用户名: 密码: 验证码:
主应力方向旋转变化条件下饱和砂土的动力特性试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
土的力学行为与加载路径密切相关。与单向剪切相比,多向剪切会产生额外的塑性体积应变,在不排水条件下孔隙水压力增长的速率较高,特别是在具有主应力轴连续旋转特点的加载条件下,砂土抵抗液化的能力也将更低。主应力方向旋转变化是地震、波浪等荷载作用下地基土体所受应力路径的主要特征,但目前这方面的研究成果还较少,且在已有研究资料中,几乎所有试验都为圆形应力路径试验,对于更一般情况的椭圆形应力路径试验,则几乎没有相关研究资料。因此有必要对此种复杂应力条件下土的力学行为进行研究。另外,实际中海床的初始应力状态往往是各向异性的,作为海床与海洋建筑物地基稳定性评价中的一个基本而重要问题,探讨砂土的变形与强度特性时必须考虑各向非均等的复杂初始应力状态和复杂的循环应力变化模式。因此,本文结合国家自然科学基金重点项目“海洋土的工程特性及其地基的变形机理研究”(NO.50639010)和国家自然科学基金项目“复杂应力状态下土的本构模型及其在海床动力学中的应用”(NO.50179006),利用先进的“土工静力—动力液压三轴—扭转多功能剪切仪”,针对饱和砂土开展了考虑主应力方向旋转变化的系列椭圆应力路径试验研究。主要研究内容和研究成果如下:
     1.进行了大量主应力轴连续旋转条件下的椭圆应力路径试验,探讨了不同椭圆应力条件下饱和砂土的变形与强度特性,其结果填补了以往仅进行圆形应力路径试验研究的不足。结果表明,与弹性解基础上得到的偏应力保持不变的圆形应力路径相比,椭圆应力路径条件下的饱和砂土动强度发生较大范围的变化,所得到的变形性质也更为复杂。
     2.通过专门设计的对比试验,系统地研究了主应力方向旋转试验中竖向偏差应力与剪应力幅值之比对饱和砂土动强度的影响。研究表明:当保证椭圆面积不变时,土样会在竖向偏差应力与剪应力的幅值之比达到某一临界值时表现出最高的强度,应力幅值之比偏离此临界值越远,土样强度越低。初始主应力方向角、固结偏应力比与初始中主应力系数对此临界值均存在影响,文中给出了相应的取值范围。
     3.研究了复杂初始应力状态下饱和砂土的动强度特性。研究表明:初始主应力方向角与固结偏应力比对饱和砂土的动强度影响显著,而初始中主应力系数的影响不大。文中给出了饱和砂土动强度随各因素变化的参考幅度。
     4.研究了复杂初始应力状态下饱和砂土的动应变特性,分析初始主应力方向角、固结偏应力比、初始中主应力系数以及动应力幅值等因素对饱和砂土的动应变发展的影响。研究表明:非均等固结条件下,固结偏应力比对广义剪应变增长模式影响最为显著;初始主应力方向角对饱和砂土应力-应变关系特性影响最大。通过对大量试验数据的回归分析,得到一个可以描述不同固结偏应力比条件下累积广义剪应变随振次增长趋势的统一公式。
     5.分析孔隙水压力发展的时程曲线,研究饱和砂土的动孔隙水压力增长特性,分析各种因素对动孔隙水压力增长特性的影响。研究表明:非均等固结条件下,固结偏应力比对归一化后的孔隙水压力随振次增长模式影响最为显著;不同固结条件下的归一化孔隙水压力随应变增长模式却基本相同。建立了复杂应力条件下饱和砂土孔隙水压力的发展模式。
Mechanical behavior of soil is closely associated with the loading patterns. Test results have shown that larger plastic volumetric strain as well as higher growth rate of pore water pressure would be generated in multi-directional shearing than in a single-directional one. Lower resistance of sand to liquefaction was also observed under the rotation of principal stress orientation. Principal stress rotation is the typical stress path when seismic or wave load is applied on the soil. But the study in this aspect is less, and almost all the existing research data is about circular path. It has been hardly studied for more general condition of oval path. Moreover, initial stress condition has significant influence on the dynamic behavior of sand. As a basic and important issue in the evaluation of the stability of seabed and ocean engineering structures, the complex initial anisotropic stress state as well as the complex variation pattern of cyclic stress must be taken into consideration in studying the deformation and strength properties of sands. For this sake, plenty of shear tests under oval paths were designed and performed on Fujian Standard Sand using the soil static and dynamic universal triaxial and torsional shear apparatus. The present research is supported by the National Natural Science Foundation Key Project of Study on Engineering Properties of Marine Soil and Deformation Mechanism of the Foundation (No. 50639010) and the National Natural Science Foundation Project of Study on Constitutive Model of Soil under the Complex Stress Condition and its Application in Seabed Dynamics (No. 50179006). Experimental study on rotation of principal stress orientation was focused on. The main content of the current research are as follows:
     1. Plenty of bidirectional shear tests under oval paths were designed and performed to research the deformation and strength characteristics of saturated sand. The research can remedy the deficiency of previous study on circular path only. The results show that, when compared to the results of circular paths tests, the dynamic intensity of sand gained in oval paths tests changes in a wide range, and the deformation properties are more complicated.
     2. The effect of magnitude ratio of normal stress difference and shear stress on dynamic resistance of saturated sand has been researched by special designed contrast tests. The results show that, when the bounding area of oval paths is kept constant, a critical value of the stress magnitude ratio could be found, under which the highest resistance of specimen is observed. The more the stress ratio deviates from the critical value, the lower intensity of sand is behaved. Initial orientation of the major principal stress, consolidated deviator stress ratio, and initial coefficient of intermediate principal stress all have effects on the critical value. The corresponding critical value range is given in chapter 3.
     3. Dynamic strength characteristics of saturated sand under complex initial stress condition have been researched. The results show that, the dynamic strength of sand is strongly depended on initial orientation of the major principal stress and consolidated deviator stress ratio, but less associated with initial coefficient of intermediate principal stress. The reference variation range of resistance of sand changing with the influence factors is given.
     4. Dynamic strain response of saturated sand under complex initial stress condition has been researched. Factors influence the development of dynamic strain are analyzed such as initial orientation of the major principal stress, consolidated deviator stress ratio, initial coefficient of intermediate principal stress and amplitude of cyclic stresses. A unified development model of dynamic strain for different consolidated deviator stress ratio has been put forward.
     5. The development characteristic of dynamic pore water pressure is investigated by analyzing the time-history curve of pore water pressure and considering various influence factors. The results show that, consolidated deviator stress ratio has the most significant effect on normalized pore water pressure developed with number of cycles. And the normalized pore water pressure developed with generalized shear strain is independent of various initial stress condition. Then the development model of residual pore water pressure with cyclic numbers and generalized shear strain are both established.
引文
[1]李广信.岩土工程20讲--岩坛漫话[M].人民交通出版社,2007.
    [2]谢定义.21世纪土力学的思考*[J].岩土工程学报,1997,19(4):111-114.
    [3]沈珠江.关于土力学发展前景的设想[J].岩土工程学报,1994,16(1):110-111.
    [4]刘汉龙,余湘娟.土动力学与岩土地震工程研究进展[J].河海大学学报,1999,27(1):6-15.
    [5]包承纲,周小文.20世纪土力学的回顾和未来发展趋势的预测[J].长江科学院院报,2000,17(2):29-33.
    [6]邵生俊,谢定义.饱和砂土动力学基本特性及其应用途径的研究[J].西安理工大学学报,1999,15(3):34-38.
    [7]Ishibashi Isao,Kawamura Makoto,Bhatia Shobha K.Torsional simple shear apparatus for drained and undrained cyclic testing[A].Advances in the Art of Testing Soils Under Cyclic Conditions[C],Detroit,MI,Engl.,1985:51-73.
    [8]陈厚群.中国大坝的抗震设计与研究[J].水利学报,2000,(第20届国际大坝会议专辑):77-85.
