用户名: 密码: 验证码:
覆盖区区域矿产资源评价方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以东天山戈壁沙漠覆盖区“土屋式”斑岩型铜(钼)矿为例,研究覆盖区矿产资源评价方法。首先,系统的收集了研究区区域地质、矿产、航磁、重力、化探、遥感、数字高程及地质勘探报告等数据资料并进行分类、整理及数据录入工作(如坐标配准、矢量化、属性表赋值等),建立多源综合信息预测空间数据库;其次,通过对东天山地区区域地质背景以及土屋-延东典型矿床(区)地质、地球物理、地球化学和遥感地质特征的综合分析,逐步理清了东天山“土屋式”斑岩型铜(钼)矿床所产出的地质构造环境及其主要成矿地质特征与找矿标志,建立了“土屋式”斑岩型铜(钼)矿床找矿地质概念模型;在此基础上,利用多种数据处理方法分别对研究区区域重磁、化探、遥感数据进行处理和地质解释:①应用地球物理位场边缘信息增强的方法(斜导数及其水平导数和欧拉反褶积反演方法)对重磁数据边界信息进行增强处理,运用向上延拓的方法分离重磁区域异常和局部异常,建立重磁解译标志,推断和解译覆盖区隐伏构造和岩体;②根据岩石建造类型划分地质单元,利用富集系数法对不同地质单元内地球化学元素的富集规律进行探索分析,揭示戈壁沙漠覆盖层物质组成与基岩区可能的内在成因联系,查明不同地球化学元素的“活动性”,以确定合理的、与“土屋式”斑岩型铜(铝)矿化密切相关的化探指示元素组合并在此基础上利用分形局部奇异性分析的方法增强覆盖层内弱缓异常信息,利归一化指数叠加法计算多元素化探综合异常;③建立遥感影像(ETM+)线环构造目视解译标志,对研究区遥感影像进行目视解译。与此同时,对遥感影像进行辐射定标、大气校正、干扰信息剔除(盐碱地、植被、云、阴影等)等预处理,运用基于特征导向的主成分分析方法(Crosta技术)分别提取铁染和羟基蚀变异常;最后,以综合预测准则为指导,逐个提取与“土屋式”斑岩型铜(钼)成矿有利的要素图层并利用证据权法进行信息综合计算成矿后验概率图,圈定成矿远景区并进行评价。据此,得出如下主要结论与认识:
     (1)东天山及其邻区具有多板块、多构造单元的复杂地质结构,其主要由塔里木、伊犁、哈萨克斯坦-准噶尔等几个古板快或微板片及其增生边缘先后经历了一系列的裂解、增生、拼合过程后形成的。自太古宙-古元古代原始陆核形成以来,其地壳大致先后经历了五个重要的构造演化阶段:前震旦纪基底演化阶段、震旦纪-中志留世古天山洋形成与早期演化阶段、晚志留世-早石炭世古天山洋演化与大陆初始主碰撞阶段、晚石炭世-三叠纪后碰撞构造与壳幔相互作用阶段以及侏罗纪-第四纪陆内发展演化阶段。其中,以第四阶段(晚石炭世-三叠纪后碰撞构造与壳幔相互作用阶段)壳幔相互作用最为强烈,伴随有大规模岩浆作用,特别是中-酸性花岗质类岩浆活动,有利于区内金属成矿元素大量迁移和富集,在时间上与东天山地区成矿作用高峰期相对应,与包括“土屋式”斑岩型铜(铝)矿床在内的铁、铜、镍、钼、金等多金属矿化关系密切。目前,学界对东天山及其邻区板块构造单元划分方案及其相应的构造属性尚存在很多争议。当前一种新的认识为:以大草滩-大南湖断裂(那拉提-红柳河缝合带东段)为界,东天山及其邻区可划归为两大板块构造单元,以南为哈萨克斯坦-准格尔板块,以北属塔里木板块。研究区所涉及的大地构造环境有哈萨克斯坦-准格尔板块东南缘吐-哈中间地块、哈尔里克-大南湖古生代复合岛弧带及塔里木板块北缘觉罗塔格晚古生代裂陷槽、中天山地块、艾尔宾晚古生代残留洋盆、北山早古生代裂谷带。其中,与“土屋式”斑岩型(铝)矿床产出关系密切的构造环境可能为觉罗塔格晚古生代裂陷槽及哈尔里克-大南湖古生代代复合岛弧带;
     (2)“土屋式”斑岩型铜(钼)矿床主要产于石炭纪碎屑岩-火山(凝灰)岩建造岩系中,如千敦组(C1gd)、脐山组(C2qs)、梧桐窝子组(C2w)等,与石炭纪-二叠纪中-酸性浅成侵入斑岩体,如斜长花岗斑岩和闪长玢岩等有关。矿化围岩蚀变发育,分带明显,围绕矿体呈“中心式”对称面型分布,自内向外大体上依次为强石英-黑云母-绢云母-硬石膏化带、石英-绢云母化带(绢云岩化带)和青磐岩化带。与Cu、Mo、Au、Ag、As、Sb、 Pb、Zn、W、Bi、Cd等地球化学元素及其组合异常有关。斑岩(矿化)体通常表现为高极化率、中-低电阻率、局部高磁和低重力异常特征,并伴随有有铁染和羟基遥感蚀变异常。
     (3)覆盖区区域物探数据处理与综合地质解释应遵循以下基本原则:①以地质先验知识为前提,密切结合地质资料进行物探数据的处理及综合分析。一方面,要全面认识和理解研究区区域地质演化过程、成矿地质背景(地层、构造、岩浆岩等)、区域成矿规律等重大基础地质问题,为合理解译区域构造格架(包括断裂及构造单元等)提供正确的地质指导;另一方面,要充分考虑和系统收集区域内不同岩矿石建造的物性资料,如磁化率、密度、电阻率等,为定量或定性解释物探异常的性质做准备;②严格遵循地球物理的基本原理和工作方法,以地质为依据,岩矿石物性特征为基础,循序渐进,逐步深化;③充分运用GIS和信息提取技术,利用GIS综合分析重磁异常与地质、构造、遥感以及化探等资料及其异常之间的对应关系,各类信息相互验证补充,以提高推断解译的可靠性。利用GIS空间分析,如缓冲区分析、叠加分析等,可以定量分析各地质要素,如岩体、构造等,与已知矿化之间的关联关系;④定性与定量相结合。定量数据处理或定量解释工作包括异常的分离、边界信息的增强、定量或半定量反演等,在一定程度上能给覆盖区重磁解译工作增加很多辅助信息,如通过导数换算或欧拉反演,可以提取或者更清晰反映某类地质体或地质构造的形态特征等。但是,在实际工作中,决不能忽略定性解译工作的重要性,通常不能单靠某种或某几种数学模型的组合进行计算分析就可以得到满意的结果,因为地质现象往往是极其复杂的,很多地质现象并不具有明显的数学统计规律性,唯有在仔细分析地质事实的前提下,通过解译人员的综合定性对比分析,才有可能认识到更为复杂的地质规律;
     (4)东天山地处大陆性气候环境,为典型的内陆干旱荒漠地球化学景观区,其基岩风化程度高,风沙大,风成沙、风成黄土覆盖严重。一方面,覆盖层对下伏岩矿石地球化学元素的垂向迁移有屏蔽作用;另一方面,地球化学元素侧向迁移作用普遍存在,不同地质单元内地球化学元素的组成发生了很大的变化,覆盖层中地球化学元素的富集程度与基岩区有密切的成因联系:在风化、剥蚀以及风沙搬运过程,基岩中“活动性”较强的地球化学元素会大量迁移至覆盖层中富集形成外源次生异常。它们叠加于覆盖层内源次生富集异常之上,对识别和提取覆盖层以下与隐伏岩矿石建造有关的化探异常产生很大的干扰。因此,在戈壁沙漠覆盖区,区域化探资料的应用,无论是数据处理还是地质解释都面临极大挑战:其一,提取弱缓信息,受覆盖层的影响,勘查地球化学技术所获取的直接或间接找矿信息往往为弱缓信息;其二,识别和分解复合叠加信息,在风化、剥蚀、风沙搬运等表生地质作用过程中,覆盖层通常会大量接受和堆积来基岩区的风化物,所获取的地球化学信息多为内源次生异常与外源次生异常信息的混合叠加。为了尽可能的减小戈壁沙漠覆盖区区域化探数据的使用风险,本文以识别和提取与“土屋式”斑岩型铜(铝)矿化有关的地球化学异常为例,探索和总结了一套针对戈壁沙漠覆盖区区域化探数据处理的一般技术流程,取得了良好的应用效果,初步认识了东天山地区区域地球化学元素迁移及其在各地质单元内的分布特征:
     (5)覆盖层物质组成明显的受基岩区影响,二者中不同元素的富集系数呈现很强的线性关系,指示其物质组成很可能存在成因上的联系。依据地球化学元素在基岩区和覆盖层中的相对富集程度,可将研究区区域地球化学数据中39种元素(氧化物)大致分为三组:①Au、U、K、Ag、Sr、As等在覆盖层中相对富集的元素,其有两种可能的来源:其一,为覆盖层本身相对富集的组分,由覆盖层下伏富含这类元素的地质体中垂向迁移至覆盖层内次生富集;其二,为覆盖层以外的基岩区侧向迁移组分(如风成土、风成沙等)中富集的元素;②Si、B、Li、La、Th等在全区分布相对均匀的元素,其也有两种可能的来源:其一,为地球化学性质相对较稳定的一类元素,在表生地质作用过程中没有或仅轻微发生“原岩”和迁移组分之间的“分异”,主要以被动迁移的方式进入到覆盖层中;其二,为覆盖层以外的基岩区中相对富集的元素发生“原岩”和迁移组分之间有限程度的“分异”和侧向迁移至覆盖层中富集,重新调整了它们在“原岩”和覆盖层中元素的富集程度,最终呈现“均匀”分布的状态;③Mg、Co、Cr、Cu、Ni等基岩区中相对富集的元素,其在基岩区中的含量可能本身就相对比较高,而且在发生“原岩”和迁移组分之间成分的“分异”作用时,往往更趋向于留在“原岩”中。覆盖层中元素的次生富集可能很大程度上依赖于基岩区不同岩性及其组分的“分异”和侧向迁移作用,其中Au、As、Sb、Cd等元素的最重要来源可能为火山-火山碎屑沉积岩,K、Bi、Ba等的主要来源可能为侵入岩,Ca的主要来源可能为沉积-变质岩地层。
     (6)研究区区域化探元素组合与分布规律大致呈现以下特征:①火山-沉积岩中普遍相对富集Cu、Au、As、Cr、Co、Ni、Sb、 Cd、Fe、Ti、V、Zn、Mg、Mo、Ag等多种金属元素,与区内Fe、Cu、Au、Ag等多金属矿化关系密切;②中-酸性侵入岩中一般相对富集A、K、Na、Si、Be、Bi、Ba等与长英质侵入岩或稀有金属矿化有关的元素;③区内沉积岩-变质岩地层相对富Ca、Mg等与碳酸盐岩建造有关的元素。与“土屋式”斑岩型铜(钼)矿化有关的化探指示元素可以为Cu、Mo、Au、Ag、As、Sb、Pb、Zn、W、Bi、Cd等,但Au、Ag、As、Sb、Cd、W、Bi的“活动性”较强,易迁移至覆盖层中富集形成假异常,给化探数据的处理、异常筛选和解释带来不便。因此,选择Cu、Mo、Pb、Zn四种元素作为与“土屋式”斑岩型铜(钼)矿化有关的区域化探指示元素可能更具合理性,其不仅考虑了“土屋式”斑岩型铜(铝)矿化本身的地球化学特征,同时也考虑了东天山戈壁荒漠地球化学景观区元素地球化学行为对次生异常的影响。
     (7)戈壁沙漠覆盖区基岩裸露区线环构造解译相对简单,但在覆盖层内能解译出的信息非常有限。遥感蚀变信息提取的关键是各类干扰因素的剔出,如盐碱地、植被、阴影和云等,在此基础上,利用基于特征导向的主成分分析方法(Cr6sta技术)提取铁染和羟基蚀变异常效果较好。
     (8)“土屋式”斑岩型铜(钼)矿床综合预测准则为:①构造环境:觉罗塔格晚古生代裂陷槽、哈尔里克-大南湖古生代复合岛弧带;②围岩地层:石炭统拉班玄武岩-安山岩及中-酸性火山角砾岩-玄武岩建造岩系;③岩浆岩:石炭纪-二叠纪闪长岩、闪长玢岩、石英闪长岩、花岗闪长岩等;④重磁异常:上延20-30km剩余异常高值区内或梯度带上,局部中-高重磁异常;⑤化探异常:Cu、Mo、Pb、Zn指示元素组合异常;⑥遥感蚀变:铁染和羟基蚀变异常;
     (9)依据后验概率图,研究区共划分出四个一级远景区(A1、A2、A3、A4)和两个二级远景区(B1和B2)。其中,Al、A2、A3、A4远景区,处于有利的成矿构造环境(位于觉罗塔格晚古生代裂陷槽和哈尔里克-大南湖古生代复合岛弧带内)、具备良好的成矿地质条件和明显的物化探及遥感异常,A1、A2、A3远景区构成呈近东西向延伸的斑岩铜(钼)矿带,中部A1远景区已发现有土屋-延东超大型斑岩型铜(钼)矿床,东部A2远景区也发现有三岔口、三岔口东等中小型斑岩型铜(钼)矿床,而西部(A3远景区)尚未有发现,因此,寻找“土屋式”斑岩铜(钼)矿的潜力可能很大;A4远景区,位于土屋-延东斑岩型铜矿矿集区北侧,处于覆盖层中,成矿环境好,位于哈尔里克-大南湖古生代复合岛弧内,目前尚未有发现斑岩型铜(钼)矿床产出,因此,找矿潜力可能很大,是寻找中-酸性岩浆活动有关的热液型铜(钼)多金属矿床的重要远景区,建议进一步开展大比例尺预测和找矿工作;B1和B2远景区位于斑岩型铜(钼)矿带北侧,已发现有土墩南东小型铜矿、东戈壁大型铝矿,因此,也可能具有较好的找矿前景。
In order to illustrate the general and efficient procedures for mineral resource assessment in covered area,"Tuwu-type" porphyry Cu-Mo deposit in Gobi desert covered landscape of Eastern Tianshan, China, was taken to as an example and well studied. Firstly, on the basis of Geographic Information System (GIS), the mufti-source information spatial database that was consist of geological maps, deposits or occurrences, aeromagnetic, bouguer gravity, geochemical, remote sensing images, digital elevation and exploration and/or mining tables or reports as well as other mineral resources associated data of the studied area was established by means of data inputting works such as coordinate registration, vectorization and attribute table assignment etc.; Secondly, the exploration conceptual model for "Tuwu-type" porphyry Cu-Mo deposit was proposed on the basis of the studies in both geology of region and Tuwu-Yandong deposit, such as the comprehensive analysis of geological, geophysical, geochemical and remote sensing characteristics. Then, based on the conceptual model, various of data processing methods were applied to bouger gravity, aeromagnetic, geochemical and remote sensing data for identifying and extracting mineralization associated anomalies:(a) in the geophysical data processing, the enhancement approaches for boundary information of potential field such as tilt derivation, the total horizontal derivation of tilt derivation and eular deconvolution methods were applied to enhance edge characteristics of bouger gravity and aeromagnetic anomalies and upward continuation was applied to isolate localized and regional anomalies of the bouger gravity and aeromagnetic data. On the basis of the processing results of the bouger gravity and aeromagnetic data, concealed tectonics and intrusions both in the covered and uncovered areas were interpreted by means of the establishment of bouger gravity and aeromagnetic interpretation criteria from outcrops district of the studied area;(b) in the geochemical data processing, firstly, geological units were divided according to the characteristics of lithological construction or combination. Next, elements behavior was analyzed by the way that accumulation coefficient analysis of elements in different geological units so as to investigate possible mobility of the elements for determining a set of proper indicator elements including Cu, Mo, Pb and Zn for porphyry Cu-Mo mineralization and Al2O3, Na2O, Be, and MgO for felsic intrusions, respectively. Then, singularity mapping technique was employed to enhance and recognize weak geochemical anomaly signals of Cu, Mo, Pb and Zn, and Al2O3, Na20, Be, and MgO in the Gobi desert covered district. Finally, the normalized index overly method was applied for integrating single element geochemical anomalies of Cu, Mo, Pb and Zn and principal component analysis method was utilized to Al2O3, Na2O, Be, and MgO derived by singularity mapping in order to delineate integrated geochemical anomaly information associated with porphyry Cu-Mo mineralization and felsic intrusions, respectively; and (c) in the remote sensing data processing, firstly, linear and circler structures both in the covered and uncovered areas were interpreted by means of the establishment of remote sensing interpretation criteria from outcrops district of the studied area. Then, the remote sensing images were preprocessed by means of radiometric calibration, atmospheric correction, and interference (saline-alkali soil, vegetation, shadow, etc.) removed. On the basis of results of the preprocessing, feature-oriented principal component analysis method (Crosta approach) was further used to extract alteration anomalies of iron and hydroxy; In the end, the integrated prediction criteria for "Tuwu-type" porphyry Cu-Mo deposit was drawn on the basis of the exploration conceptual model and the comprehensively processing results of geophysical, geochemical and remote sensing image data. Based on the prediction criteria, weights-of-evidence method was employed to integrate the evidence themes that the favorable geological, geochemical, geophysical and remote sensing anomalies including tectonics, strata, intrusions, bouger gravity anomaly, aeromagnetic anomaly, and the alteration anomalies of iron and hydroxy to calculate posterior probability map for delineating prospects for future's porphyry Cu-Mo deposits exploration. According to the above study works, the following main conclusions could be drowned:
     (1) The East Tianshan involves several tectonic units that Tarim, Ili, Kazakhstan-Junggar, and several other micro-plates, which have undergone a series of geological evolutional events such cracking, hyperplasia and collision. Since the original continental crust of East Tianshan in Archean-Proterozoic was formed, it has gone through five important tectonic evolution stages: The evolution stage of Precambrian basement, the formation and early evolution stage of Ancient Tianshan ocean from Sinian to middle Silurian, the stage of Tianshan oceanic evolution and primary collision of ancient continents from late Silurian to early Carboniferous, the stage of post-collision and crust-mantle interaction from late Carboniferous to Triassic and the evolution stage of continent from Jurassic to Quaternary. Among these five stages, the fourth stage that the stage of post-collision and crust-mantle interaction from late Carboniferous to Triassic has undergone many intensive crust-mantle interaction activities, which accompanied with strong magmatism, particularly for the acidic granitoids or igneous that were usually considered to be in favor of migration and enrichment for metal mineralization associated elements, which was generally corresponding with the metallogenic peak periods of various of metals in the Eastern Tianshan such as iron, copper, nickel, molybdenum, gold, silver and other metal mineralizations including "Tuwu-type" porphyry Cu-Mo deposits. However, there are still many disputes for researchers on the issues that the tectonic properties of the East Tianshan and its adjacent region until now. In currently, a new perspective is that taking Dacaotan-Dnanhu fault as the boundary of plates, the East Tianshan can be divided into two main tectonic units that Kazakhstan-Junggar plate in the south and Tarim plate in the north. The tectonic units of the studied area involved in Turban-Hami massif and Ha'erlike-Dananhu Paleozoic island-arc that belong to the southeastern margin of Kazakhstan-Junggar plate, and Jueluotage late Paleozoic rift, central Tianshan block, Ai'erbin late Paleozoic ocean basin, and north Tianshan early Paleozoic rift that belong to the north Tarim Plate. Among these tectonic units, the "Tuwu-type" porphyry Cu-Mo deposits would like to produce in Jueluotage late Paleozoic rift and Ha'erlike-Dananhu Paleozoic island-arc.
