用户名: 密码: 验证码:
考虑结构性的土体小应变本构模型研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在岩土工程中绝大部分土体的变形都在小应变范围内;而在小应变范围内土体具有较高的刚度、逐渐屈服和结构性等变形特性。以剑桥模型为代表的传统土体本构模型难以描述土体的小应变特性。在这种情况下,采用传统土体本构模型分析基坑开挖、地铁施工等岩土工程问题时,预测计算结果将与实际情况相差较大。同时土体是天然地质体,土体结构对包括小应变在内的整个变形过程有强烈的影响。因此,建立考虑结构性的土体小应变本构模型具有重要的理论意义和现实意义。论文以国家自然科学基金项目“土体的小应变本构模型研究”(50309017)和重庆市自然科学基金项目“基于结构扰动的土体本构模型研究”(CSTC2005BB6114)为依托,从土体小应变变形特性的本质原因-土体的结构性入手,对土体的小应变本构模型进行研究。
     论文的主要研究工作与结论如下:
     ①对土体小应变情况下的变形特性及其本构模型、土体结构性及其本构模型和修正剑桥模型等研究进展进行分析,提出了论文研究思路——基于土体的结构性,对修正剑桥模型进行扩展,从而建立土体的小应变本构模型。
     ②基于非连续介质细观力学,采用理论分析和数值试验两种手段,分别对土体的小应变变形的结构性机理进行分析。
     建立了土体的细观模型,利用弹性接触力学理论讨论了胶结结构对土体小应变特性的影响规律。研究表明:在土体的整个变形过程中存在一个由胶结结构控制的变形区域;在该变形区域内,微量的胶结结构(胶结厚度为土体颗粒直径的万分之一)也会使土体宏观的模量增加10余倍。
     在颗粒流PFC2D平台上,建立了土体及其三轴试验的颗粒流模型。分别讨论了接触刚度、粘结强度、粘结刚度与半径等细观结构参数对小应变条件下变形特性影响。研究表明:在小应变范围内细观颗粒滑动趋势较小,摩擦力还未得到充分发挥,土体细观颗粒间的摩擦对小应变特性影响较小。细观颗粒间的胶结厚度、胶结半径和胶结模量等对小应变特性影响较大;随着细观颗粒间的胶结厚度、胶结半径和胶结模量的增加,土体宏观变形模量将增大。
     在小应变条件,微量胶结也可以使土体颗粒间点接触转换为面接触,从而使土体表现出较高的宏观模量;而当应变进一步增加时,胶结破损,土体细观颗粒间的面接触转换为点接触,从而使土体宏观模量迅速降低。
     土体宏观强度参数的粘聚力和摩擦系数两个方面,在小应变范围内主要是粘聚力发挥作用,而摩擦力相对影响较小。
     ③土体结构的模型及其本构关系研究
     对土体的物理结构、宏观变形特性等进行调查,提出了土体结构的材料结构模型和分布结构模型。
     将土体变形表现出的超固结划分为材料结构超固结与应力超固结这两种不同性质的超固结;从而使材料结构与应力超固结统一起来。然后对修正剑桥模型进行扩展,模型屈服面的尺寸由材料结构超固结参数和应力超固结参数两者之和共同决定,而屈服面尺寸大小的变化由塑性体积硬化与材料结构损伤共同描述;从而建立了一个可以统一考虑超固结和结构性的土体本构模型。该模型对于描述土体结构性,特别是在大应变范围内的结构性具有较高的适用性。
     基于土体的分布结构模型概念,假设土体的一维塑性硬化元件的摩擦滑动元件启动应力参数、塑性模量相互独立,并分别服从某种形式的统计分布;利用统计学和塑性力学理论,推导了基于分布结构模型概念的土体一维弹塑性本构模型。该一维弹塑性模型能够反映土体小应变时的逐渐屈服特征。
     ④考虑土体的材料结构,利用复合体损伤理论,提出了弹性变形部分的计算方法。在塑性变形部分模型基于土体的分布结构模型,认为塑性变形的内变量不是单一、固定的值,而是在一定区间上遵循统计分布密度函数分布的;扩展修正剑桥模型单一内变量的单个屈服面至尺寸连续的屈服面场,并采用相关联的流动法则,从而提出了可以反映土体小应变特性的土体本构模型。
     ⑤在有限差分FLAC2D平台上,对论文小应变本构模型进行了fish语言程序化,然后对天府基坑工程案例进行了数值分析。分析表明,基坑开挖工程中绝大部分土体都处于小应变变形情况,土体小应变本构模型有利于准确预测岩土工程的变形;相比修正剑桥模型,本文小应变本构模型更能反映工程土体的变形情况特性。
In the majority of geotechnical engineerings, soils deform in small strain range. And soils display features of high stiffness, progressive yield and so on in the small strain range. But these features are difficult to model by Cam-clay model, which is the typical of traditional soil model. At the same time, soil is a natural geological body; and structure is material basis of deformation and the engineering properties. At present, soil constitutive model in small strain does not reflect the impact of the structure. It is theoretical & practical significance to establish constitutive modelling of soils in small strain considering the influence of structure.
     Major work and results of the thesis are as follows:
     (1) Investigation and analysis were taken of the soil deformation characteristics and constitutive models in the small strain ranges, of soil structure constitutive model and soil structural theory. It gave out the starting point for research– considering the soil structure, extending modified Cam-Clay model.
     (2) Based on non-continuum mechanics, deformation mechanism of soils in small strain ranges was studied by the means of theory and numerical tests respectively.