    [9]王自法.汶川地震震害调查与初步思考[R].哈尔滨,2008,
    [10]全国海洋经济发展规划纲要.国务院,2003年5月7日颁发.
    [11]邱大洪.海岸和近海工程学科中的科学技术问题[J].大连理工大学学报,2000,40(6):631-637.
    [12]Christian J T,Taylor P K,Yen J KC,et al.Large diameter underwater pipeline for nuclear power plant designed against soil liquefaction[C].Proceedings sixth annual off-shore technology conference,Houston,Texas,1974:597-606.
    [13]Dunlap W,Bryant W R,Williams G N,et al.Storm wave effects on deltaic sediments-results of SEAWAB Ⅰ and Ⅱ.Port and Ocean Engineering Under Arctic Conditons[C],Trondheim:Norwegian Institute of Technology,1979,2:899-920.
    [14]郑维民.中国海洋工程地质研究[J].工程地质学报,1994,2(1):90-96.
    [15]顾小芸.海洋工程地质的回顾与展望[J].工程地质学报,2000,8(1):40-45.
    [16]Ishihara K,Towhata I.Sand response to cyclic rotation of principal stress directions as induced by wave loads[J].Soils and Foundations,1983,23(4):11-26.
    [17]Madsen O S.Wave-induced pore pressures and effective stresses in a porous bed[J].Geotechnique,1978,28(4):377-393.
    [18]Dakoulas P,Sun Y H.Behavior of fine sand under cyclic rotation of principal using the hollow cylinder apparatus[C].Proceeding of 2th int.Conference on Recent Advance in Geotechnical Earthquake Engineering and Soil Dynamics,St.Louis,Missouri,1991:535-542.
    [19]沈瑞福,王洪瑾,周景星.动主应力轴连续旋转下砂土的动强度[J].水利学报,1996,(1):27-33.
    [20]沈瑞福,王洪瑾,周克骥,等.动主应力连续旋转下砂土孔隙水压力发展及海床稳定性判断[J].岩土工程学报,1994,16(3):70-78.
    [21]Ishihara K,Yamazaki A.Analysis of wave-induced liquefaction in seabed deposits of sand[J].Soils and Foundations,1984,24(3):85-100.
    [22]林淋.竖向地震动特征分析[D](硕士学位论文).哈尔滨:中国地震局工程力学研究所.2005.
    [23]Tatsuoka,F,Som recant developments in triaxial systems for cohessionless soils.Advanced Triaxial Testing of Soil and Rock,ASTM STP 977(Edited by Robert T D,Ronald C C,Marshall L S),AETM,Philadelphia,1988:7-67.
    [24]薛守义,王思敬.小浪底工程中原状泥化夹层的动三轴试验[J].岩土工程学报,1997,19(2):89-94.
    [25]朱腾明,张万昌,王幼青,等.塔中油田沙漠砂动力特性试验研究[J].岩土工程学报.1998.20(3):97-101.
    [26]Chen Y C,Liao T S.Dynamic properties and state parameter of sand[C].Proceeding of the 9th International Offshore and Polar Engineering Conference,Bmst,1999,Ⅰ:529-538.
    [27]Chien L K,Oh Y N.Effects of pre-cyclic loading on strength resistance and liquefaction induce settlement of reclaimed soil[C].Proceeding of the 9th International Offshore and Polar Engineering Conference,Brest,1999,Ⅰ:575-582.
    [28]衡朝阳,何满潮,裘以惠.含粘粒砂土抗液化性能的试验研究[J].工程地质学报,2001.9(4):339-344.
    [29]Uchida K,Stedman J D.Liquefaction behavior of Toyoura sand under cyclic strain controlled triaxial testing[C].Proceeding of the 11th International Offshore and Polar Engineering Conference,Stavanger,2001,Ⅱ:530-536.
    [30]Cooling L F,Smith D B.The shearing resistance of soils.[C].Proceeding Institution of Civil Engineering,London,1936,3:333-343.
    [31]Ishihara A S,Sherif M A.Soil liquefaction by torsional simple shear device[J].Journal of Geotechnical Engineering Division,ASCE,1974,100(GT8):871-887.