     (2)"Tuwu-type" porphyry Cu-Mo deposits are mainly hosted in the Carboniferous strata that are dominantly composed by clastic or/and volcanic rocks, such as Gandun Formation (C1gd), Qishan Formation (C2qs), Wutongwozi Formation (C2w), etc., and the Carboniferous-Permian acidic porphyry intrusions, such as plagioclase porphyries and diorites. The alterations are well developed and symmetrically around the ore bodies, from the inside to outside, which were the quartz-biotite-sericite-anhydrite, quartz-sericite and propylitic alteration, respectively."Tuwu-type" porphyry Cu-Mo deposits are associated with geochemical anomalies of Cu, Mo, Au, Ag, Bi, Zn, Ni, Pb, W, As, Sb and Cd. Porphyries (mineralized intrusions) usually have high chargeability, medium to low resistivity, high local magnetic anomaly, low bouger gravity anomaly and iron and hydroxy alteration anomalies.
     (3) The integrated processing and geological interpretation for geophysical data in covered area should follow several important principles:(a) the prior knowledge of geology in the studied area should be one of the most important prerequisites in geophysical data processing and comprehensive geological interpretation. On the one hand, well understanding the geological evolution events and backgrounds such as strata, tectonics, and magmatic rocks, as well as other metallogenic regularities of the studied area could provide a reasonable geological guidance for interpretation of regional structural framework including the concealed faults and intrusions; On the other hand, the physical properties of different rocks or/and minerals such as magnetic susceptibility, density, resistivity should be collected to be assistant for quantitative or qualitative explanations of the proper geological significance for geophysical anomalies;(b) the basic principles and interpretation procedures for geophysical data that bouguer gravity and aeromagnetic anomaly should be strictly followed;(c) application of GIS and geoinformation technologies, which could be employed to analyze the spatial correlation among bouguer gravity and magnetic anomalies with other geoinformations including geological, tectonic, mineralization, remote sensing and geochemical data for improvement of the reliability of the interpreted results by means of spatial analysis approaches such as such as overlay and buffer; and (d) application of both qualitative and quantitative approaches in geophysical data processing and interpretation. Processing bouguer gravity and areomagnetic data with quantitative methods such as the localized and regional anomalies separation, boundary information enhancement, and quantitative or semi-quantitative inversion could provide many important aided information for interpretation of them in covered area, e.g. it could identify and extract the morphological characteristics of some structures or geobodies much more easily from the geophysical data being processed by derivative or/and euler deconvolution methods. However, in practically, the significance for qualitative interpretation could never be ignored because the complicated geological phenomena could not easy to be totally described by several mathematical models or their combination so as the results of statistical analysis for geophysical data usually have no full geological significance and qualitative interpretation guided by the geological regularities have to be done for identifying the possible and more complicated geological information;
     (4) The geochemical landscape of Eastern Tianshan in which the study area is located is inner continental arid desert. Physical and chemical weathering in these areas is well developed and resulted in decomposition of exposed rocks (bedrock). The wind is so strong that weathered bedrock could easily be blown far away to accumulate in relatively low terrain (basins). Some areas are completely covered by regolith sediments such as windblown sand or soil, alluvial gravel, sandstone and calichehorizons. On the one hand, the geochemical anomaly formed by vertical migration of elements from deep would be weaked due to the Gobi desert coverage; On the other hand, the lateral migration of geochemical elements has commonly existed so as the geochemical composition of different geological units usually have been changed. There is a strong genetic relationship of elements enrichment between Gobi desert covered layer and bedrock:the mobile geochemical elements enriched in bedrock would like to migrate to be accumulated in the covered layer to form pseudo geochemical anomaly in the process of weathering and wind transportation. The pseudo anomaly that is usually considered to be strong noisy signal in geochemical anomaly identification would overprint on the possible mineralization associated geochemical anomaly that the weak anomaly produced by vertical migration of elements from various of concealed geobodies including mineral deposits covered by Gobi desert. Therefore, in Gobi desert covered geochemical landscape, the application that both data processing and geological interpretation of regional geochemical data would be a challenge task in both extraction of the weak and decomposition of the overprinted geochemical anomaly duo to the Gobi desert coverage. In this paper, to reduce the risk for application of regional geochemical data in the Gobi desert covered area as much as possible, the identification and delineation of "Tuwu-type" porphyry Cu-Mo mineralization associated geochemical anomalies has been taken as an example to explore and summarize a general procedure for regional geochemical data processing in the Gobi desert covered landscape of the Eastern Tianshan.
     (5) The geochemical composition in Gobi desert covered layer probably depends on the composition of bedrock. There is a strong linear relastionship between the elements accoumulation coefficient of Gobi desert covered layer and bedrock outcrops area, which possiblely indicate a genertic relationship in geochemical composition between them. The39geochemical elements (oxides) can be divided into three groups based on their relative enrichment in the bedrock and the Gobi desert coverd layer:(a) the elements that are more enriched in the Gobi desert covered layer, e.g. Au, As, W, Cd, Ag, Hg, Sb, Bi, K, and Ca etc. There are two possible sources for this group of elements. The first one is vertical migration from buried mineralization or bedrock covered by Gobi dersrt covered layer and the second one is lateral migration from bedrock by wind and streams. In the second situation, these elements may have been originally enriched in some lithological units, but their mobility (away from host rocks) was so strong that they readily fractionalized from their host rocks in bedrock because of their unstable geochemical properties, then moved to and accumulated in Gobi desert covered layer. This group of elements were likely to form high concentration geochemical anomalies (secondary enrichment) but without mineralization associated significance in Gobi desert covered layer;(b) the elements that are generally equally enriched in both Gobi desert covered layer and bedrock outcrops area, e.g. Zr, Y, Nb, Ba, B, Si, Sr and Li, etc. These elements can be considered to be stable in geochemical behavior in that they were not limited to be formation by fractionalization from their host rock in bedrock but mainly moved to and accumulated in Gobi desert covered layer with fragments of host rocks by physical processes such as wind or stream transformation; and (c) the elements that are much more enriched in bedrock outcrops area, e.g. Mg, Co, Cr, Ni, Cu, Be, Mn, Fe, Pb and Zn, etc. These elements may have been originally enriched in some lithological environments and their immobility (retention in host rocks) was so strong that, during geochemical fractionation between mobile (e.g. fragments of host rocks that would be moved to and accumulated in Gobi desert covered layer) and immobile (remains of host rocks) status, they would probably remain in the host rocks of bedrock rather than become enriched in fragments of weathered rocks accumulated in Gobi desert covered layer. Thus, the geochemical anomalies formed by this group of elements usually are of possible mineralization associated significance in the study area. There is a source genetic relationship between the geochemical composition of Gobi desert covered layer and bedroak outcrops area due to the strong lateral migriation of the mobile elements from bedrock to be accumulated in Gobi desert covered layer, which coud be generally sumerized to be that the elements such as Au, As, Sb, and Cd could be the most probably come from igneous-volcanic associated sedimentary rocks, the elements such as K, Bi, and Ba could be the most probably come from intermediate-acid intrusions, and Ca could be the most probably come from sedimentary-metamorphic rocks.
     (6) On the basis of the accumulation coefficient analysis of elements in various of geological units in the studied area, there is a gernal conclusion for the enrichment regular of elements in these geological units could be drowend:(a) the elements such as Cu, Au, As, Cr, Co, Ni, Sb, Cd, Fe, Ti, V, Zn, Mg, Mo, and Ag are more relatively enrichment in igneous-volcanic associated sedimentary rocks, which are usually considered to be generiticaly associated with Fe, Cu, Ni, Au, and Ag polymetallic mineralization in the Eastern Tianshan;(b) the elements such as Al, K, Na, Si, Be, Bi, and Ba are relatively enrichment in intemadiate-acid intrusions, which are generally considered to be closely related with rare elemets metal mineralization including Li and Be; and (c) the elements such as Ca and Mg are more enrichment in sedimentary-metamorphic strata that are mainly composed by carbonate rocks. Though the candidate geochemical indicator elements for "Tuwu-type" porphyry Cu-Mo mineralization could be Cu, Mo, Au, Ag, As, Sb, Pb, Zn, W, Bi and Cd, in which Au, Ag, As, Sb, Bi and W are strongly mobile elements that can be easily moved over large distances, accumulated as secondary enrichment in Gobi desert covered layer to form non-mineralization associated geochemical anomalies, which are usually considered to be pseudo geochemical anomalies providing relatively strong noise signals in mineralization-associated geochemical anomaly identification. Therefore, Au, Ag, As, Sb, Bi and W probably should exclude from the candidate indicator elements and only the remain elements that Cu, Mo, Pb and Zn would be the most appropriate indicator elements for porphyry Cu-Mo mineralization associated geochemical identification in the study area.
     (7) In Gobi desert covered landscape of the Eastern Tianshan, interpretation of linear and circler structures using remote sensing images in bedrock outcrops area is relatively easy, but it is very difficult for Gobi desert covered area. The most important issue for the extraction of ateration information using remote sensing data is to remove interferences such as saline-alkali soil, vegetation, shadow and clouds. On the basis of the preprocessing of remote sensing data including the references removed, feature-oriented principal component analysis method (Crosta approach) method has proved to be a useful approach for the extraction of iron and hydroxyl alteration anomalies.
     (8) The integrated prediction criteria for "Tuwu-type" porphyry Cu-Mo deposits could be sumerized as follows:(a) tectonic units:Jueluotage late Paleozoic rift and Ha'erlike-Dananhu Paleozoic island arc;(b) favorable strata:Carboniferous tholeiite-andesite and intermediate-acid volcanic breccia-basalts;(c) intrusions:Carboniferous-Permian diorites, quartz diorites, granodiorites and plagioclase granite porphyries, etc.;(d) bouguer gravity and magnetic anomalies:the reginal anomaly is that the high or/and gradient zone of bouguer gravity and magnetic at the extension of20-30km and the local anomaly is that the medium-high loacalized bouguer gravity and magnetic anomalies;(f) geochemical anomalies:the geochemical anomalies of Cu, Mo, Pb and Zn; and (g) alteration for remote sensing information:iron and hydroxy anomalies;
     (9) On the basis of postprobality map for "Tuwu-type" porphyry Cu-Mo mineralization in the studied area, there are four high potential prospective areas that A1, A2, A3and A4and two moderate potential prospective areas that B1and B2have been delineated. The A1, A2, A3, and A4prospects are located in the favorable tectonic environments that Jueluotage late Paleozoic rift and Ha'erlike-Dananhu Paleozoic island-arc. They have faverable geological conditions, geophysical, geochemical and remote sensing anomalies. A1, A2, and A3prospects constitute a EW trend porphyry Cu-Mo mineralization zone, in which the Tuwu-Yandong superlarge porphyry Cu-Mo deposit have been found in the middle of the mineralization zone that the prospect A1, Sanchakou, Eastern Sanchakou and other small size porphyry Cu-Mo deposits have been discovered in the eastern of the of the mineralization zone that the prospect A2and there is no discovered in the western of of the mineralization zone that the A3prospect. Therefore, maybe the prospecting potential in the prospect A3would be large. Both the prospects B1and B2are located in north of the porphyry Cu-Mo mineralization zone. There has been found eastern Tudun small size Cu depost and East Gobi large Mo deposit. Thus, it also probably has high potential for prospecting porphyry Cu-Mo deposites.