     Studies showed that the friction between soil particles had little effect on the deformation behavior in small strain range, but the particle bulk modulus and strength of contacts between particles, cement and other characteristics of the soils had profound effect on the he deformation behavior in small strain range behavior. In the range controlled by cement structure, just little cement (the thickness of soil cement is 1/10000 of particle‘s diameter size) would also make the modulus of soil increase more than 10 times. And the soil modulus increased with the increasing of the thickness of soil cement.
     Microscopic particles of soil contact state and the way had impact on deformation characteristics of soil in small strain ranges. In the initial state, the small amount of cement made contact with soil particles from point contact to surface contact. So soil macro-modulus increased significantly; but when the strain increases further, even the small amount of cement damage, the surface contacts between soil micro particles were changed into point contacts. As the result, soil modulus decreased rapidly.
     (3) The soil structure was described by material structure model and distribution structure model.
     Material structure was taken as one type of over-consolidation. The over consolidation shown by soil deformation was classified into two parts, over-consolidation induced by the structure and over-consolidation induced by stress. Then material structure and over-consolidation were united together. The model’s yield surface was the same with the modified Cam-Clay models’. And the size of yield surface was decided by the material structure and stress consolidation, and it changed by the volume-hardening and the material structural damage.
     By use of theory of plastic, a progressive yield constitutive was established based on the distribution structure model. An element with the composition of coulomb friction & sliding components and a spring was used as the representative volume element to simulate the isotropic elastic-plastic. By the use of statistics and plasticity theory, one-dimensional elastic-plastic soil constitutive model was presented based on the concept of distribution structure model. The result showed that the model can reflect deformation characteristics of soils at small strains.
     (4) Based on the concept of disturbing structure and material structure, a progressive yield constitutive model was presented by extending the cam-clay model. The internal variable of yield surface was not just a constant parameter, but it should be treated as a distribution function in a range. The single yield surface of the cam-clay model was extended to a field of yield surface. Then by introduction the progressive yield concept into the Cam-Clay Model, the progressive yield constitutive model was constituted. Only one parameter was added beside the three parameters of the cam-clay, which represented the disturbing structure of the soils. Primary application showed that the model can predict the progressive yield of the soils.
