用户名: 密码: 验证码:
多极矩场电磁推进模式研究与系统设计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电磁推进或者称为电磁发射(Electromagnetic Launch, EML),是指根据磁场与电流之间的相互作用效果,利用电磁力推进或驱动物体,使之加速运动达到所需应用要求的一类发射装置。电磁推进器具有发射质量范围大、出口初速度高、能源简易、发射效率高、工作性能优良、可控性好和结构多样等优点,使其在未来军事武器、科学研究、航天和交通、民用工业等相关领域有着广泛的应用潜力。
     按照推进装置结构和工作原理的不同,常规电磁推进器基本上可以分为三大类:导轨式(轨道炮Railgun)、同轴线圈式(线圈炮Coilgun)和重接式(Reconnection gun)。对于大质量和大推力的发射要求,常规电磁推进器存在一些原理性缺陷或面临一定技术困难。导轨型电磁推进器的两条平行导轨和电枢是在兆安级电流下进行工作的,电枢、导轨等部件在发射瞬间要承受极大的热流和电磁应力冲击,容易造成导轨的严重烧蚀与表面剥落,本身高速运动与电接触摩擦就是一对矛盾问题;同轴直螺线管线圈型推进器对抛体电枢的电磁力主要分量为径向力,表现为径向压缩力或径向扩张力,而用于对抛体电枢加速的轴向分量力则较小,且轴向加速力远小于径向作用力,因此,线圈型电磁推进器的电磁力利用率不高。本论文在国内外首次提出应用径向磁场与环向电流相互作用进行电磁推进的思想,建立了多极矩场线圈型电磁推进模式,并对多极矩场线圈型电磁推进系统进行分析和设计。
     论文首先对线圈型电磁推进的动力学过程进行分析,给出了导轨型和线圈型电磁推进的数学模型,并对常规线圈型电磁推进模式的关键技术进行研究,发现存在问题并加以改进;接着,提出应用径向磁场与环向电流相互作用进行电磁推进的思想,建立了多极矩场线圈型电磁推进模式,对多极矩磁场构型进行数学解析,分析多极矩场电磁推进模式的数学模型和机电方程,并给出系统方程的求解方法;然后,采用电磁场有限元方法仿真计算多极矩场电磁推进的瞬态发射过程,对带有弹射线圈的单级八极矩线圈推进系统进行瞬态运动仿真,结果发现,多极矩场电磁推进模型解决了传统线圈型电磁推进器轴向电磁力分量不足导致加速力较小的缺陷,并对抛体电枢提供了稳定的悬浮恢复力;对三级并排八极矩线圈型电磁推进器的瞬态发射仿真,结果表明,多级加速效果明显,该模式具有向多级高速扩展的潜力;最后,对多级扭转八极矩场线圈型电磁推进器进行系统设计,扭转多极矩场线圈型电磁推进器是对并排多极矩场线圈的结构改进,理论分析和仿真结果显示,该推进模式使抛体电枢具有自旋运动,提高了抛体电枢的运动稳定性;同时,该部分还对电源电路与检测控制系统进行设计和优化,设计了多极矩线圈的分组供电模式,给出了脉冲电流波形与触发放电位置相匹配和优化设计准则。
     多极矩场电磁推进模式能够改善目前电磁推进器的性能,适合大质量、大口径抛体电枢向高速和高动能发射,具有电磁推力大、出口速度高,悬浮稳定的发射性能。将多极矩场电磁推进技术应用到交通运输,可以设计成多极矩场电磁驱动机车,具有高速、重载、平稳和高效能的优点;将多极矩场电磁推进技术应用到航天工程,可以设计成火箭的助推装置,能够实现大质量和大推力的发射。
Electromagnetic launch (EML), sometimes called electromagnetic propulsion, is suggested as that uses electromagnetic force to propel or drive objects according the interaction between magnetic field and current. The launch goal is to accelerate objects to high speed or hypervelocity. Electromagnetic launch has such advantages as no launch mass limit, high muzzle velocity, and simplified energy source, higher launch efficiency, and good working performance, easily controllable and large variety of launch structure. The most promising application for electromagnetic launch is used by the military weapons, scientific research, spaceflight and transportation, and civil industry has extensive application potential.
