用户名: 密码: 验证码:
重力异常及其梯度张量数据快速解释技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
重力勘探数据由重力异常数据及其梯度数据集构成,可以通过相关重力仪或重力梯度仪在卫星、航空、地面和海洋等重力勘探过程中获得。重力勘探数据从不同侧面反映了产生重力异常的场源的空间分布形态和密度变化规律,是由地球物理场现象解释地质对象的基本数据和研究出发点。为了更好地利用数据进行快速解释,通常需要针对不同的地质研究对象,选取不同的梯度张量分量或结合重力异常形成数据组合,建立与之相适应的解释方法。不同的梯度张量分量反映了同一地质体在不同方向的变化规律,其分辨能力和探测能力也随方向变化而存在差异。因此,本文在理论和实践环节开展解释方法技术研究工作:研究不同数据类型和组合的地质目标发现能力;研究不同数据组合针对场源的快速解释方法。
     首先从理论上,通过模型正演,对重力异常数据和梯度数据进行了评估分析,为解释工作中对重力异常以及梯度张量分量的选取提供依据。在重力垂向一阶导数和重力异常之间关系的对比研究基础上,对其他张量分量与重力异常分辨能力以及各个张量分量之间的分辨能力展开了系统对比分析。研究结果表明重力梯度张量分量在相对浅部范围内具有更高的分辨能力,而相对深部探测中并不具有优势,高精度梯度张量分量的优势主要在于可以提供更多高频的细节信息,从而更加详细地对地质体进行解释。另外,从应用角度,文中分析了测线布设位置和测线间距对重力异常及其梯度的影响,发现随着测线间距的增大和测线位置偏离地质体时,梯度张量分量仍然可以较完整地给出场源的信息,而重力异常及计算梯度异常均不能提供较完整的信息。但相较于重力异常,计算所得的张量梯度分量可以从不同侧面对地质体进行更加精细的描述。可以看出,在重力异常及其梯度数据的解释工作中,梯度张量数据以及张量多分量联合解释方法具有更大的优势。
     在传统解释方法基础上,本文开展快速解释方法的研究,强调同时利用更多的张量分量,优化梯度张量分量组合,从而推进多类数据联合解释技术的完善,加强解释过程中的信息融合。重力异常及其梯度数据的解释工作,通常需要从数据中获取有关场源的三个方面信息:水平位置、深度范围和物性参数。因此本论文主要从这三种参数的确定展开新方法的研究。水平位置的确定方法通常利用边界识别方法;深度范围参数的确定需要深度计算方法来完成;物性参数的获取除了传统物性反演之外,可由快速成像方法给出与物性相关的量值。
     近年迅速发展的边界识别方法由于可以快速且准确地确定地质体边界位置、构造水平位置等而被广泛关注。分析表明,最常用的传统方法,如Tilt梯度(斜导数)、Theta图等方法,在深部地质体边界位置确定中误差较大,且对细节信息的提取能力不足。文中首先对二者的相互关系进行分析,论述了这两种方法的相关关系,将其统一归类为“角度边界识别方法”,在此基础上,建立其他相类似识别方法,如反正弦等角度边界识别方法。由模型计算和对比分析发现,这些方法在地质体边界识别中效果基本相同,对解释对象的细节信息提取能力不足。为了改善细节信息提取能力,提出了基于标准差计算的改进型的“角度边界识别方法”,其计算过程是:先求取重力异常三个方向梯度在窗口内的标准差,然后再按照常规角度边界识别方法求取结果。模型检验和分析表明,改进后的方法可以探测识别更多和实际情况相吻合的细节特征。将该方法应用于实际数据处理中,取得了良好的效果。为了改善传统方法在深度地质体边界识别中的偏移问题,提出了“平面全张量梯度角度边界识别方法”:将水平面视作整个与垂向方向相对的分量,根据梯度分量矢量特征,类似于角度边界识别方法进行比值计算。模型计算结果表明,由于利用了更多的张量分量,使得边界位置的确定更加准确。文中还对反双曲斜导数边界识别方法在复杂的正、负剩余密度同时存在时产生虚假边界的缺陷进行了改进,给出了重力异常和梯度分量的数据联合解释的一种途径。模型和实测数据处理表明,改进后的方法在应用中更具优势。
     重力异常场源深度计算的方法经历了漫长的发展历史,形成了针对不同的场源类型和地质研究对象的不同深度计算方法。但是,在实际应用中,目前还无法找到一种包罗万象的万能方法来解决复杂的地质问题,每一种方法均有完善和改进的研究空间。文中首先基于Tilt-depth(斜导数深度计算方法)方法,推导建立了可应用于球体(点源)等三度体模型的重力异常深度计算方法,理论模型表明了该方法具有较准确的计算结果。为了更进一步体现张量分量解释手段的优势,将张量曲率矩阵引入到深度计算中,建立了基于张量曲率矩阵的深度计算方法,该方法类似于Tilt-depth方法的计算,只是将Tilt-depth方法中垂向导数替换为张量曲率矩阵的特征值,提高了水平分辨能力,从而使得深度计算结果也更加准确。另外,Tilt-depth方法以及张量曲率矩阵深度计算方法均是单独针对正或负剩余密度体进行计算,为了更快捷地对复杂地质情况进行计算,同样利用了重力异常和梯度相结合的办法,改进了张量曲率矩阵的特征值,从而可以对正、负剩余密度体同时存在的情况直接计算深度。其后建立了基于全张量不变量的深度计算方法,利用重力异常和全张量不变量的比值求取深度范围,发挥了张量不变量的优势特征,可以简单快捷地计算出地质体的埋深。建立了不同的模型试验并选取了多个实际重力数据对这些方法分别进行检验,均可以得到很好的应用结果,表明这些新方法的优越性和实用性。
     快速成像方法在物性参数的计算中具有快速、耗内存小等优势,此类方法虽然不能给出真正的物性参数,但这种与物性相关的参数在地质解释中具有重要的价值。因此,本文针对传统的极值点深度计算方法(DEXP)进行了相应的评价,对其优点、误差产生的原因等进行了分析,发现DEXP方法在针对重力一阶导数计算成像时误差更小。而广义线性反演成像方法是一种基于垂向导数的成像方法,因此将DEXP方法深度加权因子引入到广义线性反演成像计算中,使得广义线性反演成像可以得到更加合理、准确的成像结果。为了更进一步发挥梯度张量分量解释的优势,在广义线性反演成像基础上推导建立了梯度张量的广义线性反演成像方法。模型试验和实测数据处理表明其分辨能力更高,结果也更加准确。
     这些新的解释方法旨在实现重力异常及其梯度数据的快速解释工作,文中的模型数据和实际数据分析表明,利用这些方法可以从水平位置、深度范围和物性参数的计算三个方面对场源体进行快速的解释,且均可以得到高精度的结果,说明文中所建立的方法具有很好的应用价值。