引文
[1]Abedi, M., Norouzi,G. H., Bahroudi, A.,2012. Support vector machine for multi-classification of mineral prospectivity areas. Computers & Geosciences,46:272-283.
    [2]Adhikary, P.P., Dash, C.J., Bej, R., et al.,2011. Indicator and probability kriging methods fordelineatingCu, Fe, and Mn contamination in groundwaterof Najafgarh Block, Delhi, India. Environmental Monitoring and Assessment,176(1-4):663-676.
    [3]Agocs, W.B.1951. Least-squares residual anomaly determination. Geophysics,16(4):686-696.
    [4]Agterberg, F.P.,1970. Multivariate prediction equations in geology. Journal of the International Association for Mathematical Geology,2(3):319-324.
    [5]Agterberg, F.P.,1971. A probability index for detecting favorable geological environments. Canadian Institute of Mining and Metallurgy, Special Volume,12 (Decision-Making in the Mineral Industry):82-89.
    [6]Agterberg, F.P.,1974. Automatic contouring of geological maps to detect areas for mineral exploration. Journal of the International Association for Mathematical Geology,6(4):373-395.
    [7]Agterberg, F.P.,1977. Frequency distribution and spatial variability of geological variables. In: Ramani, R.V. (ed.), Application of computer methods in the mineral industry. Society of Mining Engineers of American Institute of Mining, Metallurgical, and Petroleum Engineers, New York, pp.287-298.
    [8]Agterberg, F.P.,1981. Application of image analysis and multivariate analysis to mineral resource appraisal. Economic Geology,76(5):1016-1031.
    [9]Agterberg, F.P.,1984. Use of spatial analysis in mineral resource evaluation. Mathematical Geology,16(6):565-589.
    [10]Agterberg, F.P.,1988. Application of recent developments of regression analysis in regional mineral resource evaluation. In:Chung, C.F., Fabbri, A.G., Sinding-Larsen, R. (eds.), Quantitative Analysis of Mineral and Energy Resources, D. Reidel Publishing Company, Dordrecht, pp.1-28.
    [11]Agterberg, F.P.,1989a. Computers programs for mineral exploration. Science,245(4913): 76-81.
    [12]Agterberg, F.P.,1989b. LOGDIA, Fortran 77 program for logistic regression with diagnostics. Computers & Geosciences,15(4):599-614.
    [13]Agterberg, F.P.,1992. Combining indicator patterns in weights of evidencemodeling for resource evaluation. Nonrenewable Resources,1(1):39-50.
    [14]Agterberg, F.P.,1993. Calculation of the variance of mean values for blocks inregional resourceevaluation studies. Nonrenewable Resources,2(4):312-324.
    [15]Agterberg, F.P.,2011a. Principles of probabilistic regional mineral resource estimation. Earth Science—Journal of China University of Geosciences,36(2):189-200.
    [16]Agterberg, F.P.,2011b. A modified weights-of-evidence method for regional mineral resource estimation. Natural Resources Research,20(2):95-101.
    [17]Agterberg, F.P., Bonham-Carter, G.F.,1990. Deriving weights-of-evidence fromgeoscience contour maps for prediction of discrete events.inProceedings ofthe Second APCOM Symposium, Berlin, pp.381-395.
    [18]Agterberg, F.P., Bonham-Carter, G.F.,1999. Logistic regression and weights of evidence modeling in mineral exploration. Proceedings,28th International Symposium on Computer Applications in the Mineral Industries, Golden, Colorado, October, pp.483-590.
    [19]Agterberg, F.P., Bonham-Carter, G.F.,2005. Measuring the performance of mineral potential maps. Natural Resources Research,14(1):3-18.
    [20]Agterberg, F.P., Bonham-Carter, G.F., Cheng, Q.M., et al.,1993. Weights of evidence modeling and weighted logistic regression for mineral potential mapping. In:Davis, J.C., and Herzfeld, U.C. (eds.), Computers in Geology-25 Years of Progress, Oxford University Press, New York, pp.13-32.
    [21]Agterberg, F.P., Bonham-Carter, G.F., Wright, D.F.,1990. Statistical pattern integration for mineral exploration. In:Gaal, G., Merriam, D.F.,eds., ComputerApplications in Resource Estimation, Pergamon Press, Oxford, pp.1-21.
    [22]Agterberg, F.P., Cheng, Q.M.,2002. Conditional independence test for weights-of-evidence modeling. Natural Resources Research,11(4):249-255.
    [23]Agterberg, F.P., Cheng, Q.M., Brown, A., et al.,1996. Multifractal modeling of fractures in the Lac du Bonnet batholith, Manitoba. Computers & Geosciences,22(5):497-507.
    [24]Agterberg, F.P., Eggert, R., Griffiths, J.C., et al.,1992. Panel discussion on energy and mineral resource assessments — How are they done? Who are they for? How effective are they?Nonrenewable Resources,1(1):5-38.
    [25]Aitchison, J.,1986. The statistical analysis of compositional data. Wiley, New York.
    [26]Allais, M.,1957. Method of appraising economic prospects of mining exploration over large territories-Algerian Sahara case study. Management Science,3(4):285-347.
    [27]Alp, H., Albora, M. A., Tur, H.,2011. A view of tectonic structure and gravity anomalies of Hatay Region Southern Turkey using wavelet analysis. Journal of Applied Geophysics,75(3): 498-505.
    [28]An, P., Moon, W.M., Rencz, A.N.,1991. Application of fuzzy theory for integration of geological, geophysical and remotely sensed data. Canadian Journal of Exploration Geophysics,27(1):1-11.
    [29]An, P., Moon, W.M., Bonham-Carter, G.F.,1992. On a knowledge-based approach of integration. Proceedings IGARSS'92, Houston, Texas, pp.34-38.
    [30]An, P., Moon, W.M., Bonham-Carter, G.F.,1994a. An object-oriented knowledgerepresentation structure for exploration data integration. NonrenewableResources,3(2):132-145.
    [31]An, P., Moon, W.M., Bonham-Carter, G.F.,1994b. Uncertainty management inintegration of exploration data using the belief function. NonrenewableResources,3(1):60-71.
    [32]Armour, B.A., Olesen, B.L.,1984. Condensing multi-element reconnaissance geochemical data from south Greenland using empirical discriminant analysis. Journal of Geochemical Exploration,21(1-3):395-404.
    [33]Avantra-Geosystems Pty Ltd,2006. MI-SDM v2.50 User Guide:Spatial data modeling for MapInfo professional, at:http://www.avantra.com.au/mi-sdm.htm.
    [34]Bailey, T.C., Krzanowski, W.J.,2012. An overview of approaches to the analysis and modeling of multivariate geostatistical data. Mathematical Geosciences,44(4):381-393.
    [35]Behnia, P.,2007. Application of radial basis function link networks to explorationfor Proterozoic mineral deposits in Iran. Natural Resources Research,16(2):147-155.
    [36]Beltrao, J.F., Silva, J.B.C., Costa, J.C.,1991. Robust polynomial fitting method for regional gravity estimation. Geophysics,56(1):80-89.
    [37]Billa, M., Cassard, D., Lips, A.L.W., et al.,2004. Predicting gold-rich epithermal and porphyrysy stemsinthe central Andes with a continental-scale metallogenic GIS. Ore Geology Reviews,25(1-2):39-67.
    [38]Blakely, R.J.1995. Potential theory in gravity and magnetic applications. Cambridge University Press, Cambridge.
    [39]Bocchi, S., Castrignano A., Fornaro, F.,2000. Application of factorial kriging for mapping soil variationat field scale. European Journal of Agronomy,13 (4):295-308.
    [40]Bonham-Carter, G.F.,1994. Geographic information systems for geoscientist:modeling with GIS. Elsevier Science, New York, pp.398.
    [41]Bonham-Carter, G.F., Agterberg, F.P., Wright, D.F.,1988. Integration of geological Datasets for gold exploration in Nova Scotia. Photogrammetric Engineering and Remote Sensing, 54(77):1585-1592.
    [42]Bonham-Carter, G.F., Agterberg, F.P., Wright, D.F.,1989. Weights of evidencemodelling:a new approach to mapping mineral potential.In:Agterberg, F.P.,Bonham-Carter, G.F. (eds.), Statistical Applications in the Earth Sciences, Paper89-9. Geological Survey of Canada, pp. 171-183.
    [43]Bonham-Carter, G.F., Chung, C.F.,1983. Integration of mineral resource data for Kasmere Lake area, Northwest Manitoba, with emphasis on uranium.Mathematical Geology,15(1): 25-45.
    [44]Botbol, J.M., Sinding-Larsen, R., McCammon, R.B., et al.,1977. Weightedcharacteristics analysis of spatially dependent mineral deposit data. Mathematical Geology,9(3):309-311.
    [45]Botbol, J.M., Sinding-Larsen, R., McCammon, R.B., et al.,1978. A regionalizedmultivariate approach to target area selection in geochemical exploration.Economic Geology,73(4): 534-546.
    [46]Briskey, J.A., and Schulz, K.J., eds.,2007. Proceedings for a workshop on deposit modeling, mineral resource assessment, and their role in sustainable development:U.S. Geological Survey Circular 1294,143 p.
    [47]Brown, W.M., Gedeon, T.D., Groves, D.I.,2003a. Use of noise to augment trainingdata:a neural network method for mineral-potential mapping in regions oflimited known deposit examples. Natural Resources Research,12(2):141-152.
    [48]Brown, W.M., Groves, D.I., Gedeon, T.D.,2003b. Use of fuzzy membership inputlayers to combine subjective geological knowledge and empirical data in aneural network method for mineral-potential mapping. Natural ResourcesResearch,12(3):183-200.
    [49]Camm, T.W.,1991. Simplified cost models for prefeasibility mineral evaluations. U.S. Bureau of Mines Information Circular 9298,35 pp., accessed October 31,2011, at http://pubs.usgs.gov/usbmic/ic-9298/html/camm5sfo.htm.
    [50]Cargill, S.M., Clark, A.L.,1978. Report on the activity of IGCP Project 98. Mathematical Geology,10(5):411-417.
    [51]Cargill, S.M., Meyer, R.F., Picklyk, D.D., et al.,1977. Summary of resource assessment method resulting from the International Geological Correlation Program Project 98. Mathematical Geology,9(3):211-220.
    [52]Carranza, E.J.M.,2008. Handbook of Exploration and Environmental Geochemistry (Volume 11):Geochemical Anomaly and Mineral Prospectively Mapping in GIS. Elsever, Amsterdam.
    [53]Carranza, E.J.M.,2010. Mapping anomalies in continuous and discrete fields of stream sediment geochemical landscapes. Geochemistry:Exploration, Environment, Analysis,10(2): 171-187.
    [54]Carranza, E.J.M.,2011a. Analysis and mapping of geochemical anomalies using logratio-transformed stream sediment data with censored values. Journal of Geochemical Exploration,110(2):167-185.
    [55]Carranza, E.J.M.,2011b. Geocomputation of mineral exploration targets. Computers& Geosciences,37(12):1907-1916.
    [56]Carranza, E.J.M.,2011c. From predictive mapping of mineral prospectivity to quantitative estimation of number of undiscovered prospects. Resource Geology,61(1):30-51.
    [57]Carranza, E.J.M., Hale, M.,2001. Geologically-constrained fuzzy mapping of goldmineralization potential, Baguio district, Philippines. Natural ResourcesResearch,10(2): 125-136.
    [58]Carranza, E.J.M., Hale, M.,2002. Mineral imaging with Landsat Thematic Mapper data for hydrothermal alteration mapping in heavily vegetated terrain. InternationalJournal of Remote Sensing,23(22):4827-4852.
    [59]Carranza, E.J.M., Hale, M.,2003. Evidential belief functions for geologically constrained mapping of gold potential, Baguio district, Philippines. Ore Geology Reviews,22(1-2): 117-132.
    [60]Carranza, E.J.M., Hale, M., Faassen, C.,2008a. Selection of coherent deposit-type locations and their application in data-driven mineral prospectivity mapping. Ore Geology Reviews, 33(3-4):536-558.
    [61]Carranza, E.J.M., Mangaoang, J.C., Hale, M.,1999. Application of mineral exploration models and GIS to generate mineral potential maps as input for optimum land-use planning in the Philippines. Natural Resources Research,8(2):165-173.
    [62]Carranza, E.J.M., Van Ruitenbeek, F.J.A., Hecker, C., et al.,2008b. Knowledge-guided data-driven evidential belief modeling of mineral prospectivity in Cabo de Gata, SE Spain. International Journal of Applied Earth Observation and Geoinformation,10(3):374-387.
    [63]Carranza, E.J.M., Woldai, T., Chikambwe, E.M.,2005. Application of data-driven evidential belief functions to prospectivity mapping for aquamarine-bearing pegmatites, Lundazi district, Zambia. Natural Resources Research,14(1):47-63.
    [64]Castillo,M.R.,Howarth,R.J.,1976. Application of the empirical discriminant function to regional geochemical data from the United Kingdom. Geological Society of America,87(11): 1567-1581.
    [65]Chavez, P.S.Jr.,Kwarteng, A.Y.,1989. Extracting spectral contrast in Landsat Thematic Mapper image data using selective principal component analysis. Photogrammetric Engineering and Remote Sensing,55(3):339-348.
    [66]Chen,Y.L.,2004. MRPM:three visual basic programs for mineral resource potentialmapping. Computers & Geosciences,30(9-10):969-983.
    [67]Chen, Z.J., Cheng, Q.M., Chen, J.G.,2007. A novel iterative approach for mapping local singularities from geochemical data. Nonlinear Processes in Geophysics,14(3):317-324.
    [68]Cheng, Q.M.,1995. The perimeter-area fractal model and its application to geology. Mathematical Geology,27(1):69-82.
    [69]Cheng, Q.M.,1999. Multifractal interpolation. In: Lippard, S.J., Naess, A., Sinding-Larsen, R., eds., Proceedings of the fourth annual conference of the international association for mathematical geology. Trondheim, Norway, pp.245-250.
    [70]Cheng, Q.M.,2002. Multifractal modeling and GIS spatial analysis of complex fault systems. Japan Society of Geoinformatics,13(2):26-49.
    [71]Cheng, Q.M.,2007. Mapping singularities with stream sediment geochemical data for prediction of undiscovered mineral deposits in Gejiu, Yunnan Province, China. Ore Geology Reviews,32(1-2):314-324.
    [72]Cheng, Q.M.,2008. Non-linear theory and power-law models for information integration and mineral resources quantitative assessments. Mathematical Geosciences,40(5):503-532.
    [73]Cheng, Q.M.,2012a. Multiplicative cascade processes and information integration for predictive mapping. Nonlinear Processes in Geophysics,19(1):57-68.
    [74]Cheng, Q.M.,2012b. Singularity theory and methods for mapping geochemicalanomalies caused by buried sources and for predicting undiscovered mineraldeposits in covered areas. Journal of Geochemical Exploration,122:55-70.