     According to the difference of launcher structure and working mode, conventional electromagnetic launcher is divided into three types:rail launcher (Railgun), coil launcher (Coilgun) and reconnection launcher (Reconnection gun). For the requirements of big mass and huge propulsion force transportation, conventional electromagnetic launchers have some principle limitations and confront several technique troubles. The two parallel rails and armature of rail launcher are working in the current of megampere, and they endure huge thermal and magnetic stress impact in the launch transient. That always causes the rails ablation and interface erosion. Intrinsically, the hypervelocity motion and electric contact friction are inherent contradiction. The coaxial solenoid coil launcher has greater radial component of electromagnetic force, represented as radial compress force or distension force. The axial force of coil launcher used to accelerate the projectile is much littler than the radial force and the utilizable efficiency of electromagnetic force is not high. For the first time in the world, this paper presents a new idea of radial magnetic field interacting with azimuthal current for electromagnetic launch, and proposes a novel multipole field electromagnetic launch mode. This paper gives the system design and analyses the performance of multipole field electromagnetic launcher.
     Firstly, the paper analyses the dynamics of coil launcher, and gives the mathematic model of rail launcher and coil launcher. The key techniques of conventional electromagnetic launch mode are indicated and improved. Then, the idea of radial magnetic field interacting with azimuthal current to launch object is presented and the concept of multipole electromagnetic launcher. The multipole electromagnetic launch mode is established and the multipole magnetic field configuration is mathematical resolved. The mathematical model and mechanical-electric equations of multipole electromagnetic launch mode are obtained. The solution method of system equations is presented. After the theoretical analysis, the transient launch process of multipole electromagnetic launcher is simulated with electromagnetic field finite element method (FEM). The simulation results of single stage octapole field electromagnetic launcher with catapult coil indicate that multipole electromagnetic field launcher conquer the shortcoming of conventional coil launcher, which with less axial component of electromagnetic force used to accelerate the projectile. Moreover, the multipole coils provide a restoring force for the projectile which could keep the projectile maglev and accelerate stability. Then, the three stage appositional octapole field electromagnetic launcher is simulated and analyzed. The simulated results indicate that acceleration performance of multistage launcher is obvious acceptable, and the launch mode has the potential of hypervelocity to expand with multi stages. In the end, an improved launch mode called multi-stage twisty multipole electromagnetic launcher is presented. Then three-stage twisty octapole field electromagnetic launch system is designed and simulated. The theoretic analysis and simulation results indicate that this launch mode makes the projectile with spinning motion, which improves the flying stability of projectile motion. This part of paper also gives the design of power supply circuit, detect and control system. The group power supply mode of multipole coils is proposed. Finally, the optimal design and match of pulsed current wave with discharge position is presented.
     Multipole electromagnetic field launch mode could improve the acceleration performance of conventional coil launcher, and they fit for large mass and big caliber projectile to accelerate to high speed and high kinetic energy. Multipole electromagnetic field launcher has the advantage of huge thrust force, high exit velocity and steady maglev characteristic. We suggest this launch mode could be applied in the transportation locomotive, designed as multipole electromagnetic levitated trains. This train has the potential of high speed, over loading, stabilization and efficiency. Furthermore, multipole electromagnetic field launch mode could be used in the field of spaceflight engineering, and designed as satellite and space shuttle's launch equipment. This launcher could easily achieve large mass and hypervelocity launch.
引文
[1]王莹,肖峰.电炮原理[M].北京:国防工业出版社,1995.
    [2]王莹,马富学.新概念武器原理[M].兵器工业出版社.1997.
    [3]王莹.电发射技术概论[J].电工技术杂志,2003(10):94-97.
    [4]Ian R. McNab. Early Electric Gun Reseach[J]. IEEE Trans, on Mag.,1999,35(1):250-261.
    [5]Egeland A. Birkeland's electromagnetic gun: a historical review[J]. IEEE Trans. Plasm. Sci.,1989, 17(2):73-82.
    [6]F. Winterberg. Magnetic Acceleration of a Superconducting Solenoid to Hypervelocities[J]. Plasma Physics,1966,8(1):541-552.
    [7]Kolm H and Mongeau P. An Alternative Launching Medium[J]. IEEE Spectrum, Apr.1982,30-36.