Gravity prospecting data is composed of gravity anomaly data and full tensorgradient (FTG) data. It can be obtained by using satellite, airborne, ground and marinegravimeter and gradiometer. The gravity data reflect the information of spatialdistribution and density variation of geologic source. It can be used as the basis dataand starting point to interpret the geologic objects. In order to interpret the gravity andgravity gradient data rapidly, it is needed to select different gradient tensorcomponents or combine gravity anomaly to establish interpretation method fordifferent geological research objects. The response of different gradient tensorcomponents are not identical, which from the same geological source. The resolutionand detection ability are also different from each components. Therefore, in this paper,we aim to study on the interpretation method from theory and practice: to study on thedetectably of different data components, and to study on the rapid interpretationmethod from the combination of different components.
     Firstly, we evaluate and analyze the gravity anomaly and gravity gradient tensor(GGT) data by using forward model. These can provide the basis for the selection ofgravity and the gradient components. Based on the comparative research of therelationship between the gravity anomaly and the vertical derivative, we also make acomparative analysis of the resolution between the gravity anomaly and the gradientcomponents. And the study of resolution between each tensor components is alsoanalyzed. The results show that GGT components have higher resolution within thescope of the relatively shallow, but do not have advantage in the relatively deeperexploration. The superiorities of gradient tensor components lie in that they canprovide more details information of high frequency so that geological body can beexplained in detail. In addition, in this paper, we analyze the influence of the linelayout position and line spacing for the gravity anomaly and gradient components.The results show that with the increase of line spacing and line position deviationfrom the geologic sources, gradient tensor components can still give the relativelyintact geological information. The calculation results of the gradient tensorcomponents cannot provide more information. But they can give more detaileddescription of geological body from different sides. As a result, it can be seen in theinterpretation of the gravity anomaly and the gradient tensor data, gradient tensor data and multi-component joint interpretation method have more advantages.
     In view of this, in order to realize the perfect rapid interpretation method in thispaper, we establish the rapid interpretation method based on the traditionalinterpretation method to consider using more tensor component and optimize thegradient tensor component combination. To complete the interpretation work of thegravity anomaly and gradient tensor data, it is usually needed to obtain information ofgeologic source on the three aspects: horizontal position, depth scope and physicalparameters. Therefore, the mainly research theme of this thesis is about new methodsto determine this three parameters. Horizontal position usually is determined by edgedetection method, the depth scope parameters calculated by depth calculation method,and acquisition of physical parameters by traditional inversion method or by rapidimaging approach to obtain the related physical properties.