    [75]Cheng, Q.M., Agterberg, F.P.,1999. Fuzzy weights of evidence method and its applications in mineral potential mapping. Natural Resource Research,8(1):27-35.
    [76]Cheng, Q.M., Agterberg, F.P., Ballantyne, S.B.,1994. The separation of geochemical anomalies from background by fractal methods. Journal of Geochemical Exploration,51(2): 109-130.
    [77]Cheng, Q.M., Agterberg, F.P., Bonham-Carter, G.F.,1996. A spatial analysis method for geochemical anomaly separation. Journal of Geochemical Exploration,56(3):183-195.
    [78]Cheng, Q.M., Bonham-Carter, G.F., Raines, G.L.,2001. GeoDAS-A new GIS system for spatial analysis of geochemical data sets for mineral exploration and environmental assessment, in "The 20th International Geochemical Exploration Symposium (IGES)", May 6th to 10th, Santiago de Chile, pp.42-43.
    [79]Cheng, Q.M., Bonham-Carter, G.F., Wang, W.L., et al.,2011. A spatially weighted principal component analysis for multi-element geochemical data for mapping locations of felsic intrusions in the Gejiu mineral district of Yunnan, China. Computers & Geosciences,37(5): 662-669.
    [80]Cheng, Q.M., Xu, Y.G., Grunsky, E.,2000. Integrated spatial and spectrum method for geochemical anomaly separation. Natural Resources Research,9(1):43-51.
    [81]Cheng, Q.M., Zhao, P.D.,2011. Singularity theories and methods for characterizing mineralization processes and mapping geo-anomalies for mineral deposits prediction. Geosciences Frontiers,2(1):67-79.
    [82]Chork, C.Y.,1990. Unmasking multivariate anomalous observations in exploration geochemicaldata from sheeted-veintin mineralization near Emmaville, N.W.S., Australia. Journal of Geochemical Exploration,37(2):205-223.
    [83]Chork, C.Y., Govett, G.J.S.,1985. Comparison of interpretations of geochemical soil data by some multivariate statisticalmethods, Key Anacon, N.B., Canada. Journal of Geochemical Exploration,23(3):213-242.
    [84]Chork, C.Y., Rousseeuw, P.J.,1992. Integrating a high-breakdown option into discriminant analysis in exploration geochemistry. Journal of Geochemical Exploration,43(3):191-203.
    [85]Chork, C.Y., Salminen, R.,1993. Interpreting exploration geochemicaldata from Outokumpu, Finland:an MVE-robust factoranalysis. Journal of Geochemical Exploration,48(1):1-20.
    [86]Chung, C.F.,1977. An application of discriminant analysis for the evaluation ofmineral potential.In:Ramani, R.V. (ed.), Application of Computer Methods inthe Mineral Industry, Proceedings of the 14th APCOM Symposium. Society ofMining Engineers of American Institute of Mining, Metallurgical, and Petroleum Engineers, New York, pp.299-311.
    [87]Chung, C.F.,1983. SIMSAG:integrated computer system for use in evaluation ofmineral and energy resources. Mathematical Geology,15(1):47-58.
    [88]Chung, C.F.,2003. Use of airborne geophysical surveys for constructing mineralpotential maps. In:Goodfellow, W.D., McCutcheon, S.R., Peter, J.M. (eds.),Massive Sulfide Deposits of the Bathurst Mining Camp, New Brunswick, andNorthern Maine. Economic Geology Monograph 11, Society of EconomicGeologists, Colorado, pp.879-891.
    [89]Chung, C.F., Agterberg, F.P.,1980. Regression models for estimating mineral resources from geological map data. Mathematical Geology,12(5):473-488.
    [90]Chung, C.F., Agterberg, F.P.,1988. Poisson regression analysis and its application. In:Chung, C.F., Fabbri, A.G., Sinding-Larsen, R. (eds.), Quantitative Analysis ofMineral and Energy Resources. D. Reidel Publishing Company, Dordrecht,pp.29-36.
    [91]Chung, C.F., Fabbri, A.G.,1993. The representation of geoscience information fordata integration. Nonrenewable Resources,2(2):122-139.
    [92]Chung, C.F., Fabbri, A.G., Chi, K.H.,2002. A strategy for sustainable development ofnonrenewable resources using spatial prediction models. In:Fabbri,A.G., Gaal, G., McCammon, R.B. (eds.), Geoenvironmental Deposit Models for ResourceExploitation and Environmental Security, Kluwer, Dordrecht, pp.101-118.
    [93]Chung, C.F., Moon, W.M.,1990. Combination rules of spatial geoscience data for mineral exploration. Geoinformatics,2(2):159-169.
    [94]Clarke, G.K.C.1969. Optimum second-derivative and downward continuationfilters. Geophysics,34(3):424-437.
    [95]Coons, R.L.,Woollard,G.P.,Hershey,G.,1968. Structural significance and analysis of mid-continent gravity high.The American Association of Petroleum Geologists Bulletin, 51(12):2381-2399.
    [96]Cooper, G.,Cowan, D.,2008. Edge enhancement of potential-field data using normalized statistics. Geophysics,73(3):H1-H4.
    [97]Cordell, L.,1979. Gravimetric expression of graben faulting in Santa Fe country and the Espanola Basin, New Mexico, in:Santa Fe Country, Ingersoll, R. V.; Woodward, L. A.; James, H. L., New Mexico Geological Society, Guidebook,30th Field Conference, pp.59-64.
    [98]Cordell, L., Grauch, V.,1985. Mapping basement magnetization zones from aeromagnetic data in the San Juan Basin, New Mexico. In:Hinze, W.J., ed., The Utility of Regional Gravity and Magnetic Anomaly Maps:Society of Exploration, pp.181-197.
    [99]Cowan, D.R., Cowan, S.,1993. Separation filtering applied to aeromagnetic data. Exploration Geophysics,24(4):429-436.
    [100]Cox, D.P., Lindsey, D.A., Singer, D.A., et al.,2003. Sediment-host copper deposits of the world-Deposit models and database. U.S. Geological Survey Open-File Report 2003-107, 50 pp., accessed October 31,2011, at http://pubs.usgs.gov/of/2003/of03-107/.
    [101]Crippen, R.E., Blom, R.G.,2001. Unveiling the lithology of vegetated terrainsin remotely sensed imagery. Photogrammetric Engineering & Remote Sensing,67(8):935-943.
    [102]Crosta, A.P., Moore,J.M.,1989. Enhancement of Landsat Thematic Mapperimagery for residual soil mapping in SW Minas Gerais State Brazil:a prospectingcase history in greenstone belt terrain. Proceedings of the 9th Thematic Conference onRemote Sensing for Exploration Geology, Calgary (Ann Arbor, MI:EnvironmentalResearch Institute of Michigan), pp.1173-1187.
    [103]Cunningham, C.G., Zappettini, E.O., Waldo Vivallo, S., et al.,2008. Quantitative mineral resource assessment of copper, molybdenum, silver, and gold in undiscovered porphyry copper deposits in Andes Mountains of South America. U.S. Geological Survey Open-File Report 2008-1253,282 pp., accessed October 10,2011, at http://pubs.usgs.gov/of/2008/1253/.
    [104]David, M.,1988. Handbook of applied advanced geostatistical orereserve estimation. Elsevier, Amsterdam.
    [105]David,M.,Campiglio,C.,Darling,R.,1974. Progress in R-and Q-mode analysis: correspondence analysis and its application to the study of geological processes. Canadian Journal of Earth Sciences,11(1):131-146.
    [106]de Kemp, E.,2006.3D interpretive mapping:an extension of GIS technologies for earth scientist. In:Harris, J.R., (ed.), GIS for earth sciences. Geological Association of Canada Special Publication,44:591-612.
    [107]de Araujo, C.C., Macedo, A.B.,2002. Multicriteria geologic data analysis for mineral favorability mapping:application toa metal sulphide mineralized area, Ribeira Valley metallogenic province, Brazil. Natural Resources Research,11(1):29-43.
    [108]Duda, R.O., Hart, P.E., Nilsson, N.J., et al.,1978. Semantic network representations in rule-based inference systems. In:Waterman, D.A., Hayes-Roth, F. (eds.), Pattern-Directed Inference Systems, Academic Press, London and New York, pp.203-221.
    [109]Duval, J.S.,2000. A Microsoft Windows version of the MARK3 Monte Carlo Resource Simulator. U.S. Geological Survey Open-File Report 00-415, accessed October 31,2011, at http://pubs.usgs.gov/of/2000/ofD0-415/.
    [110]Duval, J.S.,2003. Economic filters applied to quantitative mineral resource simulations. Natural Resources Research,12(2):121-126.
    [111]Farrand, W.H., Harsanyi, J.C.,1997. Mapping the distribution of mine tailings in the Coeur d'Alene river valley, Idaho, through the Use of a Constrained Energy Minimization Technique. Remote Sensing of Environment,59 (1):64-76.
    [112]Foufoula-Georgiou, E., Kumar, P.,1994. Wavelets in geophysics.Academic Press, Inc., California.
    [113]Fraser, S.J.,1991. Discrimination and identification of ferric oxides using satelliteThematic Mapper data:A Newman case study. International Journal of Remote Sensing,12(3):635-641.
    [114]Gair, J.E., Goldsmith, R., Daninels, D.L., et al.,1986. The conterminous United States mineral assessment program:background informationto accompany folio of geologic, geophysical, geochemical, mineral-occurrence, mineral-resource potential, mineral-production maps of the Charlotte1°×2°quadrangle, North Carolina and South Carolina. U.S. GeologicalSurvey Circular 944,18 pp.
    [115]Gao, J., Li, M.S., Xiao, X.C., Tang, Y.Q., He, G.Q.,1998. Paleozoic tectonic evolution of the Tianshan Orogenic, northwestern China. Tectonophysics.287:213~231
    [116]Gersman, R., Ben-Dor, E., Avigad, D., et al.,2008. Mapping of hydrothermal altered rocks by the EO-1 Hyperion sensor, Northern Danakil Depression, Eritrea. International Journal of Remote Sensing,29(13):3911-3936.
    [117]Global Mineral Resource Assessment Project (GMRAP),2011: http.//mi nerals.usgs.gov/global/.
    [118]Goovaerts, P.,1997. Geostatistics for Natural Resources Evaluation. Oxford University Press, New York.
    [119]Govett, G.J.S., Goodfellow, W.D., Chapman, A., et al.,1975. Exploration geochemistrydistribution of elements and recognition of anomalies. Mathematical Geology 7(5-6):415-446.
    [120]Grauch, V., Cordell, L.,1987. Limitations of determining density or magnetic boundaries from the horizontal gradient of gravity or pseudogravity data.Geophysics,52(1),118-121.
    [121]Graves, R.E.,1974. Uranium resources in the United States:anoverview. Report# MIT-EL 74-012,32 pp.
    [122]Griffiths, J.C.,1962. Frequency distributions of some nature resource materials (Technical Conference on Petroleum Production,23rd,1962). Pennsylvania State University, Mineral Industries Experiment Station Circular 63, pp.174-198.
    [123]Griffiths, J.C.,1966. Application of the discriminant function as a classification tool in the earth sciences. In:Merriam, D.R (ed.), Computer Applications in the Earth Sciences-Colloquium on Classification Procedures, Kansas Geology Survey, Computer Contribution 7, pp.48-52.
    [124]Griffiths, J.C.,1978. Mineral resource assessment using the unit regional value concept. Journal of International Association for Mathematical Geology,10(5):441-472.
    [125]Grunsky, E.,2012. Special issue on spatial multivariate methods. Mathematical Geosciences, 44(4):379-380.
    [126]Gunn, P.J.1972. Application of Wiener filters to transformation of gravity and magnetic fields. Geophysical Prospecting,20(4):860-871.
    [127]Gupta, V.K.,Ramani, N.,1980. Some aspects of regional-residual separation of gravity anomalies in a Precambrian terrane.Geophysics,45(9):1412-1426.
    [128]Hammarstrom, J.M., Robinson, G.R., Steve Ludington, Jr., et al.,2010. Global Mineral Resource Assessment-Porphyry copper assessment of Mexico. U.S. Geological Survey Scientific Investigations Report 2010-5090-A,176 pp., accessed October 10,2011, at http://pubs.usgs.gov/sir/2010/5090/a/.
    [129]Han, B.F., He, G.Q., Wang, S.G.,1999. Postcollisionalmantle-derived magmatism, underplating and implications forbasement of theJunggar basin. Sciencein China (Series D), 42(2):113-119.
    [130]Hardle, W.K., Simar, L.,2007. Applied multivariate statistical analysis. Springer, New York.
    [131]Harris, D.P.,1965. An application of multivariate statistical analysis to mineral exploration (doctoral dissertation). Pennsylvania State University, Philadelphia.
    [132]Harris, D.P.,1984. Mineral resources appraisal:mineral endowment, resources, and potential supply—concepts, methods, and cases. Oxford University Press, Oxford.
    [133]Harris, D.P., Pan, G.,1999. Mineral favorability mapping:a comparison of artificialneural networks, logistic regression and discriminant analysis.NaturalResources Research,8(2): 93-109.
    [134]Harris, D.P., Zurcher, L., Stanley, M., et al.,2003. A comparativeanalysis of favorability mappings by weights of evidence, probabilistic neuralnetworks, discriminant analysis, and logistic regression. Natural ResourcesResearch,12(4):241-255.
    [135]Harris, J.R., Lemkow, D., Jefferson, C., et al.,2008. Mineral potential modelling for the Greater Nahanni Ecosystem using GIS based analytical methods. Natural Resources Research, 17(2):51-78.
    [136]Harris, J.R., Rencz, A.N., Ballantyne, B., et al.,1998. Mapping altered rocks using landsat TM and lithogeochemical data:Sulphurets-Brucejack Lake Districk, British Columbia, Canada. Photogrammetric engineering& remote sensing,64(4):309-322.
    [137]Harris, J.R., Sanborn-Barrie, M.,2006. Mineral potential mapping:examples fromthe Red Lake Greenstone Belt, Northwest Ontario.In:Harris, J.R. (ed.), GIS forthe Earth Sciences, Geological Association of Canada Special Publication44, Geological Association of Canada, St. John's, pp.1-21
    [138]Harris, J.R., Wilkinson, L., Broome, J.,1995, Mineral exploration using GIS-based favourability analysis, SwayzeGreenstone Belt, northern Ontario. Proceedings of Canadian GeomaticsConference (CD-ROM), National Defense.
    [139]Harris, J.R., Wilkinson, L., Grunsky, E.C.,2000. Effectiveuse and interpretation of lithogeochemical data in regionalexploration programs. Ore Geology Reviews,16(3-4): 107-143.
    [140]Harris, J.R., Wilkinson, L., Heather, K., et al.,2001. Application of GIS processing techniques for producing mineral prospectivity maps—a case study:mesothermal Au in the Swayze Greenstone Belt, Ontario, Canada. Natural Resources Research,10(2):91-123.
    [141]Hawkes, H.E., Webb, J.S.,1962. Geochemistry in Mineral Exploration. Harper & Row, New York.
    [142]Heisel.T., Ersb(?)ll, K.A., Andreasen.C.,1999. Weed mapping with co-kriging using soil properties. Precision Agriculture,1(1):39-52.
    [143]Hinze, W.J., von Frese, R.R.B., Saad, A.H.,2013. Gravity and Magnetic Exploration: Principles, Practices, and Applications. Cambridge university press, New York.