    [8]M. Cowan, E. C. Cnare, B. W. Duggin, et al. The Reconnection Gun[J]. IEEE Trans, on Mag.,1986, 22(1):1429-1434.
    [9]Ronald J. Kaye, Edwin L. Brawley, Billy W. Duggin, et al. Design and Performance of A Multi-stage Cylindrical Reconnection Launcher[J].1991,27(1):596-600.
    [10]R. J. Lipinski, S. Beard, J. Boyes, et al. Space Applications for Contactless Coilguns[J].IEEE Trans, on Mag.,1993,29(1):691-695.
    [11]M.M.Widner. WARP-10:A numerical simulation model for the cylindrical reconnection launcher[J]. IEEE Trans, on Mag.,1991,27(1):634-638.
    [12]Ronald J. Kaye, Eugene C. Cnare, M. Cowan. Design and Performance of Sandia's Contactless Coilgun for 50mm Projectiles. IEEE Trans, on Mag,1993,29(1):680-685.
    [13]Ronald J. Kaye, Isaac R. Shokair, and Richard W. Wavrik. Design and Evaluation of Coils for a 50 mm Diameter Induction Coilgun Launcher[J].IEEE Trans, on Mag.,1995,31(1):478-483.
    [14]Ronald J. Kaye. Operational requirements and issues for coilgun electromagnetic launchers[J]. IEEE Trans, on Mag,2005,45(1):194-199.
    [15]Z. Zabar, X. N. Lu, L. Birenbaum, et al. A 500m/s Linear Induction Launcher[J].8th IEEE Pulsed Power Conference, San Diego, CA; June 17-19,1991.
    [16]Balikci A, Zabar Z, Birenbaum L, et al. On the design of coilguns for super-velocity launchers[J]. IEEE Trans on Mag,2007,43(1):107-110.
    [17]J. M. Schroeder, J. H. Gully, and M. D. Driga. Eelectromagnetic launchers For Space Applications[J].IEEE Trans. Magn,1989,25(1):504-507.
    [18]J. H. Chang, E. B. Becker, and M. D. Driga. Coaxial electromagnetic launcher calculations using FE-BE method and hybrid potentials[J]. IEEE Trans, on Mag.,1993,29(1):655-660.
    [19]D. A. Bresie and S. K. Ingram. Coilgun technology At The Center For Electromechanics, The University Of Texas At Austin[J]. IEEE Trans, on Mag.,1993,29(1):649-654.
    [20]D. A. Bresie, J. L. Bacon, S. K. Ingram, et al. SPEAR Coilgun[J].IEEE Trans. Magn.,1995, 31(1):467-472.
    [21]I. R. McNab. A Research Program to Study Airborne Launch to Space[J]. IEEE Trans. Magn.,2007, 43(1):486-490.
    [22]Katsumi Masugata. Hyper Velocity Acceleration by a Pulsed Coilgun Using Traveling Magnetic Field[J]. IEEE Trans. Magn.,1997,33(6):4434-4438.
    [23]J. Nett and L. Gernandt. Inductive Acceleration of Moving Projectiles and Synchronization between the Driving Field and the Projectile Motion[J]. IEEE Trans. Magn.,1995,31(1):499-503.
    [24]B. N. Turman, B. M. Marder, G. J. Rohwein, et al. The Pulsed Linear Induction Motor Concept for High-Speed Trains.Sandia National Laboratories, June 1995.
    [25]R. Kaye, B. Turman, M. Aubuchon, et al.Induction Coilgun for EM Mortar. Sandia National Laboratories,2007.
    [26]Volodymyr T. Chemerys. Investigations of Electromagnetic Acceleration and Related Energy Sources in Ukraine[J]. IEEE Trans. Magn.,1997,33(1):31-36.
    [27]Seog Whan Kim, Hyun Kyo Jung, and Song Yop Hahn. An Optimal Design of Capacitor-Driven Coilgun[J]. IEEE Trans. Magn.,1994,30(2):207-211.
    [28]G. Hainsworth and D. Rodger. Design Optimisation of Coilguns[J]. IEEE Trans. Magn.,1995,31(1): 473-477.
    [29]Dr. Willem J. Kolkert. Electric Energy Gun Technology: Status of the French-German-Netherlands Programme[J]. IEEE Trans, on Mag.,1999,35(1):25-30.