     (5) Based FLAC2D platform, the user-define model by fish was given out. And the Tianfu pit was analyzed by the present model and modified cam-clay model. Results showed that the majority of soil in excavation works deform in the small strain. The constitutive model presented in paper could accurately predict the deformation of geotechnical engineering compared to Cam-Clay model.
引文
[1] Burland J B.Small is beautiful- the stiffness of soil at small strains.Ninth Laurits Bjerrum Memorial Lecture[J].Can. Geotech. J,1989,16(4):499-516.
    [2] Kriegel H.J.,Weisner H.H..Problems of stress strain conditions in subsoil [A]. Proceedings 8th Inter-national Conference on Soil Mechanics and Foundation Engineering[C].1973,1(3):133–141.
    [3]罗富荣,国斌.北京地铁天安门西站“暗挖逆筑法”施工技术[J].岩土工程学报,2001,(01):75-78.
    [4] Jardine.R.J.,Potts.D.M.,Fourie,A.B.and Burland,J.B.Studies of the Influence of Non-linear Stress-Strain Characteristics in Soil-Structure Interaction[J].Geotechnique,1986,36(2):377-396.
    [5] Stallebrass,S.E. and Taylor,R.N.The Development and Evaluation of a Constitutive Model for the Prediction of Ground Movements in Overconsolidation Clay[J].Geotechnique,1997,47(2): 235-253.
    [6]刘元雪.基于应力空间变换的土体小应变本构模型研究[D].南京:河海大学.2003.
    [7]赖勇,宋雄伟,施建勇.土体小应变下的非线性特征试验研究[J].河海大学学报(自然科学版),2005,(03):306-309
    [8]施建勇,赖勇,雷国辉等.标准砂小应变特性的应力路径三轴试验研究[J].岩土力学,2007,(04):717-722
    [9] Leroueil S.Vaughan P R The general and congruent effects of structure in natural soil and weak rock[J].Geotechnique,1990,40(3):467–488.
    [10]沈珠江.土体结构性的数学模型[J].岩土工程学报,1996,18(1):95-97.
    [11] Cuccovillo , T & Coop , MR . Yielding and pre-failure deformation of structured sands[J].Geotechnigue,1997,47(3):491-508.
    [12] Atkinson,J.H. and Stallebrass,S.E.A model for recent stress history and non-linearity in the stress-strain behavior of over-consolidated soil[A].Proc.7th Int.Conf.on computer methods and advances in geomechanics[C].Cairns,1991:555-560.
    [13] Viggiani G , Atkinson J H . Stiffness of fine-grained soil at very small strains[J].Geotechnique,1995,45(2):249-265.
    [14] Yoshimi Y,Richart F E, Prakash S,et al Soil dynamics and its application to foundation engineering[C]// Proc 9th Int Conf Soil Mech,Tokyo 1977,2:605–650.
    [15] Tatsuoka, F.and Shibuya,S.Deformation characteristics of soils and rocks from field andlaboratory tests[A].Keynote lecture,9th ACSMFE[C],Bangkok,1991,(2):101-170.
    [16]宋雄伟,吕进.GDS在测量土体小应变中的应用[J].电力勘测设计,2003,(02):17-20.
    [17]李孝平,王世梅,李晓云等.GDS三轴仪的非饱和土试验操作方法[J].三峡大学学报,2008,3(5): 37-40.
    [18] Costa Filho,L.M..A laboratory investigation of the small stain behavior of london clay[D],University of London,1980.
    [19] Jardine,R.J.Some observations of the kinematic nature of soil stiffness[J].Soils and Foundations,1992,32(2):111-124.
    [20] Claudio Mancuso, Roberto Vassallo, and Anna d’Onofrio.Small strain behavior of a silty sand in controlled-suction resonant column– torsional shear tests[J].Can. Geotech. J,2002,39:22-31.