     The edge detection methods are widely used for they play an important role ingeologic interpretation, and the method has a great development in recent years. Themost commonly used traditional methods such as Tilt angle, Theta map method cangenerate lager error in deep geological edge detection, and they also lack the ability toextract more detail information. In this paper, we firstly analyze the relationshipbetween the two methods, and discuss the same theoretical framework, and then weuniform them as angle edge detection method. Based on this, we establish the otherangle edge detection methods such as arcsine angle edge detection method. Themodel tests show that all of these methods have same effect in edge detection. Inorder to improve the precision and the detectability of details, the angle edge detectionmethod is established based on a standard deviation calculation involving followingtwo steps: step1is calculation of standard deviation of the three directionalderivatives within windows, while step2is calculation of the trigonometric as normalangle edge detection. The model tests show that the new method can detect moredetail information which coincides with the real situation. Then we apply the methodon real field data, and good results have been achieved. In order to improve the offsetproblem of traditional angle method in deep geological edge detection, a new planefull tensor gradient angle edge detection method is established: Regarding horizontalplane as a whole relative to the vertical component, we perform a similar ratiocalculation of Tilt angle and Theta map, and propose a plane full tensor gradient angleedge detection and enhanced approach. Because of using more tensor component,made it more accurate to determine the edges of geologic sources. In this paper, theimproved inverse hyperbolic angle method overcomes the limitation of the original method can produce false edges when positive and negative residual density exist atthe same time. The new improved method is established by combining the gravityanomaly and gradient components. And the model tests and measured data processingresults demonstrate that the superiority of the improved method.
     There are many depth calculation methods for geologic sources, because of thedifferent types of geologic body and the research object need different depthcalculation methods. In this paper, we firstly establish an improved Tilt-depth method,which can be used to calculate the three-dimensional model such as sphere (pointsource) model. The model tests show that the method can be used to calculate thedepth accurately. To further display the advantage of gradient tensor componentinterpretation method, the curvature tensor matrix (CGTM) is introduced into thedepth calculation. We established a new depth calculation method based on thecurvature tensor matrix. The method is similar to tilt-depth method, and ourimprovement to this method is that the vertical derivative of the tilt angle is replacedby an eigenvalue of the CGTM. The improvement of horizontal resolution, so as tomake the depth calculation results more accurate. Both of the Tilt-depth method andthe CGTM-depth method are calculated separately in view of the positive or negativeresidual density body. In order to calculation the depth of geologic sources morequickly on the complicated geological conditions. We also use the gravity anomalycombined with the gravity gradient components, and improve the eigenvalues ofCGTM. Thus the improved approach can be used to directly calculate the depth ofgeologic sources exist both the positive and negative densities. Finally, we establisheda new depth calculation method based on the full tensor invariant. The depth range iscalculated using the ratio of gravity anomaly and the tensor invariant. It can amplifythe superiority of the tensor invariant in the gradient tensor data interpretation. Andthe new method also is a quick and simple method to obtain the depth of geologicsources. We use different model data and the filed data to test the method,respectively. And all of the results show that the method can get good applicationresults. They show the superiority and practicability of the new method.
     The rapid imaging method is usually used in the calculation of physicalparameters for the advantages such as they are fast and need small internal storage.Although these imaging method cannot give the real physical parameters, this resultswhich is related to the physical parameters are very useful in the geologicinterpretation. Therefore, in this paper, we firstly analyze the conventional DEXPmethod aimed to make certain the advantages, the causes of error. We find that it can get more little error when use the vertical derivative to calculate the imaging results.Based on this, the weighted factor is introduced into the generalized linear inversionimaging depth calculation, so as to make the generalized linear inversion imaging canbe more reasonable and accurate imaging results. To further develop the advantagesof gradient tensor component, based on the generalized linear inversion imaging, weestablish the gradient tensor generalized linear inversion imaging method. The modeltests and real data processing results show that its resolution is higher, and the result ismore accurate.
     All of the new interpretation methods are designed to realize the rapidinterpretation work of the gravity anomaly and the gradient tensor data. In this paper,the model data and real data analysis indicate that these methods can be used to makea rapid interpretation of the data from three aspects include the horizontal position,depth scope and physical property parameters of the geologic source. All of the newmethods can get high precision results, it demonstrated that the new methods havegood application value.
引文
[1] Nabighian M N, Ander M E, Grauch V J S, et al.75th Anniversary-Historicaldevelopment of the gravity method in exploration [J]. Geophysics,2005,70(6):63ND-89ND.
    [2]张凤旭.高精度重力异常数据处理方法,技术研究[D].吉林:吉林大学,2006.