    [30]Chadee Persad. A review of U.S. Patents in Electromagnetic Launch Technology[J]. IEEE Trans, on Mag.,2001,37(1):493-497.
    [31]H. D. Fair. Advances in Electromagnetic Launch Science and Technology and Its Applications[J]. IEEE Trans, on Mag.,2009,45(1):225-230.
    [32]Philipp G. Rutberg, Gennady A. Shvetsov, and Irina I. Kumkova. New Steps in EML Research in Russia[J]. IEEE Trans, on Mag.,2009,45(1):231-236.
    [33]I. R. McNab. Progress on hypervelocity railgun research for launch to space[J]. IEEE Trans, on Mag., 2009,45(1):381-388.
    [34]Skurdal B. D., Gaigler R. L. Multimission electromagnetic launcher. IEEE Trans, on Mag.,2009, 45(1):458-461.
    [35]Zhu Yingwei, Wang Yu, Yan Zhongming, et al. Multipole Field Electromagnetic Launcher[J]. IEEE Trans, on Mag.,2010,46(7):2622-2627.
    [36]Liyi Li, Mingna Ma, Baoquan Kou, et al. Analysis and Design of Moving-Magnet-Type Linear Synchronous Motor for Electromagnetic Launch System[J]. IEEE Trans. Plasm. Sci.,2011, 39(1):121-126.
    [37]Michael R. Wright, Steven B. Kuznetsov and Kurt J. Kloesel. A Lunar Electromagnetic Launch System for In Situ Resource Utilization[J]. IEEE Trans. Plasm. Sci.,2011,39(1):521-528.
    [38]古刚,向阳,张建革.国际电磁发射技术研究现状[J].舰船科学技术,2007,29(1):156-158.
    [39]王慧锦,曹延杰,王成学.美国海军电磁导轨炮发展综述[J].舰船科学技术,2010,32(2):138-143.
    [40]http://mil.news.sina.com.cn/p/2008-02-04/0902484372.html
    [41]赵纯.三级重接式电磁发射系统的仿真与实验研究[D].大连理工大学,2006.
    [42]高俊山.三级电磁推进模型及系统研究[D].哈尔滨理工大学,2007.
    [43]郭芳.高温超导磁悬浮连续脉冲磁行波电磁发射研究[D].华中科技大学,2010.
    [44]崔鹏.新型电磁发射技术的研究[D].长沙:国防科技大学,2005.
    [45]张海燕.线圈炮电磁过程动态仿真技术研究[D].哈尔滨理工大学,2005.
    [46]孙百瑜.三级电磁发射器的建模及仿真优化[D].哈尔滨理T大学,2006.
    [47]柴猛.三级电磁推进系统模型及实验研究[D].哈尔滨理工大学,2006.
    [48]刘元恒.异步感应型电磁发射技术的研究[D].国防科学技术大学,2006.
    [49]朱洪强.电磁枪械(磁阻型线圈式)的有关问题研究[D].南京理工大学,2007.
    [50]张剑.高温超导磁悬浮发射装置的视景仿真系统设计[D].西南交通大学,2008.
    [51]丁国良.舰载机磁悬浮电磁弹射技术研究[D].武汉理工大学,2008.
    [52]马学林.基于FPGA的电磁推进装置同步触发系统的设计[D].西南交通大学,2009.
    [53]谢晓芳.基于超导块材的新型电磁推进模式[D].西南交通大学,2010.
    [54]张惠娟.运动电磁系统涡流场有限元研究[D].河北工业大学,2000.
    [55]牟进发.时变电磁场电磁力及其效果分析[D].燕山大学,2005.
    [56]庄国臣.电磁发射及其应用[J].电工技术杂志,1997,25(6):19-22.
    [57]刘延贤.发展中的电磁炮[J].大学物理,1998,17(4):44-46.
    [58]李军,王莹,王赞基.电炮用磁通压缩脉冲直线发电机的数学模型[J].中国电机工程学报,2001,21(5):43-46.
    [59]池小平,吕庆敖.单级感应线圈炮的电感与互感梯度计算与分析[J].四川兵工学报,2008,29(3):73-75.