    [21] Clayton,C.R.I.,Khatrush, S.A.,Bica,A.V.D.and Siddique,A.The use of hall effect semiconductors in geotechnical instrumentation[J].Geotechnical testing journal,1989,12(1):69-76.
    [22]施建勇,赖勇,雷国辉,艾英钵.标准砂小应变特性的应力路径三轴试验研究[J].岩土力学,2007,(04):717-722
    [23]蔡正银,李相崧.材料状态对干砂小应变特性的影响[J].岩土力学,2004,(01):10-14.
    [24]伊颖锋.小应变条件下土体本构关系的研究及其在工程中的应用[D].河海大学,2003.
    [25] Jardine,R.J.,Symes,M.J.&Burland,J.B.The measurement of soil stiffness in the triaxial apparatus[J].Geotechnique,1984,34(3):323-340.
    [26] Jardine, R.J. Investigations of pile-soil behavior with special reference to the foundations of offshore structures[D].University of London,1985.
    [27] Jouvicic V.Coop M R.The measurement of stiffness anisotropy in clays with bender elements tests in the triaxial apparatus [J].Geotechnical Testing Journal, ASTM,1998,21(1):3-10.
    [28]施建勇,赖勇,雷国辉,艾英钵.标准砂小应变特性的应力路径三轴试验研究[J].岩土力学,2007,(04):718-722.
    [29] D.S.Pennington,D.F.T.Nash,M.L.Lings.Anisotropy of G0 shear stiffness in Gault Clay[J].Géotechnique,Volume 47(3):391-98.
    [30] Smith,P.R.Properties of high compressibility clays with reference to construction on soft ground[D].University of London,1992.
    [31] Atkinson,J.H.,Richardson,D.and Stallebrass,S.E.Effect of Recent stress history on the stiffness of overconsolidation soil[J].Geotechnique ,1990,40(4):531-540.
    [32]张培森,施建勇.小应变原岩状态下应力路径旋转对剪切模量的影响[J].岩土工程学报,2008,(03):379-383.
    [33] R Vassallo,Roberto,Mancuso,Claudio; Vinale,Filippo.Effects of net stress and suction history on the small strain stiffness of a compacted clayey silt[J].Canadian Geotechnical Journal, 2007,44(1):447-462.
    [34] Cotecchia F , Chandler RJ . A general framework for the mechanical behaviour of clays[J].Geotechnique ,2000,50(4): 431-447.
    [35] Fernandez, A.L. and Santamarina J.C.Effect of Cementation on the Small Strain Parameters of Sands[J].Canadian Geotechnical Journal,2001,38(1):191-199.
    [36] ]刘元雪,蒋树屏,赵燕明.原状欠固结土的力学特性试验研究[J].岩石力学与工程学报,2004,(S1):4409-4413.
    [37] Kondner,R.L.and J.S.Zelasko..A hyperbolic stress-strain response:Cohesive soil[J].Journal of the Soil Mechanics and Foundations Division,ASCE 1963,89(1):115-143.
    [38] Jardine R J,Potts D M,Burland J B.Studies of the influence of non-linear stress-strain characteristics in soil-structure interaction[J].Geotechnique,1986,36(3):377-396.
    [39] Goto,S.,Tatsuoka,F.,Shibuya,S.,Kim,Y.S.and Sato,T.A Simple Gauge for Local Small Strain Measurements in the Laboratory[J].Soil and Foundations,1991,31(1):169-180.
    [40] Puzrin A M . Burland J B . Non-linear model of small-strain behavior of soils[J].Géotechnique, 48(2):217-213.
    [41] Puzrin AM, Burland JB.A logarithmic stress-strain function for rocks and soils,Geotechnique,1996,46:157-164.
    [42]许国,朱俊高.用应变能定义土的小应变方程[J].电力勘测设计,2002,(04):40-43.
    [43] P R Simith, R.J.Jordine & D Whight.The yielding of Bothkennar clay [J].Geotechnique,1992,42(2):257- 274.