    [32]Ishihara A S,Yasuda S.Sand liquefaction in hollow cylinder torsion under irregular excitation[J].Soils and Foundations,1975,15(1):45-59.
    [33]Lade P V.Torsion shear tests on cohessiless soil[C].Proceeding 5th Pan.Amarican Conference on Soil Mechanic,Buenos Aires,1975,1:117-127.
    [34]Hight D W,Gens A and Symes M J.The development of a new hollow cylinder apparatus for investigating the effects of principal stress rotation in soils[J].Geotechnique,1983,33(4):355-384.
    [35]李万明,周景星.初始主应力偏转对粉土动力特性的影响[C].第四届全国土动力学学术会议论文集,杭州:浙江大学出版社,1994:47-50.
    [36]李万明,周克骥,周景星.用扭剪仪研究主应力轴偏转的影响[C].第三届全国土动力学学术会议,上海:同济大学出版社,1990:239-242.
    [37]李万明,周景星.扭剪与三轴试验中孔压不均匀性的研究[J].岩土力学.1991,12(4):33-39.
    [38]张国平,王洪谨,周克骥.内外室压力不等的空心圆柱扭剪仪的研制[C].第七届土力学及基础工程学术会议论文集,北京:中国建筑工业出版社,1994:65-70.
    [39]王伟胜.拉压与扭剪双向振动三轴仪微机控制系统研究[D](硕士学位论文).陕西机械学院.1993.
    [40]胥洪远.拉压扭剪三轴仪微机控制系统研制[D](硕士学位论文).西安:西安理工大学,1994.
    [41]栾茂田,郭莹,李木国,等.土工静力-动力液压三轴-扭转多功能剪切仪研制中的若干问题探讨[C].土动力学与岩土地震工程,北京:中国建筑工业出版社,2002:546-522.
    [42]栾茂田,郭莹,李木国,等.土工静力-动力液压三轴-扭转多功能剪切仪研发及应用[J].大连理工大学学报,2003,43(5):670-675.
    [43]郭莹.复杂应力条件下饱和松砂的不排水动力特性试验研究[D](博士学位论文).大连:大连理工大学.2003.
    [44]刘汉龙,周云龙,余湘娟,等.静动多功能振动、扭剪三轴仪研制[C].刘汉龙.土动力学与岩土地震工程(第六届全国土动力学学术会议论文集),北京:中国建筑工业出版社,2002:540-545.
    [45]陈育民,刘汉龙,周云东.液化及液化后砂土的流动特性分析[J].岩土工程学报,2006.28(9):1139-1143.
    [46]曾长女,刘汉龙,周云东.饱和粉土粉粒含量影响的动孔压发展规律试验研究[J].防灾减灾工程学报,2006,26(2):180-184.
    [47]李作勤.扭转三轴试验综述[J].岩土力学,1994,15(1):80-93.
    [48]Yamamoto T,Koning H L,Spellmeigher H.On the response of a poro-elastic bed to water waves[J].Journal of Fluid Mechanics,1978,78:193-206.
    [49]Towhata I,Ishihara K.Shear work and pore water pressure in undrained shear[J].Soils and Foundations,JSSMFE,1985,25(3):73-84.
    [50]#12
    [51]王平安,于澍.主应力轴旋转下饱和砂土振动孔隙水压力发展和变化的研究[J].西安建筑科技大学学报,1996,28(4):433-437.
    [52]姚仰平.真三轴应力条件下砂土的非线性动力本构关系的新研究[D](博士学位论文).西安:西安理工大学,1995.
    [53]沈扬.考虑主应力方向变化的原状软粘土试验研究[D](博士学位论文).浙江:浙江大学,2007.
    [54]聂影.复杂应力条件下饱和重塑黏土动力特性试验研究[D](博士学位论文).大连:大连理工大学,2008.
    [55]Yoshimine M,Ishihara K,Vargas W.Effects of principal stress direction and intermediate principal stress on unrained shear behavior of sand[J].Soils and Foundations,1998,38(3):179-188.