    [60]池小平,吕庆敖.3种不同形状电枢对线圈炮发射性能影响的仿真分析[J].军械工程学院学报,2008,20(3):32-35.
    [61]高顺受,孙承纬,陈英石,等.60mm口径电磁感应线圈炮的实验研究[J].高压物理学报,1996,10(3):190-198.
    [62]赵良英,刘秀成,于歆杰.串联充电-并联放电型电感储能线圈炮系统的研究[J].电工电能新技术,1999,32(2):62-67.
    [63]张海燕,魏新劳,等.磁性抛体电枢单级线圈炮电感梯度的计算[J].哈尔滨理工大学学报,2005,10(3):121-124.
    [64]赵科义,李治源,程树康.单级感应线圈炮工作过程的动态仿真[J].高电压技术,2008,34(8):1667-1671.
    [65]曹延杰,刘文彪,张媛,等.单级感应线圈炮最佳初始位置仿真研究[J].计算机仿真,2006,23(12):9-11.
    [66]李建辉,刘秀成,王春明,等.电感储能型线圈炮系统的建模和参数优化[J].电工电能新技术,2007,26(2):54-58.
    [67]朱英伟,严仲明,谢晓芳,等.磁阻型线圈发射减速力研究[J].电工电能新技术,2010,29(2):62-66.
    [68]朱英伟,严仲明,董亮,王豫.电容器参数对感应线圈炮的影响分析[J].高电压技术,2009,35(12):3054-3059.
    [69]朱英伟,李海涛,严仲明,等.线圈型电磁发射器磁场构型的设计与分析[J].兵工学报,2011,32(4):464-468.
    [70]李三群,张朝伟,邓启斌,等.多级同步感应线圈炮的动态特性仿真[J].高电压技术,2009,35(12):3065-3070.
    [71]张朝伟,李治源,陈风波,等.感应线圈炮的电枢受力分析[J].高电压技术,2005,31(12):32-34.
    [72]赵科义,李治源,程树康,等.同步感应线圈炮内磁场及涡流场的有限元分析[J].高电压技术,2008,34(3):492-495.
    [73]刘文彪,张媛,曹延杰,等.同步感应线圈炮最佳触发放电位置仿真研究[J].微特电机,2007,6(1):36-39.
    [74]王德满,谢慧才,刘亮,等.线圈炮(电磁同轴发射器)综述[J].西安电子科技大学学报,1992,19(3):113-121.
    [75]王德满,王跃进,谢慧才.线圈炮—电磁同轴发射器及其系统分析[J].宇航学报,1996,17(4):79-90.
    [76]曹鸿钧,陈建军,王德满.线圈炮电枢(圆柱壳)的屈曲分析[J].应用力学学报,1998,15(4):37-42.
    [77]王京,肖华,何焰蓝.自控式电磁线圈炮[J].物理实验,2004,24(10):43-47.
    [78]李立毅,程树康,刘宝廷.直线电磁发射技术的发展现状及前景[J].微电机,1999,32(2):26-30.
    [79]赵纯,邹积岩,何俊佳,等.重接式电磁发射的线圈与发射体仿真计算[J].电工电能新技术,2008,27(1):21-24
    [80]李小鹏,李立毅,程树康,等.重接式电磁发射技术的现状及应用前景[J].微电机,2002,35(4):396-41.
    [81]冯霈,雷彬,李治源,王红霞.5级同步感应线圈发射试验装置及控制系统研究[J].军械工程学院学报,2007,19(1):42-44.
    [82]刘元恒,刘少克,崔鹏.磁阻型四级线圈发射器控制系统的优化及实验研究[J].电气应用,2007,26(6):79-82.
    [83]崔鹏,刘少克.磁阻型线圈发射器弹丸速度与截面积关系[J].兵工自动化,2006,25(12):39-41.
    [84]向红军,李治源,雷彬.多级感应线圈发射器测控系统设计[J].军械工程学院学报,2008,20(4):63-65.
    [85]关晓存,雷彬,李治源,等.基于ANSYS线圈发射器驱动线圈电磁场分析[J].科学技术与工程,2007,7(16):4094-4098.
    [86]崔鹏,刘少克,罗宏浩.基于时控方法的感应线圈发射器研究[J].电气应用,2007,25(5):50-53.