    [144]Hosseinali, F., Alesheikh, A.A.,2008. Weighting spatialinformation in GIS for copper mining exploration. AmericarJournal of Applied Sciences,5(9):1187-1198.
    [145]Hood, P.,1965. Gradient measurements in aeromagnetic surveying. Geophysics,30(5): 891-902.
    [146]Howarth, R.J., Sinding-Larsen, R.,1983. Multivariate analyses. In:Howarth, R.J. (Ed.). Statistics and Data Analysis in Geochemical Prospecting, Handbook of Exploration Geochemistry, Vol.2, Elsevier, Amsterdam, pp.207-289.
    [147]Huang, J.N., Zhao, B.B., Chen, Y.Q., et al.,2010. Bidimensional empirical mode decomposition (BEMD) for extraction of gravity anomalies associated with gold mineralization in the Tongshi gold field, Western Shandong Uplifted Block, Eastern China. Computers & Geosciences,36(7):987-995.
    [148]Huang, N.E., Shen, Z., Long, S.R., et al.,1998. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proceedings of the Royal Society of London Series a-Mathematical Physical and Engineering Sciences, 454(1971):903-995.
    [149]Ilyas, A., Koike, K.,2012. Geostatistical modeling of ore grade distribution from geomorphic characterization in a Laterite nickel deposit. Natural Resources Research,21(2):177-191.
    [150]Izenman, A.J.,2008. Modern multivariate statistical techniques:regression, classification, and manifold learning. Springer, New York.
    [151]Jacobsen, B.,1987. A case for upward continuation as a standard separation filter for potentialfield maps. Geophysics,52(8),1138-1148.
    [152]Jiang, F.Y., Gao, L.K.,2012. Edge enhancement of gravity anomalies and gravity gradient tensors using an improved small sub-domain filtering method. Applied Geophysics,9(2): 119-130.
    [153]Jimenez, L.O., Landgrebe, D.A.,1999. Hyperspectral data analysis and supervised feature reduction via projection pursuit. Geoscience and Remote Sensing,37(6):2653-2667.
    [154]Jimenez-Espinosa, R., Sousa, A.J., Chica-Olmo, M.,1993. Identification of geochemical anomalies using principal component analysis and factorial kriging analysis. Journal of Geochemical Exploration,46 (3):245-256.
    [155]Johnson, R.A., Wichern, D.W.,2007. Applied multivariate statistical analysis. Pearson Prentice Hall, London.
    [156]Johnson, R.C., Mercier, T.J., Brownfield, M.E.,2011. Assessment of in-place oil shale resources of the Green River Formation, Greater Green River Basin in Wyoming, Colorado, and Utah:U.S. Geological Survey Fact Sheet 2011-3063,4 pp.
    [157]Journel, A.G.,1977. Kriging in Terms of Projections. Mathematical Geology,9(6):563-586.
    [158]Journel, A.G.,1982. The indicator approach to estimation of spatial distributions. In Proceedings of the 17th APCOM Symposium:Society of Mining Engineers, AIME, New York, pp.793-806.
    [159]Journel, A. G.,1980. The lognormal approach to predicting local distributions of selective mining unit grades. Mathematical Geology,12(4):285-303.
    [160]Journel, A. G.,1983. Nonparametric estimation of spatial distributions. Mathematical Geology,15(3):445-468.
    [161]Journel, A.G., Huijbregts, C.H.,1978. Mining Geostatistics. Academic Press, London.
    [162]Journel, A.G., Isaaks, E.H.,1984. Conditional indicator simulation:Application to a Saskatchewan uranium deposit. Mathematical Geology,16(7):685-718.
    [163]Journel, A. G., Xu, W., Tran, T.,1992. Integrating seismic datain reservoir modeling:the collocated cokriging alternative. Report 5, Stanford Center for Reservoir Forecasting, StanfordUniversity, Stanford, CA.
    [164]Kay, M., Dimitrakopoulos, R.,2000. Integrated interpolation methods for geophysical data: applications to mineral exploration. Natural Resources Research,9(1):53-63.
    [165]Kelley, D.L., Kelley, K.D.,2006.Beyond the obvious limits of ore deposits:The use of mineralogical, geochemical, and biological features for the remote detection of mineralization: Economic Geology,101(4):729-750.
    [166]Kemp, L.D., Bonham-Carter, G.F., Raines, G.L., et al.,2001. Arc-SDM:Arcview extension for spatial data modelling using weights of evidence, logistic regression, fuzzy logic and neural network analysis. http://www.ige.unicamp.br/sdm/.
    [167]Kemp, L.D., Bonham-Carter, G.F., Raines, G.L., et al.,1999. Arc-Wolf:Arcview extension for weights of evidence mapping. http://www.ige.unicamp.br/wofe.
    [168]Kleijnen J.P.C., van Beers, W., van Nieuwenhuyse, I.,2011. Expected improvement in efficientglobal optimizationthrough bootstrapped kriging. Journal of Global Optimization, doi: 10.1007/s10898-011-9741-y.
    [169]Kollo, T., von Rosen, D.,2005. Advanced multivariate statistics with matrices, volume 579 of Mathematics and Its Applications (New York). Springer, Dordrecht.
    [170]Krige, D.G.,1951. A Statistical Approach to Some Basic Mine Valuation Problems on the Witwatersrand. Journal of the Chemical, Metallurgical and Mining Society of South Africa,52(6):119-139.
    [171]Li, C.J., Ma, T.H., Shi, J.F.,2003. Application of a fractal method relating concentrations and distances for separation of geochemical anomalies from background. Journal of Geochemical Exploration,77(2-3):167-175.
    [172]Li, Q.M.,2005. GIS-based multifractal/inversion methods for feature extraction and applications in anomaly identification for mineral exploration (Dissertation). York University, Toronto, Canada.
    [173]Lin, Y.P., Chang, T.K., Teng, T.P.,2001. Characterization of soil lead by comparing sequential Gaussian simulation, simulated annealing simulation and kriging methods. Environmental Geology,41(1-2):189-199.
    [174]Long, K.R., Singer, D.A.,2001. A simplified economic filter for open-fit mining and heap-leach recovery of copper in the United States. U.S. Geological Survey Open-File Report 01-218,21 pp. accessed October 31,2011, at http://geopubs.wr.usgs.gov/open-file/of01-218/.
    [175]Loughlin, W.,1991. Principal component analysis for alteration mapping. PhotogrammetricEngineering and Remote Sensing,57(9):1163-1169.
    [176]Mars, J.C., Rowan, L.C.,2006. Regional mapping of phyllic-and argillic-altered rocks in the Zagros magmatic arc, Iran, using Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) data and logical operator algorithms. Geosphere,2(3):161-186.
    [177]Mars, J.C., Rowan, L.C.,2010. Spectral assessment of new ASTER SWIR surface reflectance data products for spectroscopic mapping of rocks and minerals. Remote Sensing of Environment,114(9):2011-2025.
    [178]Martinez, M.G., Montero-Lorenzo, J.M., Rubio, N.G.,2000. Kriging methodology for regional economic analysis:Estimating the housing price in Albacete. International Advances in Economic Research,6(3):438-450.
    [179]Matheron, G.,1963. Principles of geostatistics. Economic Geology,58(8):1246-1266.
    [180]Matheron, G.,1969. Le krigeage universel. Ecole des Mines de Paris, Paris,83 pp.
    [181]Matheron, G.,1970. The theory of regionalized variables and its applications. Centre de Geostatistique, Ecole des Mines de Paris, Fontainebleau, France.
    [182]Matheron, G.,1976a. A simple substitute for conditional expectation:the disjunctive kriging. In:Guarascio, M., David, M., Huijbregts, C., (eds.), Advanced Geostatistics in the Mining Industry. Reidel, Boston, pp.221-236.
    [183]Matheron, G.,1976b. Forecasting block grade distributions:the transferfunctions. In: Guarascio, M., David, M., Huijbregts, C., (eds.), Advanced Geostatistics in the Mining Industry. Reidel, Boston, pp.237-251.
    [184]Matheron G.,1979 Recherche de simplification dans un probleme de cokrigeage:Centre de Geostatistique, Fountainebleau, N-698.
    [185]Matheron, G.,1982, Pour une Analyse Krigeante des Donnees Regionalisees, N-732:Centre de Geostatistique et de Morphologie Mathematique, Fontainebleau,22 pp.
    [186]Mercier, T.J., Johnson, R.C., Brownfield, M.E.,2011. In-place oil shale resources underlying Federal lands in the Green River and Washakie Basins, southwestern Wyoming:U.S. Geological Survey Fact Sheet 2011-3113,2 pp.
    [187]McCammon, R.B., Botbol, J.M., Sinding-Larsen, R., et al.,1983. Characteristicsanalysis-1981:final program and a possible discovery. MathematicalGeology,15(1):59-83.
    [188]McCammon, R.B., Botbol, J.M., Sinding-Larsen, R., et al.,1984. The NewCHARaracteristic ANalysis (NCHARAN) Program. U.S. Geological SurveyBulletin 1621,27.
    [189]Mihalasky, M.J., Bookstrom, A.A., Frost, T.P., et al.,2011. Porphyry copper assessment of British Columbia and Yukon Territory, Canada, U.S. Geological Survey Scientific Investigations Report 2010-5090-C,128 pp. and data tables, accessed October 18,2011, available at http://pubs.usgs.gov/sir/2010/5090/c/.
    [190]Miller, B.M., Thomsen, H.L., Dolton, G.L., et al.,1979. Geological estimates of undiscovered recoverable oil and gas resources in United States. Technical Report, USGS-CIRC-725,82 pp.
    [191]Montero-Lorenzo, J.M., Larraz-Iribas,B., Paez, Antonio.,2009. Estimating commercial property prices:an application of cokriging with housing prices as ancillary information. Journal of Geographical Systems,11(4):407-425.
    [192]Moon, W.M.,1990. Integration of geophysical and geological data using evidential belief function. IEEE Transaction on Geosciences and Remote Sensing,28(4):711-720.
    [193]Moon, W.M.,1993. On mathematical representation and integration of multiplegeoscience data sets. Canadian Journal of Remote Sensing,19(1):663-667.
    [194]Moon, W.M.,1998. Integration and fusion of geological exploration data:a theoretical review of fuzzy logic approach. Geoscience Journal,2(4):175-183.
    [195]Moon,W.M., Chung, C.F., An, P.,1991. Representation and integration of geological, geophysical and remote sensing data. Geoinformatics,2(2):177-188.
    [196]Morlet, J., Arens, G., Fourgeau, E., Giard, D.,1982. Wave propagation and sampling theory-part I:Complex signal and scattering in multilayered media. Geophysics,47(2): 203-221.
    [197]Miller, H.G., Singh, V.,1994. Potential field tilt-A new concept for location of potential fieldsource.Journal of Applied Geophysics,32(2/3):213-217.
    [198]Miura, H.,2010. A study of travel time prediction using universal kriging. Top,18(1): 257-270.
    [199]Nabighian, M.,1972. The analytic signal of two-dimensional magnetic bodies with polygonal cross-section:its properties and use for automated anomaly interpretation. Geophysics,37(3):507-517.
    [200]Nabighian, M.N., Ander, M.E., Grauch, V.J.S. et al.,2005. Historical development of the gravity method in exploration. Geophysics,70(6):63ND-89ND.
    [201]Naidu, P.S., Mathew, M.P.,1998. Analysis of geophysical potential fields. Elsevier, San Francisco.
    [202]Nykanen, V, Groves, D.I., Ojala, V.J., et al.,2008. Reconnaissancescale conceptual fuzzy-logic prospectivity modelling for iron oxide copper-gold deposits in the northern Fennoscandian Shield, Finland. AustralianJoumal of Earth Sciences,55(1):25-38.
    [203]Oh, H.J., Lee, S.,2008. Regional probabilistic and statistical mineral potentialmapping of gold-silver deposits using GIS in the Gangreung area, Korea.Resource Geology,58(2): 171-187.
    [204]Oh, H.J., Lee, S.,2010. Application of artificial neural network for gold-silverdeposits potential mapping:a case study of Korea. Natural Resources Research,19(2):103-124.
    [205]Oruc, B., Selim, H.H.,2011. Interpretation of magnetic data in the Sinop area of Mid Black Sea, Turkey, using tilt derivative, Euler deconvolution, and discrete wavelet transform. Journal of Applied Geophysics,74(4):194-204.
    [206]Pan, G.C.,1993a. Canonical favourability model for data integration and mineralpotential mapping. Computers & Geosciences,19(8):1077-1100.
    [207]Pan, G.C.,1993b. Indicator favorability theory for mineral potential mapping.Nonrenewable Resources,2(4):292-311.
    [208]Pan, G.C.,1993c.Regionalized favorability theory for information synthesis inmineral exploration. Mathematical Geology,25(5):603-631.
    [209]Pan, G.C., Harris, D.P.,1992a. Decomposed and weighted characteristic analysisfor the quantitative estimation of mineral resources. Mathematical Geology,24(7):807-823.
    [210]Pan, G.C., Harris, D.P.,1992b. Estimating a favourability equation for the integration ofgeodata and selection of mineral exploration targets. MathematicalGeology,24():177-202.
    [211]Pan, G.C., Harris, D.P.,2000. Information synthesis for mineral exploration. OxfordUniversity Press, New York.
    [212]Pan, G.C., Portefield, B.,1995. Large-scale mineral potential estimation for blindprecious metal ore deposits. Nonrenewable Resources,4(2):187-207.
    [213]Pawlowski, R.S., Hansen, R.O.,1990. Gravity anomaly separation by Wiener filtering. Geophysies,55(5):539-548.
    [214]Pawlowsky-Glahn, V., Buccianti,A.,2011.Compositional Data Analysis:Theory and Applications. John Wiley & Sons, Ltd., West Sussex.
    [215]Pazand, K., Hezarkhani, A., Ataei, M.,et al.,2011. Combining AHP with GIS for predictive Cu porphyry potential mapping:acase study in Ahar Area (NW, Iran). Natural Resources Research,20(4):251-261.
    [216]Peters, L.,1949. The direct approach to magnetic interpretation and its practical application. Geophysics,14(3):290-320.
    [217]Porwal, A., Carranza, E.J.M.,2008. Classifiers for modelling of mineral potential. In:Pourret, O., Nairn, P., Marcot, B. (eds.), Bayesian Networks:A Practical Guide toApplications, John Wiley & Sons, Chichester, pp.149-171.
    [218]Porwal, A., Carranza, E.J.M., Hale, M.,2003a. Artificial neural networks for mineralpotential mapping. Natural Resources Research,12(3):155-171.
    [219]Porwal, A., Carranza, E.J.M., Hale, M.,2003b. Knowledge-driven and data-drivenfuzzy models for predictive mineral potential mapping. Natural ResourcesResearch,12(1):1-25.
    [220]Porwal, A., Carranza, E.J.M., Hale, M.,2004. A hybrid neuro-fuzzy model formineral potential mapping. Mathematical Geology,36(7):803-826.
    [221]Porwal. A., Carranza, E.J.M., Hale, M.,2006a. A hybrid fuzzy weights-of-evidencemodel for mineral potential mapping. Natural Resources Research,15(1):1-14.
    [222]Porwal, A., Carranza, E.J.M., Hale, M.,2006b. Bayesian network classifiers formineral potential mapping. Computers & Geosciences,32(1):1-16.