    [44] Al Tabbaa,A.and Wood,D.M.An Experimentally based‘bubble’model for clay[A].IN Numerical models in geomechanics[C].(eds S. Pietruszczak and G.N. Pande),Proc.3rd Int.Conf.on Numerical Methods in Geomechanics,1989:91-99.
    [45] Stallebrass,S.E.and Taylor,R.N.The development and evaluation of a constitutive model for the prediction of ground movements in overconsolidation Clay[J].Geotechnique,1997,47(2):235-253.
    [46]施建勇,赵维炳,LeeFoukhou等.软粘土的各向异性和小应变条件下的本构模型(ASM)[J].岩土力学,2000,(03):209-212.
    [47]刘元雪,施建勇,尹光志,陆新.基于应力空间变换的原状软土本构模型[J].水利学报,2004,(06):14-20.
    [48]伊颖锋,施建勇,周清华.土体小应变特性研究中的边界面模型[J].岩土力学,2003,(01):135-138.
    [49] Simpson,B.Development and Application of a new soil model for prediction of ground movements[A],In Predictive soil mechanics, Proc. Wroth Memorial Sump[C].Oxford (eds G.T.Houlsby and A.N.Schofield) London:Thomas Telford,1993: 628-643.
    [50] Yimsiri,S.and Soga, K.Micromechanics-based stress-strain behaviour of soils at small strains[J].Geotechnique,2000,50(5):559-571.
    [51]谢定义,齐吉琳.土结构性及其定量化参数研究的新途径[J].岩土工程学报,1999,21(6):651-656.
    [52]沈珠江.土体结构性的数学模型——21世纪土力学的核心问题[J].岩土工程学报,1996,18(1):95-97.
    [53] ]张诚厚.两种结构性粘土的土工特性[J].水利水运科学研究,1983,(4):65-71.
    [54] Mesri G, Roskhsar A, Bohor B F.Composition and compressibity of typical samples of Mexico City clay[J].Geotchnique,1995,25(3):527-554.
    [55] Locat J,Lefebvre G.The compressibility and sensitivity of an artifically sedimented clay soil:the Gran de Baleine marine clay[J].Quebec.Marine Geotechnol,1985,6(1):1-27.
    [56]沈珠江.软土工程特性和软土地基设计[J].岩土工程学报,1998,20(1):100-110.
    [57]龚晓南.原状土的结构性及其对抗剪强度的影响[J].地基处理,1999,10(1):61.
    [58]李作勤.有结构强度的欠压密土的力学特性[J].岩土工程学报,1982,4(1):34-45.
    [59] Tavenas,Leroueil. Effects of stresses and time on yielding of clays [C].Proc.of 9th ICSMFE.Tokyo,1977:319-326.
    [60]谢定义,齐吉琳,朱元林.土的结构性参数及其与变形强度的关系[J].水利学报,1999,(10):1-6.
    [61]矫德全,陈愈炯.土的各向异性和卸荷体缩[J].岩土工程学报,1994,(04):9-16.
    [62]孙德安,姚仰平,殷宗泽.初始应力各向异性土的弹塑性模型[J].岩土力学,2000,(03):222-226.
    [63]沈珠江.结构性粘土的弹塑性损伤模型[J].岩土工程学报1993,15(3):21-28.
    [64]沈珠江.土体结构性的数学模型[J].岩土工程学报.1996,18(1):95-97.
    [65]沈珠江,陈铁林.岩土破损力学——结构类型与荷载分担[J].岩石力学与工程学报,2004,(13):2137-2142.
    [66]沈珠江,陈铁林.岩样变形和破坏过程的二元介质模拟[J].水利水运工程学报,2004,(01):1-5.
    [67] Desai C S.Mechanics of Materials and inter faces :the Disturbed state concept [M].CRC Press ,Boca Raton,1999.