    [87]高俊山,杨晶,杨嘉祥.三级线圈发射模型研究[J].自动化技术与应用,2003,22(3):42-44.
    [88]崔鹏,刘少克,罗宏浩,等.新型线圈发射器的电磁场仿真分析[J].计算机仿真,2006,23(5):293-296.
    [89]崔鹏,刘少克,罗宏浩.一种四级线圈发射器模型研究[J].火炮发射与控制学报,2005,19(4):20-24.
    [90]邓启斌,夏智勋,王成学,等.电磁发射拦截系统电磁发射组件仿真研究[J].火炮发射与控制学报,2008,20(4):90-93.
    [91]邓启斌,夏智勋,王成学,等.电磁发射拦截系统拦截效应仿真[J].弹道学报,2008,20(3):49-52.
    [92]周彦煌,陆欣,刘东尧.几种超高速射弹发射技术可行性的探索研究[J].弹道学报,1996,8(4):8-12.
    [93]廖敏夫,邹继斌,邹积岩,等.基于重接原理的三级电磁发射系统[J].哈尔滨工业大学学报,2008,40(1):90-94.
    [94]刘元恒,刘少克,崔鹏,等.一种线圈-重接混合型电磁发射器的设计与仿真[J].微电机,2007,40(3):3-5.
    [95]魏登武,刘少克.一种新型同步线圈型电磁发射器研究[J].微电机,2008,41(8):5-7.
    [96]赵纯,邹积岩,何俊佳,等.重接式电磁发射的线圈与发射体仿真计算[J].电工电能新技术,2008,27(1):21-24.
    [97]邹本贵,曹延杰,刘文彪,等.多级同步感应线圈炮驱动线圈优化研究[J].海军航空工程学院学报,2009,24(6):639-642.
    [98]刘彦鹏,杨丽佳,刘振祥,等.轨道-线圈复合型电磁炮交叉作用研究[J].国防科技大学学报,2009,31(5):70-74.
    [99]刘守豹,阮江军,彭迎,等.改进电流丝法及其在感应线圈炮场路结合分析中的应用[J].中国电机工程学报,2010,30(30):128-134.
    [100]王成学,曹延杰,邹本贵,等.感应线圈炮电枢的磁-结构耦合分析[J].微电机,2010,43(4):13-16.
    [101]李治源,关晓存.感应线圈炮电枢与驱动线圈间纵向动态边端效应的影响[J].微电机,2010,43(6):13-15.
    [102]杨栋,杨丽佳,刘振祥,等.螺旋线圈炮换向过程中的能量损失[J].四川兵工学报,2010,31(11):35-36.
    [103]邹本贵,王成学,王慧锦,等.脉冲电流作用下同步感应线圈炮电枢的应变测量[J].测试技术学报,2010,24(4):293-298.
    [104]李凤层,雷彬,李治源.单级感应线圈发射器参数分析与动态特性计算[J].兵器材料科学与工程,2010,33(4):72-75.
    [105]窦燕,段航,曹延杰,等.单级感应线圈发射器实验研究[J].兵工自动化,2010,29(7):12-15.
    [106]李凤层,雷彬,李治源.单级感应线圈发射器动态仿真及实验研究[J].微电机,2010,43(11):37-41.
    [107]金喜波.多级线圈发射器控制系统的设计[J].哈尔滨师范大学自然科学学报,2009,25(2):82-85.
    [108]李献,王秋良,刘建华.直线感应电磁发射器分析与优化[J].电工电能新技术,2010,29(2):43-47.
    [109]李海涛,朱英伟,邵慧,等.超导储能磁体对电感性负载放电研究[J].电工电能新技术.2010,29(4):27-30.
    [110]李峰,严仲明,董亮,等.小型NbTi磁体的失超传播特性研究[J].低温与超导,2009,37(4):37-40.
    [111]魏钦伟,胡基士,等.基于ANSYS的脉冲超导磁体电磁结构耦合分析[J].科学技术与工程,2009,9(15):4395-4398.
    [112]曹延杰,吴战胜,邹本贵.美军电磁轨道炮的新进展[J].现代军事,2007,(1):44-47.
    [113]陶孟仙,任兆杏,吕庆敖.固体电枢电磁场扩散效应研究[J].弹道学报,1998,10(2):29-32.