    [56]Sato K,Yoshida N.Effect of principal stress direction on undrained cyclic shear behavior of dense sand[C].Proceedings of the 9th International Offshore and Polar Engineering Conference,1999,1:542-547.
    [57]Uthayakumar M,Vaid Y.P.Static liquefaction of sands under multiaxial loading[J].Can.Geotech.J.,1998,35:273-283.
    [58]Nakata Y.,Hyodo M.,Murata H.Flow deformation of sands subjected to principal stress rotation[J].Soils and Foundations,1998,38(2):115-128.
    [59]Huiming Z.,Vinod K.Garga.Quasi-steady state:a real behaviour?[J].Can.Geotech.J.,1997,34:749-761.
    [60]P.V.Lade,J.A.Yamamuro.Effects of nonplastic fines on static liquefaction of sands[J].Can.Geotech.J.,1997,34:918-928.
    [61]王洪瑾,马奇国,周景星等.土在复杂应力状态下的动力特性研究[J].水利学报,1996,(4):57-72.
    [62]王洪瑾,沈瑞福,马齐国.双向振动下土的动强度[J].清华大学学报,1996,36(4):93-98.
    [63]姚仰平,谢定义.砂土的形变能破坏准则[J].西安理工大学学报,1994,10(1):42-46.
    [64]杨春林,周健.初始剪应力下砂土的动力特性预测模型[J].大坝观测与土工测试,1997,21(6):25-26.
    [65]付磊,王洪瑾,周景星.初始主应力偏转角对土石坝动力计算结果的影响[J].水利学报,1999,(2):76-80.
    [66]付磊,王洪瑾,周景星.主应力偏转角对砂砾料动力特性影响的试验研究[J].岩土工程学报,2000,22(4):435-440.
    [67]郭莹,何杨,栾茂田,等.初始主应力方向对饱和松砂孔压特性影响的试验研究[C].第九届土力学及岩土工程学术会议,北京:清华大学出版社,2003:1065-1068.
    [68]郭莹,栾茂田,许成顺,等.主应力方向变化对松砂不排水动强度特性的影响[J].岩土工程学报,2003,25(6):666-670.
    [69]郭莹,栾茂田,何杨,等.复杂应力条件下饱和松砂孔隙水压力增长特性的试验研究[J].地震工程与工程振动,2004,24(3):139-144.
    [70]李建国.波浪荷载作用下饱和钙质砂动力特性的试验研究[D](博士学位论文).武汉:中国科学院武汉岩土力学研究所,2005.
    [71]Maotian Luan,Chengshun Xu,Yang He,et al.Experimental study on behavior of saturated loose sands under complex shear loading[C].The Fifteenth(2005) International Offshore and Polar Engineering Conference,Seoul,Korea,2005:491-497.
    [72]栾茂田,许成顺,郭莹,等.静力与动力组合应力条件下饱和松砂变形特性的试验研究[J].土木工程学报,2005,38(3):83-89.
    [73]栾茂田,许成顺,何杨,等.复杂应力条件下饱和松砂单调与循环剪切特性的比较研究[J].地震工程与工程振动,2006,26(1):181-187.
    [74]栾茂田,许成顺,何杨,等.主应力方向对饱和松砂不排水单调剪切特性影响的试验研究[J].岩土工程学报,2006,28(9):1085-1089.
    [75]许成顺.复杂应力条件下饱和砂土剪切特性及本构模型的试验研究[D](博士学位论文).大连:大连:大连理工大学,2006.
    [76]虞海珍.复杂应力条件下饱和钙质砂动力特性的试验研究[D](博士学位论文).武汉:华中科技大学,2006.
    [77]王星华,周海林.固结比对饱和砂土液化的影响研究[J].中国铁道科学,2001,22(6):121-126.
    [78]张茹,何昌荣,费文平,高明忠.固结应力比对土样动强度和动孔压发展规律的影响[J].岩土工程学报,2006,28(1):101-105.
    [79]Oda M.Deformation mechanism of sand in triaxial compression tests[J].Soils and Foundations,1972,12(4):45-63.