    [68] Desai C S.Constitutive modeling using the disturbed state as microstructure self-adjustment concept [M].Chapter 8 in Continuum models for materials with microstructure,1995.
    [69]施建勇,赵维炳.考虑损伤的软土地基变形分析[J ] .岩土工程学报, 1998, 20(2) :2-5.
    [70] Fernando Alonso-Marroquin,Hans B. Muhlhaus,Hans J. Herrmann。Micromechanical investigation of soil plasticity using a discrete model of polygonal particles[J].Theoret. Appl. Mech.,2008,35 (1) :11-28.
    [71] Cheng, Y. P., White, D. J., Bowman, E. T., Bolton, M. D. & Soga, K.The observation of soil microstructure under load. Powders and Grains,2001,Sendai,Kishino (ed.): 69-72.
    [72] M. Lu and G.R. McDowel.The importance of modelling ballast particle shape in the discrete element method[J].Granular Matter,2007(9):69-80.
    [73] Robertson, D. & Bolton, M. D.“DEM simulations of crushable grains and soils.”Powders and Grains 2001, Kishino (ed.), 623-626.
    [74] Yimsiri, S. and Soga, K..Effect of surface roughness on small-strain modulus:micromechanics view[A] . Pre-failure Deformation Characteristics of Geomaterials: Proceedings, 2nd International Symposium[C],M. Jamiolkowski et al. (ed.) ,Torino, Italy, (1999).597-602.
    [75] Wadud Salim,Buddhima Indraratna.A new elastoplastic constitutive model for coarse granular aggregates incorporating particle breakage[J].Canadian geotechnical journal,2004,41(4):657-671.
    [76] Liu M D and Carter J P.Structured Cam clay model[J].Canadian Geotechnical J,2002,39 (6):1313-1332.
    [77] Liu M D and Carter J P.Volumetric deformation of natural clays[J].International J .of G eomechanics.,2003,3(2):236-252.
    [78] M.Kavvadas and A.Amorosi.A constitutive model for structured soils[J].Geotechnique,2000,50(1):263-273.
    [79] Rouainia,M & Muir Wood,D.Efficient integration for kinematic hardening soil plasticity[A],8th Annual Conference of the ACME (ACME2000)[C].(ed. Cross,M) University of Greenwich, 2000:151-154.
    [80] Baudet,B.A.,Stallebrass,S.E.Modelling the destructuration of soft natural clays [A] Procs 10th Conference of the International Association of Computer Methods and Advances in Geomechanics (IACMAG) [C]. Tucson, Arizona, USA, Rotterdam,Netherlands:A.A. Balkema,2001:297-301.
    [81]王立忠,赵志远,李玲玲.考虑土体结构性的修正邓肯—张模型[J].水利学报,2004,(1) :83-90.
    [82]张永兴,郑智能,刘元雪.考虑两种不同性质超固结的土体本构模型[J].土木建筑与环境工程,2010,(1):1-3.
    [83] Roscoe,K.H.,and Borland,J.B.On the Generalized stress-strain behavior of wet clay[M]. Engineering Plasricify,Cambridge Univ.Press,1968:535-609.
    [84] Wroth,C.P.,and Houlsby,G.T.Soil mechanics-property characterisation and analysis procedures[A].Proceedings 11th International Conference on Soil mechanics and Foundation Engineering[C],San Francisco,1985(1):1-55.
    [85]沈珠江.科学家不应只是解释现象——关于岩土本构理论研究方向的评述[J].岩土工程学报,2005,27(12):1494-1495.
    [86]沈珠江.土体结构性的数学模型──21世纪土力学的核心问题[J].岩土工程学报,1996,18(01):95-97.
    [87]吴宏伟,施群.土体的小应变特性[J].岩土工程学报,1998,20(1):70-75.
    [88]刘元雪,施建勇.基于应力空间变换的修正剑桥模型改进[J].岩土力学,2003,(01):1-7.