    [114]吕庆敖,雷彬,李治源,等.电磁轨道炮军事应用综述[J].火炮发射与控制学报,2009,32(1):92-96.
    [115]林庆华,栗保明.电磁轨道炮三维瞬态涡流场的有限元建模与仿真[J].兵工学报,2009,30(9):1159-1163.
    [116]荣光,孙宇新,王金相.特种多轨道炮发射振动分析[J].弹箭与制导学报,2009,29(5):255-257.
    [117]陈庆国,王永红,魏新劳,等.电容驱动型轨道电磁炮电磁过程的计算机仿真[J].电工技术学报,2006,21(4):68-71.
    [118]肖铮,陈立学,夏胜国,等.电磁发射用一体化C形电枢的结构设计[J].高电压技术,2010,36(7):1809-1814.
    [119]杨艺,李军.美国陆军电磁发射技术发展研究[J].外军炮兵,2007,(2):16-22.
    [120]王静端.电磁发射技术的发展及其军事应用[J].火力与指挥控制,2001,26(1),5-7.
    [121]赵纯,邹积岩,何俊佳,等.三级重接式电磁发射系统的仿真与实验[J].电T技术学报,2008,23(5):1-6.
    [122]张朝伟,李治源,程树康,等.线圈式电磁发射中的涡流分析[J].微电机,2004,38(1):19-22.
    [123]柴猛,高俊山,孙百瑜.小型电磁发射模型的设计及线圈参数寻优[J].自动化技术与应用,2006,26(4):61-63.
    [124]Wang Ying, Richard A. Marshall, and Cheng Shukang. Physics of Electric Launch[M]. Beijing: Science Press,2004.
    [125]I. Dutta, L. Delaney, B. Cleveland, et al. Electric-Current-Induced Liquid Al Deposition, Reaction, and Flow on Cu Rails at Rail-Armature Contacts in Railguns[J]. IEEE Trans, on Mag.,2009,45(1): 272-277.
    [126]Peter Mongeau and Fred Williams. Arc-commutated luncher[J]. IEEE Trans. Magn.,1982, 18(1):42-45.
    [127]Stefan L. Wipf. Concepts and Limitaions of Macroparticle Acceleators Using Travelling Magnetic Waves[J]. IEEE Trans. Magn.,1982,18(1):121-126.
    [128]Henry Kolm, Peter Mongeau. Basic Principles of Coaxial Launch Technology[J].IEEE Trans. Magn., 1984,20(1):227-230.
    [129]T. J. Burgess and M. Cowan. Multistage Induction Mass Accelerator[J]. IEEE Trans. Magn.,1984, 20(1):235-238.
    [130]Jianliang He, Enrico Levi, et al. Concerning the Design of Capacitively Driven Induction Coil Guns[J]. IEEE Trans, on Plasma Science,1989,17(1):429-438.
    [131]Barry Marder. ACoilgun Design Primer[J]. IEEE Trans, on Mag.,1993,29(1):701-705.
    [132]Sikhanda Satapathyl and Harold Vanicek. Energy Partition and Scaling Issues in a Railgun[J]. IEEE Trans, on Mag.,2007,43(1):178-185.
    [133]Zhao Chun, Zou Jiyan, Li Xiaopeng, et al. Study of a Three-Stage Reconnection Electromagnetic Launcher Using Triggered Vacuum Switches[J]. IEEE Trans, on Mag.,2007,43(1):219-222.
    [134]Babic S, Akyel C. Magnetic force calculation between thin coaxial circular coils in air[J]. IEEE Trans on Mag.,2008,44(4):445-452.
    [135]William A. Jacobs. Magnetic Launch Assist—NASA's Vision for the Future[J]. IEEE Trans, on Mag., 2001,37(1):55-57.
    [136]Kou Baoquan, Li Liyi, and Zhang Chengming. Analysis and Optimization of Thrust Characteristics of Tubular Linear[J]. IEEE Trans, on Mag.,2009,45(1):250-255.
    [137]Li Liyi, Li Xiaopeng, Li Qiguo, et al. Research On Inter-Stage Coupling of Three-Stage Reconnection Electromagnetic Launching System[J]. IEEE Trans, on Mag.,2009,45(1):354-357.