    [80]Arthur J R F.Menzies B K.Inherent anisotropy in a sand[J].Geotechnique,1972,22(1):115-128.
    [81]Oda M.Initial fabrics and their relations to mechanical properties of granular materials[J].Soils and Foundations,1972,12(1):17-36.
    [82]龍岡文夫,朴春植.砂の(?)形、強度特性の異方性[刀.土と基礎,1993,41(7):79-87.
    [83]Yamada K,Ishihara K.Anistropic deformation characteristics of sand under three-dimensional stress conditions[J].Soils and Foundations,,1979,19(2):119-123.
    [84]Miura S,Toki D.A simple preparation method and its effect on static and cyclic deformation-strength properties of sand[J].Soils and Foundations,1982,22(1):51-77.
    [85]Miura S,Told D.Anisotropy in mechanical properties and its simulation of sand samples from natural deposits[J].Soils and Foundations,1984,24(3):69-84.
    [86]Haruyama M,Kitamura R.Anisotropic deformation-strength properties of soft sedimentary rock 'Shirasu' originated from pyroclastic flows[J].Soils and Foundations,JSSMFE,1984,24(7):84-94.
    [87]Oda M.Anisotropic strength of cohesionless sands[J].J.Geotech.Eng.Div.,ASCE,1981,107(GT9):1219-1230.
    [88]Symes M.J.,Hight D.W.,Gens A.Investigating anisotropy and the effects of principal stress rotation and of the intermediate principal stress a hollow cylinder apparatus[C].Proceeding of IUTAM Conference on Deformation and Failure of Granular Materials,Delft,1972:441-449.
    [89]王洪谨,张国平,周克骥.固有和诱发各向异性对击实粘性土强度和变形特性的影响[J].岩土工程学报,1996,18(3):1-10.
    [90]张坤勇,殷宗泽,朱俊高.各向异性对土质心墙坝水力劈裂的影响[刀.岩土力学,2005,26(2):243-246.
    [91]张坤勇,殷宗泽,徐志伟.土体各向异性的再认识[J].岩土工程技术,2004,18(1):1-4.
    [92]张坤勇,殷宗泽,梅国雄.土体各向异性研究进展[J].岩土力学,2004,25(9):1503-1509.
    [93]魏星,黄茂松.黏土的各向异性边界面模型[J].水利学报,2006,37(7):831-837.
    [94]明海燕,李相崧,Dafalias Y F.砂土内在各向异性的本构模型[J].深圳大学学报理工版,2007,24(4):331-338.
    [95]张振东.预剪对饱和松砂剪切特性的影响及亚塑性边界面本构模型的改进[D](博士学位论文).大连:大连理工大学,2008.
    [96]Seed H B,Lee K L.Liquefaction of saturated sands during cyclic loading[C].Proc.ASCE.J.AMFD,1966,92(SM6):105-134.
    [97]Seed,H.B.,Idriss,I.M.,Arango,I.Evaluation of liquefaction potential using field performance data[J].J.GED.,ASCE,1983,(GT3):458-482.
    [98]Castro,G.,Poulos,J.Factors affecting liquefaction and cyclic mobility[J].J.GED.,Proc.ASCE.1997,103(GT6):501-516.
    [99]汪闻韶.土的液化机理[J].水利学报,1981,(5):22-34.
    [100]汪闻韶.土工抗震研究进展[J].岩土工程学报,1993,15(6):80-82.
    [101]汪闻韶.土的动力强度和液化特性[M].北京:中国电力出版社,1996.
    [102]谢定义.饱和砂土体液化的若干问题[J].岩土工程学报,1992,14(3):90-98.
    [103]Ishihara,K.,Sodekawa,M.,Tanaka,Y.Effects of overconsolidation on Iiquefaction characteristics of sands containing fines[J].Dynamics Geotech.Testing,1978,(STP654):246-264.
    [104]Castro G,Poulos J.Factors affecting liquefaction and cyclic mobility[J].Journal of Geotechnical Engineering,ASCE,1977,103(GT6):501-506.