    [89]饶为国,赵成刚,王哲等.一个可考虑结构性影响的土体本构模型[J].固体力学学报,2002,(01): 34-39.
    [90]谢定义,齐吉琳,张振中.考虑土结构性的本构关系[J].土木工程学报,2000,33(04):35-41.
    [91] ]葛修润,任建喜,蒲毅彬等.岩土损伤力学宏细观试验研究[M]北京:科学出版社,2004.
    [92]朱珍德.用数字图像处理技术进行膨胀红砂岩细观结构动态劣变特征研究[J].岩石力学与工程学报,2007,26(10).
    [93]唐朝生,施斌,王宝军.基于SEM土体微观结构研究中的影响因素分析[J],岩土工程学报,30(4): 560-565.
    [94]陈正汉,方祥位,朱元青等.膨胀土和黄土的细观结构及其演化规律研究[J].岩土力学,2009,(1):1-11
    [95]周健,贾敏才等.岩土工细观模型试验与数值模拟[M].北京:科学出版社,2008,1-437.
    [96]周健,池永,池毓蔚等.颗粒流方法及PFC2D程序[J].岩土力学,2000,(03):271-274.
    [97]周健,白彦峰,张昭等.砂土中群桩室内模型试验及颗粒流模拟研究[J].岩土工程学报,2009,(08):1275-1280.
    [98]张刚,周健,姚志雄,堤坝管涌的室内试验与颗粒流细观模拟研究[J].水文地质工程地质,2007,(06):83-86.
    [99]蒋明镜,彭立才,朱合华等.Macro-and micro-properties of two natural marine clays in china[J].China Ocean Engineering,2009,23(2):329 -344.
    [100]尹小涛,葛修润,党发宁等.基于CT试验的混凝土破损机理生态学研究[J].混凝土,2006(8):21-24.
    [101]施斌,刘志彬,姜洪涛.论土体结构各层次的功能及其相互关系[J].工程地质学报,2007,(05):577-584.
    [102] James K. Mitchell,Kenichi Soga.Fundamentals of soil behavior[J] John Wiley & Sons; 3rd Edition edition,15 July 2005.
    [103] Thomas Benz.Small-Strain stiffness of soils and its numerical consequences[D].Institutfur Geotechnik der Universit at Stuttgart,2006:39-40.
    [104] ]G.M. L.Gladwell著,范天佑译.经典弹性理论中的接触问题.北京:北京理工大学出版社,1991.
    [105] Thomas Benz.Small-Strain Stiffness of Soils and its Numerical Consequences[D].Institut fur Geotechnik der Universit at Stuttgart,2007:39-41
    [106]罗鸿禧,陈守义.湛江灰色粘土的工程地质特性[J].水文地质工程地质,1981,(5)
    [107]汪泳嘉,邢纪波.离散单元法及其在岩土力学中的应用[J].东北工学院出版社,1991:1-35.
    [108] Itasca Consulting Group,Inc.PFC2d theory and background. Minneapolis,Minnesota,2004.
    [109]曾远.土体破坏细观机理及颗粒流数值模拟[D].同济大学, 2006.
    [110] Katti,D.R. and Desai, C.S.Modelling and testing of cohesive soil using disturbed state concept[J].J. of Eng. Mech.,ASCE,1995,121(5):648-658.
    [111]包承纲.谈岩土工程概率分析方法中的若干基本问题[J].岩土工程学报,1989,11(4):94-98.
    [112]宫凤强,李夕兵,邓建等.岩土参数概率密度函数的正交多项式推断[J].地下空间与工程学报,2006,2(1):108-111.
    [113]薛守义,刘汉东.岩体工程学科性质透视[M].河南:黄河水利出版社,2002.
    [114]徐建平,胡厚田,张安松等.边坡岩体物理力学参数的统计特征研究[J].岩石力学与工程学报,1999,18(4):382-386.