    [223]Ranchin, T., Wald, L.,1993. The wavelet transform for the analysis of remotely sensed images, International Journal of Remote Sensing,14(3):615-619.
    [224]Rasilainen, K., Eilu, P., Halkoaho, T., et al.,2010. Quantitative mineral resource assessment of undiscovered PGE resources in Finland. Ore Geology Review,38(3):270-287.
    [225]Rasilainen, K., Eilu, P., Halkoaho, T., et al.,2010. Quantitative mineral resource of platinum, palladium, gold, nickel, and copper in undiscovered PGE deposits in mafic-ultramafic layered intrusions in Finland. Geological Survey of Finland, Report of Investigation 180,388 pp., accessed October 10,2011, at http://arkisto.gtk.fi/tr/tr180.pdf.
    [226]Reddy, R.K.T., Bonham-Carter, G.F.,1991. A decision-tree approach to mineral potential mapping in Snow Lake area, Manitoba. Canadian Journal of Remote Sensing,17(2): 191-200.
    [227]Reid, A., Allsop, J., Granser, H., et al.,1990. Magnetic interpretation in three dimensions using Euler deconvolution. Geophysics,55(1):80-91.
    [228]Reimann, C., Filzmoser, P., Garrett, R.G.,2002. Factor analysis applied to regional geochemical data:problems and possibilities. Applied Geochemistry,17 (3):185-206.
    [229]Reyment, R.A., Savazzi, E.,1999. Aspects of Multivariate Statistical Analysis in Geology. Elsever, Amsterdam.
    [230]Richards, J.A.,2013. Remote Sensing Digital Image Analysis:An Introduction (5th ed.). Berlin, Heidelberg:Springer Berlin Heidelberg.
    [231]Richter, D.H., Albert, N.R.D., Barnes, D.F., et al.,1975. The Alaskan mineral resource assessment program:background information to accompany folio of geologic and mineral resource maps of Nabesna Quadrangle, Alaska. Geological Survey Circular 718,15 pp.
    [232]Roach, M.J., Leaman, D.E., Richardson, R.G.1993. A comparison of regional-residual separation techniques for gravity surveys. Exploration Geophysics,24(4):779-784.
    [233]Rogge, D.M., Halden, N.M., Beaumont-Smith, C.,2006. Application of data integration for shear-hosted Au potential modelling:Lynn Lake Greenstone Belt,Northwestern Manitoba, Canada. In:Harris, J.R. (ed.), GIS for the EarthSciences, Geological Association of Canada Special Publication 44, GeologicalAssociation of Canada, St. John's, pp.191-210.
    [234]Root, D.H., Menzie, W.D., Scott, W.A.,1991. Computer Monte Carlo simulation in quantitative resource estimation. Natural Resource Research,1(2):125-138.
    [235]Root, D.H., Scott, Jr. W.A., Schruben, P.G.,1998. MARK3B mineral assessment program for Macintosh. U.S. Geological Survey Open-File Report 98-0356,24 pp. and computer diskette.
    [236]Rose, A.W., Hawkes, H.E., Webb, J.S.,1979. Geochemistry in Mineral Exploration (2nd ed.), Academic Press, London.
    [237]Rostirolla, S.P., Soares, P.C., Chang, H.L.,1998. Bayesian and multivariate methodsapplied to favorability quantification in Rec6ncavo Basin and Ribeira Belt.Brazil. Nonrenewable Resources,7(1):7-24.
    [238]Rouhani, S., Hall, T.,1989. Space-time kriging of grounderwater data. In:Armstrong, M. (ed.), Geostatistics, Kluwer Academic Publisher, pp.639-650.
    [239]Rouhani, S., Myers, D.E.,1990. Problems in space-time kriging of geohydrological data. Mathematical Geology,22(5):611-623.
    [240]Ruiz-Armenta, J.R., Prol-Ledesma, R.M.,1998. Techniques for enhancing the spectral response of hydrothermal alteration minerals in Thematic Mapper images ofCentral Mexico. International Journal of Remote Sensing,19(10):1981-2000.
    [241]Settle, J.J., Drake, N.A.,1993. Linear mixing and the estimation of ground cover proportions, International Journal of Remote Sensing,14(6):1159-1177.
    [242]Sinclair, A.J.,1974. Selection of threshold values in geochemical data using probability graphs. Journal of Geochemical Exploration,3(2):129-149.
    [243]Sinclair, A.J.,1991. A fundamental approach to threshold estimation in exploration geochemistry:probability plots revisited. Journal of Geochemical Exploration,41(1-2):1-22.
    [244]Singer, D.A.,1975. Mineral source models and the Alaskan Mineral Resource Assessment Program. In:Vogely, W.A. (ed.), Mineral resource modeling:a state-of-the-art review, Johns Hopkins University Press, Baltimore, pp.370-382.
    [245]Singer, D.A.,1992. Grade and tonnage model of Sierran kuroko deposits. In:Bliss, J.D., (ed.), Developments in deposits modeling, U.S. Geological Survey Bulletin 2004, pp.29-32.
    [246]Singer, D.A.,1993. Basic concepts in three-part quantitative assessment of undiscovered mineral resources. Nonrenewable Resources,2(2):69-81.
    [247]Singer, D.A.,1994. Conditional estimates of the number of podiform chromite deposits. Nonrenewable Resources,3(3):200-204.
    [248]Singer, D.A.,2010. Progress in integrated quantitative mineral resource assessment. Ore Geology Reviews,38(3):242-250.
    [249]Singer, D.A., Berger, V.I., Menzie, W.D., et al.,2005a. Porphyry copper density. Economic Geology,100(3):419-514.
    [250]Singer, D.A., Berger, V.I., Moring, B.C.,2005b. Porphyry copper deposits of the world-Database, map, and grade and tonnage models. U.S. Geological Survey Open-File Report 2005-1060,9 pp., accessed October 31,2011, at http://pubs.usgs.gov/of/2005/1060/.
    [251]Singer, D.A., Berger, V.I., Moring, B.C.,2008. Porphyry copper deposits of the world-Database and grade and tonnage models. U.S. Geological Survey Open-File Report 2008-1155, 45 pp., accessed October 10,2011, at http://pubs.usgs.gov/of/2008/1155/.
    [252]Singer, D.A., Kouda, R.,1996. Application of feedforward neural network in search for Kuoroko deposits in the Hokuroku district, Japan. Mathematical Geology,28(3):1017-1023.
    [253]Singer, D.A., Kouda, R.,1997. Use of neural network to integrate geoscienceinformation in the classification of mineral deposits and occurrences. In:Gubins, A.G. (ed.), Proceedings of Exploration 97:4th Decennial InternationalConference on Mineral Exploration, pp.127-134.
    [254]Singer, D.A., Kouda, R.,1999. A comparison of the weights-of-evidence method and probabilistic neural networks. Natural Resources Research,8(4):287-298.
    [255]Singer, D.A., Menzie, W.D.,2005. Statistical guides to estimating the number of undiscovered mineral deposits:an example with porphyry copper deposits. In:Cheng, Q.M. and Bonham-Carter G. (eds.), Proceedings of IAMG-The annual conference of the International Association for Mathematical Geology, Geomatics Research Laboratory, York University, Toronto, Canada, pp.1028-1033.
    [256]Singer, D.A., Menzie, W.D.,2010. Quantitative mineral resource assessments:an integrated approach. New York, Oxford University Press.
    [257]Singer, D.A., Menzie, W.D., Long, K.R.,1998. A simplified economic filter for underground mining of massive sulfide deposits. U.S. Geological Survey Open-File Report 00-349,20 pp.
    [258]Singer, D.A., Menzie, W.D., Sutphin, D., et al.,2001. Mineral deposit density-An update. In: Schulz, K.J. (ed.), Contributions to global mineral resource assessment research. U.S. Geological Survey Professional Paper 1640-A, pp. A1-A13, available at http://pubs.usgs.gov/pp/p1640a/.
    [259]Skeels, D.C.,1967. What is residual gravity? Geophysics,32(5):872-876.
    [260]Smith, M. O., Roberts, D. A., Hill, J., et al.1994, A new approach to quantifying abundances of materials in multispectral images. In IGARSS'94:Proceedings International Geosciences Remote Sensing Symposium, Pasadena, CA, pp2372-2374.
    [261]Spector,A., Grant, F.S.1970. Statistical models for interpreting aeromagnetic data. Geophysics,35(2):293-302.
    [262]Sprague, K., de Kemp, E., Wong, W., et al.,2006. Spatial targeting using queries a 3-D GIS environment with application to mineral exploration. Computers & Geosciences,32(3): 396-418.
    [263]Stensgaard, B.O.,2011. Sediment-hosted copper in Greenland. Geology and Ore Exploration and mining in Greenland,18:1-12.
    [264]Sullivan, J.,1984, Conditional recovery estimation through probability kriging-theory and practice.In:Verly, G., David, M., Journel,A.G., Marechal, A. (eds.), Geostatistics for Natural Resources Characterization (Part 1):D. Reidel, Dordrecht, pp.365-384.
    [265]Sullivan, J.,1985, Non-parametric estimation of spatial distributions (doctoral dissertation). Stanford University, Stanford, CA.
    [266]Suro-Perez, V., Journel, A.G.,1991. Indicator Principal Component Kriging. Mathematical Geology,23(5):759-788.
    [267]Syberg,F.J.R.,1972. A fourier method for the regional-residual problem of potential fields. Geophysical Prospecting,20(1):47-75.
    [268]Syusyura B., Box, S.E., Wallis, J.C.,2010. Spatial database of geological, geophysical, and mineral resource data relevant to sandstone-host copper deposits in central Kazakhstan. U.S. Geological Survey Open-File Report 2010-1124,4 pp. and database, accessed October 10, 2011, at http://pubs.usgs.gov/of/2010/1124/.
    [269]Tangestani, M.H., Moore, F.,2002. Porphyry copper alteration mapping at theMeidukarea, Iran. International Journal of Remote Sensing,23(22):4815-4826.
    [270]Templ, M., Filzmoser, P., Reimann, C.,2008. Cluster analysis applied to regional geochemical data:Problems and possibilities. Applied Geochemistry,23(8):2198-2213.
    [271]Thiart, C., De Wit, M.,2000. Linking spatial statistics to GIS:exploring potential gold and tin models of Africa. South African Journal of Geology,103(3-4):215-230.
    [272]Thompson, D.T.,1982. EULDPH:a new technique for making computer-assisted depth estimates from magnetic data. Geophysics,47 (1):32-38.
    [273]Thurston, J.B., and Brown, R.J.1992. The filtering characteristicsof least-squares polynomial approximation for regional/residualseparation. Canadian Journal of Exploration Geophysics, 28(2):71-80.
    [274]Tutmez, B.,2007. An uncertainty oriented fuzzy methodology for grade estimation. Computers & Geosciences,33(2):280-288.
    [275]van de Kassteele, J., Stein, A., Dekkers, A.L.M., et al.,2009. External drift kriging of NOxconcentrationswith dispersion model output in a reduced airquality monitoring network. Environmental and Ecological Statistics,16(3):321-339.
    [276]Verduzco, B., Fairhead, J.D., Green, C.M., et al.,2004. New insights into magneticderivatives for structural mapping. The Leading Edge,23(2):116-119.
    [277]Wang, X.Q., Xu, S.F., Zhang, B.M., Zhao, S.D.,2011. Deep-penetrating geochemistry for sandstone-type uranium deposits in the Turpan-Hami basin, north-western China. Applied Geochemistry,26(12):2238-2246.
    [278]Webster, R., Oliver, M.A.,2007. Geostatistics for Environmental Scientists. John Wiley & Sons, Chichester.
    [279]Wijins, C., Perez, C., Kow alczyk, P.,2005. Theta map:edge detection in magnetic data. Geophysics,70(4):39-43.
    [280]Xiao, F., Chen, J.G.,2007. Two mixed total screening MATLAB program based on normal probability paper principle. In:Cheng, Q.M., Zhao, P.D., Agterberg, F.P. (eds.), Proceedings of the IAMG'07:Geomathematics and GIS Analysis of Resources, Environment and Hazards, pp.464-468.
    [281]Xiao, F., Chen, J.G.,2012. Fractal projection pursuit classification model applied to geochemical survey data. Computers and Geosciences,45:75-81.
    [282]Xiao, F., Chen, J.G., Zhang, Z.Y., et al.,2012. Singularity mapping and spatially weighted principal component analysis to identify geochemical anomalies associated with Ag and Pb-Zn polymetallic mineralization in Northwest Zhejiang, China. Journal of Geochemical Exploration, doi:10.1016/j.gexplo.2012.04.010.
    [283]Yan, G.S., Qiu, R.Z., Lian, C.Y.,2007. Quantitative assessment of the resource potential of porphyry copper system in China. Earth Science Frontiers,14(5):27-39.
    [284]Yoo, E.H., Kyriakidis, P.C.,2009. Area-to-point Kriging in spatial hedonic pricing models. Journal of Geographical Systems,11(4):381-406.
    [285]Zeng, H.L., Xu, D.S., Tan, H.D.,2007. A model study for estimating optimum upward-continuationheight for gravity separation with application to a Bouguer gravityanomaly over a mineral deposit, Jilin province, northeast China. Geophysics,72(4): 145-150.
    [286]Zhao, P.D.,1992. Theories, principles, and methods for statistical prediction of mineral deposits. Mathematical Geology,24(6):589-595.
    [287]Zhao, P.D., Chen, J.P., Chen, J.G., et al.,2004. "Three-Component" digital prospecting method:A new approach for mineral resources quantitative prediction and assessment. Journal of China University of Geosciences,15(3):245-252.
    [288]Zhao, P.D., Chen, J.P., Chen, J.G., et al.,2005. The "Three-Component" digital prospecting method:A new approach for mineral resource quantitative prediction and assessment. Natural Resource Research,14(4):295-303.
    [289]Zhao, Y.C., Xu, X.H., Huang, B., et al.,2007. Using robust kriging and sequential Gaussian simulationto delineate the copper-and lead-contaminated areas of a rapidlyindustrialized city in Yangtze River Delta, China. Environmental Geology,52(7):1423-1433.
    [290]Zuo, R.G., Cheng, Q.M., Agterberg, F.P., et al.,2008. Evaluation of the uncertainty in estimation of metalresources of skarn tin in Southern China. Ore Geology Reviews,35(3-4): 415-422.
    [291]Zuo, R.G., Carranza, E.J.M.,2011. Support vector machine:A tool for mapping mineral prospectivity. Computers & Geosciences,37(2):1967-1975.
    [292]陈富文,何国琦,李华芹,2003.论东天山觉罗塔格造山带的大地构造属性.中国地质,30(4):361-366.
    [293]陈富文,李华芹,陈毓川,等,2005.东天山土屋-延东斑岩铜矿田成岩时代精确测定及其地质意义.地质学报,79(2):256-261.
    [294]陈建国,肖凡,陈志军,等,1998.希尔伯特黄变换与独立主成分量分析在深层次找矿信息提取中的应用(摘要).周永章,王正海,候卫平,主编.地球资源定量化理论与应用——2009年全国数学地球科学与地学信息学术论文集.广州,中山大学,195.
    [295]陈建国,夏庆霖,1999.利用小波分析提取深层次物化探异常信息.地球科学——中国地质大学学报,24(5):509-512.
    [296]陈建国,肖凡,常韬,2011.基于二位经验模态分解的重磁异常分离.地球科学——中国地质大学学报,36(2):327-335.