    [105]Alareon-Guzman A.,Leonards G.A.,Chameau J.L.Undrained monotonic and cyclic strength of sands[J].J.Geotech.Eng.,ASCE,1988,114(10):1089-1109.
    [106]汪闻韶.土体液化与极限平衡和破坏的区别和关系[J].2005,27(1):1-10.
    [107]Gu W.H.,Morgenstem N.R.,and Robertson P.K.Post-earthquake deformation analysis of wildlife site[J].J.Geotech.Engrg.,ASCE,1994,120(2):274-289.
    [108]Gu W.H.Progressive failure of lower San Fernando dam[J].J.Geoteeh.Engrg.,ASCE,1993,119(2):333-349.
    [109]Castro G,Liquefaction and cyclic mobility of saturated sand[J].Journal of the Geotechnical Engineering Division,ASCE,1975,101(6):555-569.
    [110]Seed H.B.,Idriss 1.M.Analysis of soil liquefaction in Niigata Earthquake[J].Journal of The soil Mechanic of Foundations Division,ASCE,1967,93(SM3):83-108.
    [111]Wong R.T.,Seed H.B.,Chan C.K.Cyclic loading liquefaction of ravelly soil[J].Journal of The soil Mechanic and Foundations Division,ASCE,1975,101(SM6):571-583.
    [112]Peacock W.H.,Seed H.B.Sand liquefaction under cyclic loading simple shear condition[J].Journal of The Soil Mechanic and Foundations Division,ASCE,1968,94(SM3):689-708.
    [113]H.,Kishida.Characteristics of liquefied sands during Mino-Owari,Tohnankai and Fukui earthquakes[J].Soils and Foundations,1969:75-92.
    [114]孟上九,曹文海,袁晓铭.地震荷载下土体残余应变及孔隙水压力研究综述[J].世界地震工程,2001,17(3):49-53.
    [115]栾茂田,王栋,郭莹.海床与海洋地基的动力分析理论与设计方法研究进展评述[C].土动力学与岩土地震工程,中国建筑工业出版社,2002:28-47.
    [116]Symes M.J.,Gens A.,Hight D.W.Undrained anisotropy and principal stress rotation in saturated sand[J].Geotechnique,1984,34(1):11-27.
    [117]Ishihara K.,Yamazaki A.,Haga K.Liquefaction of K0-consolidation sand and under cyclic rotation of principal stress direction with lateral eonstraint[J].Soils and Foundations,1985,25(4):63-74.
    [118]何杨.复杂应力条件下饱和砂土孔隙水压力及体变特性试验研究[D](博士学位论文).大连:大连理工大学,2007.
    [119]沈珠江.理论土力学[M].北京:中国水利水电出版社,2000.
    [120]谢定义.土动力学[M].西安:西安交通大学出版社,1988.
    [121]刘颖,谢君斐.砂土震动液化[M].北京:地震出版社,1984.
    [122]谢定义,张建民.饱和砂土瞬态动力学特性与机理分析[M].西安:陕西科学技术出版社.1995.
    [123]Seed H.B.,Martin G.R.,Lysmer J.Pore-water pressure changes during soil liquefaction[J].Journal of the Geotechnical Engineering Division,ASCE,1976,102(4):323-346.
    [124]Seed H B,Pyke R M,Martin G R.Effect of multidirectional shaking on pore pressure development in sand[J].Journal of the Geotechnical Engineering Division,1978,104(GT2):27-44.
    [125]Finn W D L,Lee K W.An effective stress model for liquefaction[J].Journal of the Geotechnical Engineering Division,1977,103(GT6):517-533.
    [126]徐志英.地震期间孔隙水压力变化的估算方法[J].水利学报,1981,(4):68-73.
    [127]张建民,谢定义.饱和砂土振动孔隙水压力增长的实用算法[J].水利学报,1991,(8):45-51.
    [128]Martin G R,Finn W D L,Seed H B.Fundamentals of liquefaction under cyclic loading[J].Journal of the Geotechnical Engineering Division,1975,101(GT5):423-438.
    [129]汪闻韶.饱和砂土振动孔隙水压力试验研究[J].水利学报,1962,(2):36-47.