    [138]Stephen Williamson, Alexander Smith. Pulsed Coilgun Limits[J]. IEEE Trans, on Mag.,1997,37 (1): 201-207.
    [139]J. A. Andrews. Coilgun structures[J].IEEE Trans, on Mag.,1993,29(l):637-642.
    [140]Paul R. Beming, Charles R. Hummer and Clinton E. Hollandsworth. A Coilgun-Based Plate Launch System[J]. IEEE Trans. on Mag.,1999,35(1):136-141.
    [141]Rainer B. Meinke, Daniel R. Kirk and Hector Gutierrez. Hypersonic Electromagnetic Launch by Constant-Flux Synchronous Motor[J]. IEEE ISIE2006,2541-2548.
    [142]K. B. Kim, Z. Zabar, E. Levi, et al. In-bore projectile dynamics in the linear induction launcher (LIL), Part I:Oscillations[J]. IEEE Trans. Magn.,1995,31(1):484-488.
    [143]K. B. Kim, Z. Zabar, E. Levi, et al. In-bore projectile dynamics in the linear induction launcher (LIL), Part II:balloting, spinning, and nutation[J]. IEEE Trans. Magn.,1995,31(1):489-492.
    [144]Isaac R. Shokair. Projectile Transverse Motion and Stability in Electromagnetic Induction Launchers[J]. IEEE Trans. Magn.,1995,31(1):504-509.
    [145]A. Musolino, M Raugi and B Tellini.3-D Field Analysis in Tubular Induction Launcher with Armature Transverse Motion [J]. IEEE Trans. Magn.,1999,35(1):154-159.
    [146]Sami Barmada, Antonino Musolino, Marco Raugi, et al. Analysis of the Performance of a Multi-Stage Pulsed Linear Induction Launcher[J]. IEEE Trans. Magn.,2001,37(1):111-115.
    [147]Giancarlo Becherini. Gyroscopic Stabilization of Launch Package in Induction Type Coilgun[J]. IEEE Trans. Magn.,2001,37(1):116-122.
    [148]Giancarlo Becherini and Bernardo Tellini. Helicoidal Electromagnetic Field for Coilgun Armature Stabilization[J]. IEEE Trans. Magn.,2003,39(1):108-111.
    [149]Putman P, Salama K. Optimization of energy conversion in monolithic superconducting magnets[J]. IEEE Trans, on Applied Superconductivity,2003,13(2):2146-2149.
    [150]Liu Shoubao, Ruan Jiangjun, Peng Ying, et al. Improvement of Current Filament Method and Its Application in Performance Analysis of Induction Coil Gun[J]. IEEE Trans. Plasm. Sci.,2011, 39(1):382-389.
    [151]S. Aksoy, A. Balikci, Z. Zabar, et al. Numerical Investigation of the Effect of a Longitudinally Layered Armature on Coilgun Performance[J]. IEEE Trans. Plasm. Sci.,2011,39(l):5-8.
    [152]S. Aksoy, M. F. Yavuz, and A. Balikci. Transient Modeling of a Linear Induction Launcher Type Coil Gun with Two Dimensional Cylindrical FDTD Method[J]. IET Electric Power Applications,2011, 5(1):153-158.
    [153]Benjamin D. Skurdal and Randy L. Gaigler. Multimission Electromagnetic Launcher[J]. IEEE Trans, on Mag.,2009,45(1):458-461.
    [154]Michael R. Wright, Steven B. Kuznetsov and Kurt J. Kloesel. A Lunar Electromagnetic Launch System for In Situ Resource Utilization[J]. IEEE Trans. Plasm. Sci.,2011,39(l):521-528.
    [155]张宝裕,刘恒基.磁场的产生[M].北京:机械工业出版社,1987.
    [156]尹真.电动力学[M].北京:科学出版社,2006.
    [157]李泉凤.电磁场数值计算与电磁铁设计[M].北京:清华大学出版社,2002.
    [158]倪光正,杨仕友,等.工程电磁场数值计算[M].北京:机械工业出版社,2004.
    [159]王秉中.计算电磁学[M].北京:科学出版社,2002.
    [160]刘国强,赵凌志,蒋继娅Ansoft工程电磁场有限元分析[M].北京:电子工业出版社,2005.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700