    [297]陈建平,董庆吉,郝金华,等,2011.基于GIS的证据权重法青海“三江”北段斑岩型钼铜矿产资源成矿预测.岩石矿物学杂志,30(3):519-529.
    [298]陈建平,张寿庭,汤军,等,2002.非传统矿产资源定量预测的理论思考.地球物理学进展,17(2):342-348.
    [299]陈文,张彦,秦克章,等,2007.新疆东天山剪切带型金矿床时代研究.岩石学报,23(8):2007-2016.
    [300]陈永清,陈建国,汪新庆,等,2008.基于GIS矿产资源综合定量评价技术.北京:地质出版社.
    [301]陈永清,夏庆霖,刘红光,2003.黑色页岩建造中的贵金属矿产评价研究.地球物理学进展,18(2):261-268.
    [302]陈毓川,1994.矿床的成矿系列.地学前缘,1(3-4):90-94.
    [303]陈毓川,1997.矿床的成矿系列研究现状与趋势.地质与勘探,33(1):21-25.
    [304]陈毓川,刘德权,唐延龄,等,2007.中国新疆战略性固体矿产大型矿集区研究.北京:地质出版社.
    [305]陈毓川,刘德权,唐延龄,等,2008.中国天山矿产及成矿体系.北京:地质出版社.
    [306]陈玉东,2006.地球物理信息处理基础.北京:地质出版社.
    [307]陈哲夫,2004.新疆开合构造与成矿特征的有关问题.地质通报,23(3):214-227.
    [308]陈哲夫,粱云海,1983.北山陆内优地槽的建造及构造演化基本特征.中国区域地质,6:1-13.
    [309]陈哲夫,粱云海,1985.新疆天山地质构造几个问题的探讨.新疆地质,3(2):98-112.
    [310]陈哲夫,粱云海,1991.新疆多旋回构造与板块运动.新疆地质,9(2):95-107.
    [312]陈哲夫,徐新,梁云海,1993.新疆构造手风琴式开合演化的基本特点.中国区域地质,1:45-58.
    [313]陈志军,2007.多重分形局部奇异性分析方法及其在矿产资源信息提取中的应用(博士论文).中国地质大学,武汉.
    [314]成矿规律与矿产预测汇总组,2009.成矿规律研究和矿产预测典型示范工作总结:http://imr.cags.ac.cn/qlpj/dianxing_sf/dxsf_hz.html.
    [315]成秋明,2000.多维分形理论和地球化学元素分布规律.地球科学——中国地质大学学报,25(3):311-318.
    [316]成秋明,2001.空间自相似性与地球物理和地球化学场的分解方法.地球物理学进展,16(2):8-17.
    [317]成秋明,2003.非线性矿床模型与非常规矿产资源评价.地球科学——中国地质大学学报,28(4):445-454.
    [318]成秋明,2004.空间模式的广义自相似性分析与矿产资源评价.地球科学——中国地质大学学报,29(6):733-744.
    [319]成秋明,2006.非线性成矿预测理论:多重分形奇异性-广义自相似性-分形谱系模型与方法.地球科学——中国地质大学学报,31(3):337-348.
    [320]成秋明,2007.成矿过程奇异性与矿产预测定量化新理论与新方法.地学前缘,14(5):42-53.
    [321]成秋明,2011.地质异常的奇异性度量与隐伏源致矿异常识别.地球科学——中国地质大学学报,36(2):307-316.
    [322]成秋明,2012.覆盖区矿产综合预测思路与方法.地球科学——中国地质大学学报,37(6):1109-1125.
    [323]成秋明,夏庆霖,201I.覆盖区矿产综合预测思路与实践.矿物学报,S1:755-756.
    [324]成秋明,赵鹏大,陈建国,等,2009a.奇异性理论在个旧锡铜矿产资源预测评价中的应用:成矿弱信息提取和复合分解.地球科学——中国地质大学学报,34(2):232-242.
    [325]成秋明,赵鹏大,张生元,等,2009b.奇异性理论在个旧锡铜矿产资源预测中的应用:综合信息集成与靶区圈定.地球科学——中国地质大学学报,34(2):243-252.
    [326]成秋明,张生元,左仁广,等,2009c.多重分形滤波方法和地球化学信息提取技术研究与进展.地学前缘,16(2):185-198.
    [327]成守德,王广瑞,杨树德,等,1986.新疆古板快构造.新疆地质,4(2):1-28.
    [328]程裕琪,陈毓川,赵一鸣,1979.初论矿床的成矿系列问题.中国地质科学院院报,1(1):32-58.
    [329]程裕琪,陈毓川,赵一鸣,等,1983.再论矿床的成矿系列问题——兼论中生代某些矿床的成矿系列.地质论评,29(2):127-139.
    [330]程裕琪,赵一鸣,陆松年,1978.中国几组主要铁矿类型.地质学报,63(4):253-268.
    [331]程志中,王学球,刘大文,2002.冲积物覆盖区活动态金属在土壤中的分配规律.地质地球化学,30(2):46-48.
    [332]池顺都,赵鹏大,2000.地质建造组合熵异常与找矿有利地段圈定.现代地质,14(4):423-428.
    [333]池顺都,赵鹏大,刘粤湘,2001.研究矿床实践时间谱系的GIS途径.地球科学——中国地质大学学报,26(2):180-184.
    [334]邓自华,1965.北山地区地质构造特征及其大地构造单元归属问题的初步讨论.地质论评,23(3):172-180.
    [335]董文泉,周光亚,夏立显,1979.数量化理论及其应用.长春:吉林人民出版社.
    [336]范正国,黄旭钊,周道卿,等,2009.全国磁测资料应用典型示范总结报告:http://imr.cags.ac.cn/qlpi/dianxing sf/dxsf hz.html.
    [337]方国庆,1994.东天山板块构造特点及其演化模式.甘肃地质学报,3(1):34-40.
    [338]顾连兴,胡受奚,于春水,等,2000.东天山博格达造山带石炭纪火山岩及其形成地质环境.岩石学报,16(3):305-316.
    [339]顾连兴,胡受奚,于春水,等,2001.论博格达俯冲撕裂型裂谷的形成与演化.岩石学报,17(4):585-597.
    [340]国家质量技术监督局,1998.地质矿产术语分类代码.北京:中国标准出版社.
    [341]郭科,2005.复杂地质地貌区多尺度地球化学异常识别的非线性研究(博士论文).成都理工大学,成都.
    [342]郭科,陈聆,唐菊兴,等,2007.分形含量梯度法确定地球化学浓集中心的新探索.地学前缘,14(5):285-289.
    [343]何国琦,李茂松,刘德权等,1994.中国新疆古生代地壳演化及成矿.乌鲁木齐:新疆人民出版社.
    [344]何国琦,刘德权,李茂松,等,1995.新疆主要造山带地壳发展的五阶段模式及成矿系列.新疆地质,13(2):97-194.
    [345]何国琦,徐新,2004.中国新疆天山地质与矿产论文集.北京:地质出版社.
    [346]何继善,温佩琳,肖兵,等,1997.小波分析在地球物理勘探中的应用.中国有色金属学报,7(4):14-19.
    [347]侯景儒,郭光裕,1993.矿床统计预测及地质统计学的理论与应用.北京:冶金工业出版社.
    [348]侯景儒,黄竞先,1982.地质统计学及其在矿产储量计算中的应用.北京:地质出版社.
    [349]侯景儒,张树泉,张延勋,等,1991.次生晕数据的对数正态泛克立格法研究及异常评价.地质与勘探,10:43-50.
    [350]胡冰,王景斌,高振家,等,1964.新疆大地构造的几个问题.地质学报,44(2):156-170.
    [351]胡光道,陈建国,1998.金属矿产资源评价分析系统设计.地质科技情报,17(1):45-49.
    [352]胡光道,王仁铎,李正琪,1985.对数泛克立金法在处理化探数据中的应用.地球科学——中国地质大学学报,10(2):141-150.
    [353]化探资料应用汇总组,2009.全国典型示范区地球化学工作总结:http://imr.cags.ac.cn/qlpj/dianxing sf/dxsf hz.html.
    [354]黄河源,1988.北疆地质构造特征及演化厉史.西北地质,3:9-19.
    [355]黄汲清,1960.中国地质构造基本特征初步总结.地质学报,40(1):1-32.
    [356]黄汲清,姜春发,王作勋,1990.新疆及邻区开合构造及手风琴式运动.新疆地质科学第1辑,北京:地质出版社.
    [357]姬金生,陶洪祥,曾章仁,等,1994.东天山康古尔塔格金矿带地质与成矿.北京:地质出版社.
    [358]姬金生,张连昌,曾章仁,等,1996.东天山康古尔塔格金矿带年代学研究.地质科学,31(1):80-89.
    [359]蒋甫玉,高丽坤,2012.基于改进的小子域滤波的重力异常及重力梯度张量边缘增强.应用地球物理,9(2):119-130.
    [360]金俊杰,陈建国,2012.地球化学异常提取的自适应衬值滤波法.物探与化探,35(4):526-531.
    [361]李春昱,1980.中国板块构造的轮廓.中国地质科学院院报,2(1):11-20.
    [362]李锦轶,王克卓,李文铅,等,2002.东天山晚古生代以来大地构造与矿产勘查.新疆地质,20(4):295-301.
    [363]李锦轶,徐新,2004.新疆北部地质构造和成矿作用的主要问题.新疆地质,22(2):119-124.
    [364]李庆谋,成秋明,2004.分形奇异(特征)值分解方法与地球物理和地球化学异常重建.地球科学——中国地质大学学报,29(1):109-118.
    [365]李四光,1973.地壳构造与地壳运动.中国科学,4:400-429.
    [366]李伟,梅西华,颜丙鹏,等,2010.新疆鄯善县彩虹山铁矿普查报告.北京:全国地质资料馆.
    [367]李裕伟,等,1980.闽南地区铁矿统计预测.中国地质科学院院报矿床地质研究所分刊(第一卷第1号),北京:地质出版社.
    [368]李裕伟,赵精满,李晨阳,2007.基于GMS、DSS和GIS的潜在矿产资源评价方法.北京:地震出版社.
    [369]廖崇高,陈建平,刘登中,1999.兰坪盆地遥感地质及化探综合分析在成矿预测中的应用.国土资源遥感,42(4):17-18.
    [370]刘红艳,王学求,2006.金属活动态提取技术在十红滩铀矿的应用.吉林大学学报(地球科学版),36(2):183-186.
    [371]刘谦善,1987.论加权游动平均原理及其在化探数据处理中的应用.物化探计算技术,9(1):20-33.
    [372]刘天佑,2004.应用地球物理数据采集与处理.武汉:中国地质大学出版社.
    [373]刘燕君,1991.遥感找矿的原理和方法.北京:冶金工业出版社.
    [374]刘严松,2008.里伍铜矿遥感找矿信息提取及外围找矿远景分析(硕士学位论文).成都理 工大学,成都.
    [375]毛先成,邹艳红,陈进,等,2011.隐伏矿体三维可视化预测.长沙:中南大学出版社.
    [376]马国庆,黄大年,于平,等,2012.改进的均衡滤波器在位场数据边界识别中的应用.地球物理学报,55(12):4288-4295.
    [377]马国庆,杜晓娟,李丽丽,2013.位场数据边界识别的新方法—增强型水平导数法.地球物理学进展,2013,28(1):402-408.
    [378]马瑞士,舒良树,孙家齐,1997.东天山构造演化与成矿.北京:地质出版社.
    [379]木合塔尔·扎日,张晓帆,吴兆宁,等,2009.东天山准噶尔-哈萨克斯坦板块与塔里木板块缝合线的再厘定及其意义.地学前缘,16(3):138-148.
    [380]裴荣富,1997.金属成矿省地质历史演化与特大型矿床.矿床地质,16(2):169-170.
    [381]裴荣富,1998.金属成矿省省等级体制成矿与矿产勘查评价.当代矿产资源勘查评价的理论与方法论文集,北京:地震出版社.
    [382]裴荣富,李进文,杨燕雄,2004a.金属成矿省等级体制成矿.矿床地质,23(2):131-141.
    [383]裴荣富,李进文,杨燕雄,2005.大陆边缘成矿.大地构造与成矿学,29(1):24-34.
    [384]裴荣富,吴良士,1994.金属成矿省演化与成矿.地学前缘,1(3-4):95-99.
    [385]裴荣富,吴良士,熊群尧,等,1998.中国特大型矿床成矿偏在性和成矿构造聚敛场.北京:地质出版社.
    [386]裴荣富,熊群尧,沈宝丰,等,2001a.难识别及隐伏大矿、富矿资源潜力的地质评价.北京:地质出版社.
    [387]裴荣富,杨燕雄,李进文,2004b.特大型矿床与异常成矿作用.地学前缆11(2):323-331.
    [388]裴荣富,叶锦华,杨燕雄,2001b.特大型矿床研究若干问题探讨.中国地质,28(7):9-15.
    [389]濮静娟,1992.遥感图像目视解译原理与方法.北京:科学技术出版社.
    [390]祁世军,高鹏,成守德,2009.新疆造山带大地构造相划分及含矿特征.新疆地质,27(2):131-135.
    [391]秦克章,方同辉,王书来,等,2002.东天山板块构造分区、演化与成矿地质背景研究.新疆地质,20(4):302-308.
    [392]全国矿产资源潜力评价项目办公室,2006:http://imr.cags.ac.cn/qlpi/index.html.
    [393]全国矿产资源潜力预测物化遥重砂课题重力组,2009.矿产资源潜力评价-典型示范工作重力资料应用工作总结报告:http://imr.cags.ac.cn/qlpj/dianxing sf/dxsf_hz.html.
    [394]全国矿产资源潜力预测物化遥重砂课题遥感组,2009.典型示范工作遥感专题汇总报告:http://imr.cags.ac.cn/qlpi/dianxing sf/dxsf_hz.html.
    [395]芮宗瑶,刘玉琳,王龙生,等,2002a.新疆东天山斑岩型铜矿带及其大地构造格局.地质学报,76(1):83-94.
    [396]芮宗瑶,王福同,李恒海,等,2001.新疆东天山斑岩铜矿带的新进展.中国地质,28(2):11-16.
    [397]芮宗瑶,王龙生,王义天,等,2002b.东天山土屋和延东斑岩铜矿床时代讨论.矿床地质,21(1):16-22.
    [398]申维,2000.矿化富集动力学模型及其在矿产预测中的应用.地学前缘,7(1):189-194.
    [399]申维,2003.分形混沌与矿产预测.北京:地质出版社.
    [400]史长义,张金华,黄笑梅,1999.子区中位数衬值滤波法及弱小异常识别.物探与化探, 23(4):250-257.
    [401]孙启祯,1986.论边缘成矿——关于金属矿床的时空分布及其成因联系.地质与勘探,1:7-14.
    [402]孙启祯,1994.边缘成矿与成矿边缘效应.地学前缘,1(3-4):176-183.
    [403]孙启祯,2001.边缘成矿概论.北京:地质出版社.
    [404]孙文爽,陈兰祥,1994.多元统计分析.北京:高等教育出版社.
    [405]陶钧政,吕正,朱诚顺,1982.新疆板块构造基本轮廓.新疆大学学报(自然科学版),1:1-18.
    [406]涂光炽,1989a.关于超大型矿床的寻找和理论研究.矿物岩石地球化学研究,3:163-168.