    [130]曹亚林,何广纳,林皋.土中振动孔隙水压力升长程度的能量分折法[A].全国第二届土动力学汇编[C],西安:陕西机械学院出版社,1986.
    [131]郭莹,刘艳华,栾茂田,等.复杂应力条件下饱和松砂振动孔隙水压力增长的能量模式[J].岩土工程学报,2005,27(12):1380-1385.
    [132]Finn W.D.L.,Bhatia S.K.Endochronic theory of sand liquefaction[A].Proceedings of the 7th World Conference on Earthquake Engineering[C],Turkey,Istanbul,1980:149-158.
    [133]徐杨青,郭见扬.波浪荷载下海洋土孔隙水压力内时模型的研究[J].岩土力学,1991,12(3):43-52.
    [134]徐干成,谢定义,郑颖人.一个新的内时参量动孔隙水压力模型及其适应性研究[J].水利学报,1995,(12):39-53.
    [135]邵生俊.砂土的物态本构模型及应用[M].西安:陕西科学技术出版社,2001.
    [136]万良勇.不同类型孔隙水压力的动力效应研究[硕士学位论文][D](西安:西安理工大学,2002.
    [137]李相崧,明海燕.旋转剪切对水平地层地震响应的影响[A].第五届全国土动力学学术会议[C],大连,1998:53-64.
    [138]Wang Z L,Dafalias Y F,Shen C K.Bounding surface hypoplasticity model for sand[J].Journal of Engineering Mechanics,ASCE,1990,116(5):983-1001.
    [139]Sato K,Yasahara K,Yoshida N.Effect of drainage with pre-shearing on undrained cyclic shear behavior of dense sand[A].Proceeding of the 8th International Conference on the Behavior of Off-Shore Structure[C],1997,1:85-97.
    [140]Robertson P K,Woeller D J,Finn W D L.Seismic cone penetration test for evaluating liquefaction potential under cyclic loading[J].Canada Getechnical Journal,1992,(29):686-695.
    [141]Wang Z L.Bounding surface hypoplasticity model for granular soils and its applications[D]).University of California,Davis,1990.
    [142]张克绪,谢君斐.土动力学[M].地震出版社,1989.
    [143]陈国兴,胡庆兴,刘雪珠.关于砂土液化判别的若干意见[J].地震工程与工程振动.2002.22(1):141-151.
    [144]赵成刚,尤昌龙.饱和砂土液化与稳态强度[J].土木工程学报,2001,34(3):90-96.
    [145]Hyde,Adrian F.L.,Higuchi,T.,and Yasuhara,K.Liquefaction,cyclic mobility,and failure of silt[J].J.Geotech.Geoenviron.Eng.,ASCE,2006,132(6):716-735.
    [146]Boulangcr,R.W.and SEED,R.B.Liquefaction of sand under bi-directional monotonic and cyclic loading[J].Journal of Geotechnical Engineering,ASCE,1995,121(12):870-878.
    [147]张茹,李洪,费文平,陈锦.室内土动力测试研究进展[J].水利水电科技进展,2005,25(2):62-66.
    [148]吴世明.动荷载下的土地变形特性及其测试[J].水利学报,1987,(12):33-47.
    [149]Bhatia,S.K.et.al.Cyclic simple shear,torsional shear and triaxial-Acomparative study[A].Adv.in the Art of Testing Soils under Cyclic Cond.,Proc.ASCE[C],Detrorit,1985.
    [150]Seed H B.Soil liquefaction and cyclic mobility evaluation for level ground during earthquakes[J].JGED,ASCE,1979,105(GT2):201-255.
    [151]Finn W D L,Lee K W,Maartman C H,et al.Cyclic pore pressure under anisotropic conditions earthquake engineering and soil dynamics[A].Proceedings of ASCE Geotechnieal Engineering Division Specialty Conference[C],1978:457-471.
    [152]Chang C S,Kuo C L,Selig E T.Pore pressure development during cyclic loading[J].Journal of the Geotechnical Engineering Division,ASCE,1983,109(1):103-107.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700