rhie GE, Kim YK, et al. H2O2 accumulation by catalase reduction changes MAP kinase signaling in aged human skin in vivo. J Invest Dermatol, 2005,125(2):221-9.
    [37]陈明亮.UVA致人成纤维细胞和角质形成细胞损伤机制及白蔡芦醇的光保护作用:[博士学位论文].长沙:中南大学,2008.
    [38]Li T, Kon N, Jiang L, et al. Tumor suppression in the absence of p53-mediated cell-cycle arrest, apoptosis, and senescence. Cell,2012,149 (6):1269-83.
    [39]Kim H, You S, Farris J, et al. Expression profiles of p53-, p16(INK4a)-, and telomere-regulating genes in replicative senescent primary human, mouse, and chicken fibroblast cells. Exp Cell Res,2002,272 (2):199-208.
    [40]Kassam SN, Rainbow AJ. UV-inducible base excision repair of oxidative damaged DNA in human cells. Mutagenesis,2009,24 (1):75-83.
    [41]Ahn JY, Chung EY, Kwun HJ, et al. Transcriptional repression of p21 (wafl) promoter by hepatitis B virus X protein via a p53-independent pathway. Gene, 2001,275(1):163-8.
    [42]Schmid G, Kramer MP, Maurer M., et al. Cellular and organismal ageing:Role of the p53 tumor suppressor protein in the induction of transient and terminal senescence. J Cell Biochem,2007,101(6):1355-69.
    [43]Jackson JG, Pereira-Smith OM. p53 is preferentially recruited to the promoters of growth arrest genes p21 and GADD45 during replicative senescence of normal human fibroblasts. Cancer Res,2006,66(17):8356-8360.
    [44]Macip S, Igarashi M, Fang L, et al. Inhibition of p21 mediated ROS accumulation can rescue p21-inducedsenescence. EMBO J,2002,21 (9): 2180-2188.
    [45]Chkhotua A B, Gabusi E, Altimari A, et al. Increased expression of p16 (INK4a) and p27 (Kip1)cyclin-dependent kinase inhibitor genes in aging human kidney and chronic allograft nephropathy. AmJ Kidney Dis,2003,41 (6): 1303-1313.
    [46]Christian M, Beausejour A K, Galimi F, et al. Reversal of human cellular senescence:roles of the p53 and p16 pathways. EMBO J,2003,22(16): 4212-4222.
    [47]Quereda V, Martinalbo J, Dubus P, et al. Genetic cooperation between p21 (Cip1) and INK4 inhibitors in cellular senescence and tumor suppression. Oncogene,2007,26 (55):7665-76741.
    [48]周武,盛晚香,吴剑波,等.雌激素对人正常皮肤成纤维细胞的影响.武汉大学学报(医学版),2008,29(2):202-205.
    [49]Rhie G, Shin MH, Seo JY, et al. Aging and photoaging-dependent changes of enzymic and nonenzymic antioxidants in the epidermis and dermis of human skin in vivo. J Invest Dermatol,2001,117 (5):1212-1217.
    [50]Sardy M. Role of matrix metalloproteinases in skin ageing. Connect Tissue Res, 2009,50(2):132-8.
    [51]潘敏,骆丹,林向飞,等.没食子儿茶素没食子酸酯对中波紫外浅诱导的人皮肤成纤维细胞基质金属蛋白酶-1表达的影响.临床皮肤科杂志,2008,37(4):210-212.
    [52]Rittie L, Fisher GJ. UV-light-induced signal cascades and skin aging. Ageing Res Rev,2002,1(4):705-720.
    [53]Chung JH, Seo JY, Choi HR, et al. Modulation of skin collagen metabolism in aged and photoaged human skin in vivo. J Invest Dermatol,2001,17 (5): 1218-1224.
    [54]Turner R, Tjian R. Leucine repeats and an adjacent DNA binding domain mediate the formation of functional cFos-cJun heterodimers. Science,1989, 243(4899):1689-94.
    [55]Mehic D, Bakiri L, Ghannadan M, et al. Fos and jun proteins are specifically expressed during differentiation of human keratinocytes. J Invest Dermatol, 2005,124(1):212-20.
    [56]Xu M, Luo W, Elzi DJ, et al. NFX1 interacts with mSin3A/histone deacetylase to repress hTERT transcription in keratinocytes. Mol Cell Biol,2008,28(15): 4819-28.
    [57]Li J, Li N, Dong X, Wang C. Effect of polypeptide from Chlamys farreri on ultraviolet A-induced Fas and c-fos expression in HaCaT cells. Wei Sheng Yan Jiu,2010,39(4):416-9.
    [58]Chew YC, Adhikary G, Wilson GM, et al. Protein kinase C (PKC) delta supp-resses keratinocyte proliferation by increasing p21(Cip1) level by a KLF4 transcription factor-dependent mechanism. J Biol Chem,2011,286(33):28772-82.
    [59]唐桦.AQP3在不同年龄段正常人皮肤组织及角质形成细胞、成纤维细胞中的表达:[博士学位论文].长沙:中南大学,2008.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700