    [407]涂光炽,1989b.关于超大型矿床的寻找和理论研究.地球科学进展,6:14-20.
    [408]涂光炽,1989c.超大型矿床的找矿和理论研究.矿产与地质,3(1):1-3.
    [409]涂光炽,2000.中国超大型矿床(I).北京:科学出版社.
    [410]王福同,冯京,胡建卫,等,2001.新疆土屋大型斑岩铜矿床特征及发现意义.中国地质,28(1):36-40.
    [411]王广瑞,1996.中国新疆北部及邻区构造-建造图说明书.武汉:中国地质大学出版社.
    [412]王世称,2010.综合信息矿产预测理论与方法体系新进展.地质通报,29(10):1439-1403.
    [413]王世称,陈永良,夏立显,2000.综合信息矿产预测理论与方法.北京:科学出版社.
    [414]王世称,范继璋,杨永华,1990.矿产资源评价.长春:吉林科学技术出版社.
    [415]王世称,王於天,1989a.综合信息矿产预测的一般理论与方法.长春:吉林大学出版社.
    [416]王世称,王於天,1989b.综合信息解译原理与矿产预测图编制方法.长春:吉林大学出版社.
    [417]王世称,杨毅恒,严光生,等,2001.大型、超大型金矿床密集区综合信息预测.北京:地质出版社.
    [418]王世称,叶永盛,杨永强,等,1999.综合信息成矿系列预测专家系统.长春:长春出版社.
    [419]王学求,1998a.深穿透勘查地球化学.物探与化探,22(3):166-169.
    [420]王学求,1998b.寻找和识别隐伏大型特大型矿床的勘查地球化学理论方法与应用.物探与化探,22(2):81-89.
    [421]王学求,2003.大型矿床地球化学定量评价模型和方法.地学前缘,10(1):257-261.
    [422]王学求,2005.深穿透地球化学迁移模型.地质通报,24(10-11):892-896.
    [423]王学求,迟清华,孙宏伟,2001.荒漠戈壁区超低密度地球化学调查与评价.新疆地质,19(3):200-206.
    [424]王彦国,王祝文,张凤旭,等,2012.基于均方差比归一化垂向梯度去的位场边界检测.中国石油大学学报(自然科学版),36(2):86-95.
    [425]王有学,韩果花,姜枚,袁学诚,2004.阿尔泰-阿尔金地学断面地壳结构.地球物理学报,47(2):240-249.
    [426]王作勋,邬继易,吕喜朝,等,1989.中国天山板块构造.河北地质学院院报,12(1):54-68.
    [427]夏庆霖,2006.“三联式”成矿预测理论在非传统矿产资源评价中的应用—以滇东地区 沉积建造中铂族元素(PGE)资源潜力评价为例(博士论文).中国地质大学,武汉.
    [428]肖克炎,陈学工,黄文斌,等,2009a.地质勘探三维可视化技术及系统开发.北京:中国大地出版社.
    [429]肖克炎,丁建华,娄德波,2009b.东天山斑岩铜矿资源潜力评价.地质与勘探,45(6):637-644.
    [430]肖克炎,叶天竺,李锦朝,等,2010.矿床模型综合地质信息预测资源量的估算方法.地质通报,29(10):1404-1412.
    [431]肖克炎,张晓华,宋国耀,等,1999.应用GIS技术研制矿产资源评价系统.地球科学——中国地质大学学报,24(5):525-528.
    [432]肖克炎,张晓华,王全明,1995.应用改进的克里格法分离重力区域异常与局部异常.物探化探计算技术,17(2):19-25.
    [433]肖克炎,张晓华,王四龙,等,2000.矿产资源GIS评价系统.北京:地质出版社.
    [434]肖序常,何国琪,成守德,等,2004.中国新疆及邻区大地构造图(说明书).北京:地质出版社.
    [435]肖序常,汤耀庆,冯益民,等,1992.新疆北部及其邻区大地构造.北京:地质出版社.
    [436]肖序常,汤耀庆,李锦轶,等,1990.试论新疆北部大地构造演化.新疆地质科学第1辑,北京:地质出版社.
    [437]谢学锦,1998.战术性与战略性的深穿透地球化学方法.地学前缘,5(1-2):171-183.
    [438]谢学锦,刘大文,向运川,等,2002.地球化学块体——概念和方法案的发展.中国地质,29(3):225-233.
    [439]徐道一,1977.数学地质引论.北京:地质出版社.
    [440]严光生,邱瑞照,连长云,等,2010.中国斑岩铜矿砂岩铜矿资源潜力定量评价.北京:地质出版社.
    [441]阎积惠,康慧,陈怀亮,1995.TM图像地质应用原理与方法.北京:冶金工业出版社.
    [442]杨本瑞,郭履和,彭富钰,等,1985.矿产资源评价决策模型.成都:四川科学技术出版社.
    [443]杨高印,1995.位场数据处理的一项新技术——小子域滤波法.石油地球物理勘探,30(2):241-244
    [444]杨健民,张玉君,邓刚,等,2008.中国天山铜矿带找矿靶区优选.北京:地质出版社.
    [445]杨文采,施志群,侯遵泽,等,2001.离散小波变换与重力异常多重分解.地球物理学报,44(4):5342541.
    [446]杨兴科,陶洪祥,罗桂昌,等,1996.东天山板块构造基本特征.新疆地质,14(3):221-227.
    [447]叶天竺,肖克炎,严光生,2007.矿床模型综合地质信息预测技术研究.地学前缘,14(5):11-19.
    [448]叶天竺,张智勇,肖庆辉,等,2009.全国成矿地质背景典型示范成果总结报告:http://imr.cags.ac.cn/qlpj/dianxing sf/dxsf hz.html.
    [449]叶天竺,朱裕生,夏庆林,等,2004.固体矿产预测评价方法技术.北京:中国大地出版社.
    [450]於崇文,1994.成矿作用动力学——理论体系和方法论.地学前缘,1(3-4):54-74.
    [451]於崇文,1999a.大型矿床和成矿区(带)在混沌边缘.地学前缘,6(1):85-102.
    [452]於崇文,1999b.大型矿床和成矿区(带)在混沌边缘.地学前缘,6(2):195-217.
    [453]於崇文,2001a.成矿动力系统在混沌边缘分形生长——一种新的成矿理论与方法论(上).地学前缘,8(3):9-28.
    [454]於崇文,2001b.成矿动力系统在混沌边缘分形生长——一种新的成矿理论与方法论(下).地学前缘,8(4):471-489.
    [455]於崇文,岑况,鲍征宇,1993.热液成矿作用动力学.武汉:中国地质大学出版社.
    [456]於崇文,岑况,鲍征宇,1998.成矿作用动力学.北京:地质出版社.
    [457]余先川,刘立文,胡丹,等,2012.基于稳健有序独立成分分析(ROICA)的矿产预测.吉林大学学报(地球科学版),42(3):872-880.
    [458]余先川,王世称,王桂安,1998.稳健协同克里格法因子分析及其在化探中的应用.地球科学——中国地质大学学报,23(2):171-174.
    [459]曾华霖,2005.重力场与重力勘探.北京:地质出版社.
    [460]曾华霖,许德树,2002.最佳向上延拓高度的估计.地学前缘,9(2):499-504.
    [461]翟裕生,2003a.成矿系统研究与找矿.地质调查与研究,26(2):65-71.
    [462]翟裕生,2003b.成矿系统研究与找矿.地质调查与研究,26(2):129-135.
    [463]翟裕生,2007.地球系统、成矿系统到勘查系统.地学前缘,14(1):172-181.
    [464]翟裕生,彭润民,邓军,等,2000.成矿系统分析与新类型矿床预测.地学前缘,7(1):123-132.
    [465]翟裕生,王建平,邓军,等,2008.成矿系统时空演化及其找矿意义.现代地质,22(12):143-150.
    [466]翟裕生,姚书振,崔彬,等,1996.成矿系列研究.武汉:中国地质大学出版社.
    [467]张达玉,周涛发,袁峰,等,2009.新疆东天山地区白山铝矿床的成因分析.矿床地质,28(5):663-672.
    [468]张凤旭,刘万崧,张兴洲,等,2009.用重力三方向小子域滤波解释伊通盆地断裂.地球科学——中国地质大学学报,34(4):665-672.
    [469]张良臣,吴乃元,1985.天山地质构造及研究.新疆地质,3(3):1-14.
    [470]张良臣,刘德权,王有标,等,2006.中国新疆优势金属矿产成矿规律.北京:地质出版社.
    [471]张守林,2006.基于ETM数据矿化蚀变信息定量提取方法研究(博士论文).北京:中国地质大学.
    [472]张寿庭,2003.“三联式”成矿预测—多目标矿产预测评价理论与实践探讨(博士后研究工作报告).中国地质大学,北京.
    [473]张寿庭,赵鹏大,陈建平,等,2003.多目标矿产预测评价及其研究意义.成都理工大学学报,30(5):441-446.
    [474]张寿庭,赵鹏大,夏庆霖,等,2007.区域多目标矿产预测评价理论与实践探讨——以滇西北地区喜马拉雅期富碱斑岩相关矿产为例.地学前缘,14(5):104-114.
    [475]张玉君,曾朝铭,陈薇,2003.ETM+(TM)蚀变遥感异常提取方法研究与应用——方法选择和技术流程.国土资源遥感,2(56):44-49.
    [476]赵鹏大,彭程电,1964.应用数理统计方法探讨矿床合理勘探手段及工程间距的新途径.地质与勘探,3:16-20.
    [477]赵鹏大,1978.宁芜地区铁矿床统计预测.宁芜火山铁矿床会议选集,北京:地质出版社.
    [478]赵鹏大,1982.试论地质体的数学特征.地球科学——中国地质大学学报,16(1):145-155.
    [479]赵鹏大,2001.地球科学的新使命——认知和发现非传统矿产资源.地球物理学进展,16(4):127-132.
    [480]赵鹏大,2002.“三联式”资源预测与定量评价-数字找矿理论与实践探讨.地球科学——中国地质大学学报,27(5):483-489.
    [481]赵鹏大,2004.定量地学方法及应用.北京:高等教育出版社.
    [482]赵鹏大,陈建平,2000.非传统矿产资源体系及其关键科学问题.地球科学进展,15(3):251-255.
    [483]赵鹏大,陈建平,陈建国,2001.成矿多样性与矿床谱系.地球科学——中国地质大学学报,26(2):111-117.
    [484]赵鹏大,陈建平,胡忠德,等,2011.新疆可可托海稀有金属矿床三维立体定量预测研究.北京:地质出版社.
    [485]赵鹏大,陈建平,张寿庭,2003.“三联式”成矿预测新进展.地学前缘,10(2):455-463.
    [486]赵鹏大,陈永清,1998.地质异常矿体定位的基本途径.地球科学——中国地质大学学报,23(2):111-114.
    [487]赵鹏大,陈永清,1999.基于地质异常单元金矿找矿有利地段圈定与评价.地球科学——中国地质大学学报,24(5):443-448.
    [488]赵鹏大,陈永清,金友渔,2000.基于地质异常的“5P”找矿地段的定量圈定与评价.地质论评,46(增刊):6-16.
    [489]赵鹏大,陈永清,刘吉平,等,1999.地质异常成矿预测理论与实践.武汉:中国地质大学出版社.
    [490]赵鹏大,池顺都,1991.初论地质异常.地球科学——中国地质大学学报,16(3):241-248.
    [491]赵鹏大,池顺都,1998.当今矿产勘探问题的思考.地球科学——中国地质大学学报,23(1):70-74.
    [492]赵鹏大,池顺都,陈永清,1996.查明地质异常:成矿预测的基础.高校地质学报,2(4):361-373.
    [493]赵鹏大,池顺都,李志得,等,2001.矿产勘查理论与方法.武汉:中国地质大学出版社.
    [494]赵鹏大,胡旺亮,1992.地质异常理论与矿产预测.新疆地质,10(2):93-100.
    [495]赵鹏大,胡旺亮,李紫金,1983a.矿床统计预测.北京:地质出版社.
    [496]赵鹏大,胡旺亮,李紫金,1983b.矿床统计预测的理论与实践.地球科学——武汉地质学院学报,4(22):107-121.
    [497]赵鹏大,孟宪国,1992.地质学的定量化问题.地球科学——中国地质大学学报,17(增刊):51-56.
    [498]赵鹏大,孟宪国,1993.地质异常与成矿预测.地球科学——中国地质大学学报,18(1):39-47.
    [499]赵鹏大,王京贵,饶明辉,等,1995.中国地质异常.地球科学——中国地质大学学报, 20(2):117-127.
    [500]赵鹏大,1978.宁芜地区铁矿统计预测.宁芜火山岩铁矿床会议选集,北京:地质出版社.
    [501]赵鹏大,等.1990.地质勘探中的统计分析.武汉:中国地质大学出版社.
    [502]赵善定,王学求,2006.荒漠戈壁区地表疏松层中元素的分布规律.物探与化探,30(6):517-520.
    [503]中国地质科学院地质力学研究所,1976.论构造体系.地质学报,2:141-152.
    [504]中华人民共和国地质矿产部,1997.地质图用色标准及用色原则(1:5000:http://www.xian.cgs.gov.cn/jcdz/2009/0313/article 234.html.
    [505]中华人民共和国地质矿产部地质调查局,1997.资源评价工作中地理信息系统(GIS)工作细则:http://wenku.baidu.com/view/e9c8d4116c175f0e7cd13740.html.
    [506]周光亚,赵文,陆承新,等,1982.多元统计分析.北京:地质出版社.
    [507]周济元,崔炳芳,肖惠良,等,2001.新疆康古尔-黄山对接碰撞带的存在、成矿模式及成矿预测.火山地质与矿产,22(4):252-263.
    [508]周济源,张斌,张朝文,等,1996.东天山古陆及其边缘银、铼、钼、金和铜矿地质.北京:地质出版社.
    [509]朱裕生,1982.矿产资源评价问题概述.中国地质科学院矿床地质研究所所刊(第三卷第5号),北京:地质出版社.
    [510]朱裕生,1984.矿产资源评价方法学导论.北京:地质出版社.
    [511]朱裕生,1998.第三轮成矿远景区划(国内部分)初探.中国地质,3:10-12.
    [512]朱裕生,潘恩沛,1982.矿产资源评价的理论与实践·地球科学国际交流(一):中华人民共和国/联合国教科文矿产资源评价专题讨论会技术总结,北京:中国地质科学院.
    [513]朱裕生,王福同,龙宝林,等,2003.土屋-延东斑岩型铜(钼)矿床多源信息找矿模型.矿床地质,26(3):287-294.
    [514]朱章森,张庆希,杨丽清,等,1991.求异理论与无模型预测.武汉国际矿床统计预测会议集,北京:地质出版社,49-55.
    [515]朱章森,朱磊,1998.矿床定量预测理论与方法体系.成都理工学院学报,25(增刊):1-7.
    [516]庄道泽,2003.新疆东天山地区土屋-延东铜矿地球化学特征与异常查证方法.地质与勘探,39(5):67-71.
    [517]庄道泽,2005.新疆东天山成矿地质条件与综合信息预测模型研究(博士学位论文).吉林大学,吉林.
    [518]自然重砂应用专题组,2009.自然重砂资料应用典型示范工作总结:http://imr.cags.ac.cn/qlpj/dianxing sf/dxsf hz.html.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700