    [115]曹文贵,张升,赵明华.饱和土变形过程模拟的统计损伤方法研究[J].岩土力学,2008, 29(01):13-17.
    [116] ]吴振君,王水林,葛修润.约束随机场下的边坡可靠度随机有限元分析方法[J].岩土力学,2009(10):3086-3092.
    [117]肖树芳,李广杰,汪发武.岩体工程中非确定性问题的理论[J].岩石力学与工程学报,1992,11(3):314-316.
    [118]徐卫亚,韦立德.岩石损伤统计本构模型的研究[J]:岩石力学与工程学报,2002(6):787-791.
    [119]曹文贵,李鹏,赵明华,刘成学.基于正态分布的岩石损伤统计本构模型及其参数确定方法研究[J].水文地质工程地质,2005,(03)11-14.
    [120]杨明辉赵明华曹文贵.岩石损伤软化统计本构模型参数的确定方法[J].水利学报,2005,3(3):345-349.
    [121]曹文贵,赵衡,张玲等.考虑损伤阀值影响的岩石损伤统计软化本构模型及其参数确定方法[J].岩石力学与工程学报,2008,(06).
    [122]曹文贵,莫瑞,李翔.基于正态分布的岩石软硬化损伤统计本构模型及其参数确定方法探讨[J].岩土工程学报,2007,29(5):671-675.
    [123]曹文贵,张升,赵明华.软化与硬化特性转化的岩石损伤统计本构模型之研究[J].工程力学,2006,(11):110-115.
    [124] Soga,Kenichi.Mechanical behavior and constitutive modeling of natural structured soils[D].University of California at Berkeley,1994:40-56.
    [125] []姚海林,马时东,卢应发.正常固结土与超固结土的一些特性及其应力历史的确定[J].岩土力学,1994,5(3):38-45.
    [126]刘元雪,王培勇,王良.粘土的结构性与超固结[J].后勤工程学院学报,2005,(04):1-6.
    [127] Hamamdshiev K B.Investigation of pseudo-overconsolidation of soils[A].In;Proceedings of the International Conference on Soil Mechanics and Foundation Engineering[c],A.A.Balkema,1981,v1:613-616.
    [128] Luigi Callisto,Sebastiano Rampello.An interpretation of structural degradation for three natural clays [J].Canada Geotechnical Journal,2004,41:392-407.
    [129] Lagioia,R,Vaughan,P.R An experimental and theoretical study of the behavior of a calcarenite in triaxial compression [J].Geotechnique,1995,40(3):467-488.
    [130] Andrew Schofield,Peter Wroth.Critical State soil mechanics[M]. London,McGraw-Hill, 1968.
    [131] Lagioia,R.,Puzrin,A.M.,Potts,D.M.A new versatile expression for yield and plastic potential surfaces[J].Comp.& Geotechnics,1996,19:171-191.
    [132]刘元雪,施建勇.基于应力空间变换的修正剑桥模型改进[J].岩土力学,2003,(01):1-7.
    [133] Kiyama S,Hasegawa T.A two-surface model with anisotropic hardening and nonassociated flow rule for geomaterials[J].Soils and Foundations,1998,38(1):45-59.
    [134] Viggiani G , Atkinson J.H . Stiffness of fine-grained soil at very small strains[J].Géotechnique,1995,45(2):249-265
    [135] Simith P R,Jordine R J,Hight D W.The yielding of Bothkennar clay [J].Geotechnique,1992,42(2):257-274.
    [136] Itasca Software Comp. USER MANUAL OF FLAC .2002
    [137]中国建筑西南勘察设计研究院,成都市地铁天府广场综合改造工程岩土工程勘察成果报告,2004.8
    [138]李政道.统计力学(李政道讲义)[M].上海,上海科学技术出版公司,2006.
    [139] W. Greiner,L. Neise.热力学和统计力学(英文版) [M] .北京,世界图书出版公司,2004.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700