    [3]王谦身.重力学[M].北京:地震出版社,2003.
    [4] Bruton A M. Improving the accuracy and resolution of SINS/DGPS airbornegravimetry [M]. University of Calgary Calgary, Alberta,2000.
    [5]张昌达.几种新型的航空重力测量系统和航空重力梯度测量系统[J].物探与化探,2005,29(6):471-476.
    [6]张昌达.航空重力测量和航空重力梯度测量问题[J].工程地球物理学报,2006,2(4):282-291.
    [7]张昌达,董浩斌.重力和磁力勘探进入新时期[J].物探与化探,2010,34(1):1-7.
    [8]张昌达.若干物探技术的最新进展[J].工程地球物理学报,2012,9(4):406-412.
    [9] Eckhardt E A. A brief history of the gravity method of prospecting for oil [J].Geophysics,1940,5(3):231-242.
    [10] Dransfield M. Airborne gravity gradiometry in the search for mineral deposits;proceedings of the Proceedings of exploration, F,2007[C].
    [11] Difrancesco D, Grierson A, Kaputa D, et al. Gravity gradiometer systems–advances and challenges [J]. Geophysical Prospecting,2009,57(4):615-623.
    [12] Difrancesco D, Meyer T, Christensen A, et al. Gravity gradiometry–today andtomorrow; proceedings of the11thSAGA Biennial Technical Meeting andExhibition, F,2009[C].
    [13] Difrancesco D. The coming of age of gravity gradiometry [J]. ASEG ExtendedAbstracts,2013(1):1-4.
    [14] Rummel R, Gelderen M V. Spectral analysis of the full gravity tensor [J].Geophysical Journal International,1992,111(1):159-169.
    [15] Pilkington M. Analysis of gravity gradiometer inverse problems using optimaldesign measures [J]. Geophysics,2012,77(2): G25-G31.
    [16] Pilkington M. Evaluating the utility of gravity gradient tensor components [J].Geophysics,2013,79(1): G1-G14.
    [17] Brewster J. Description and evaluation of a full tensor interpolation method;proceedings of the2011SEG Annual Meeting, F,2011[C]. Society ofExploration Geophysicists.
    [18] Barnes G J, Lumley J M, Houghton P I, et al. Comparing gravity and gravitygradient surveys [J]. Geophysical Prospecting,2011,59(1):176-187.
    [19] Pajot G, DE Viron O, Diament M, et al. Noise reduction through jointprocessing of gravity and gravity gradient data [J]. Geophysics,2008,73(3):I23-I34.
    [20] Barnes G, Lumley J. Noise analysis and reduction in full tensor gravitygradiometry data: Airborne Gravity Workshop [J]. Australian Society ofExploration Geophysicts and Petroleum Exploration Society of Australia(ASEG-PESA), Abstracts,2010,21-27.
    [21] Yuan Y, Huang D-N, Yu Q-L, et al. Noise filtering of full-gravity gradienttensor data [J]. Applied Geophysics,2013,10(3):241-250.
    [22] Dransfield M H, Christensen A N. Performance of airborne gravitygradiometers [J]. The Leading Edge,2013,32(8):908-922.
    [23] Barnes G, Lumley J. Processing gravity gradient data [J]. Geophysics,2011,76(2): I33-I47.
    [24] Fitzgerald D, Holstein H, Argast D. The amplitude/phase treatment of fulltensor gradiometry [J]. ASEG Extended Abstracts,2007,2007(1):1-4.
    [25] Fitzgerald D J, Holstein H. Innovative data processing methods for gradientairborne geophysical data sets [J]. The Leading Edge,2006,25(1):87-94.
    [26] Fitzgerald D, Argast D, HOLSTEIN H. Further developments with full tensorgradiometry datasets [J]. ASEG Extended Abstracts,2009,2009(1):1-7.
    [27] Fitzgerald D, Milligan P. Defining a deep fault network for Australia, using3D'worming'[J]. ASEG Extended Abstracts,2013,2013(1):1-4.
    [28] Fitzgerald D, Paterson R. Getting the best value from gravity gradiometry;proceedings of the13th SAGA Biennial Conference&Exhibition, F,2013[C].
    [29] Evjen H. The place of the vertical gradient in gravitational interpretations [J].Geophysics,1936,1(1):127-136.
    [30]余钦范,楼海.水平梯度法提取重磁源边界位置[J].物探化探计算技术,1994,16(4):363-367.
    [31]马宗晋,高祥林,宋正范.中国布格重力异常水平梯度图的判读和构造解释[J].地球物理学报,2006,49(1):106-114.
    [32] Cordell L. Gravimetric expression of graben faulting in Santa Fe Country andthe Espanola Basin, New Mexico.[J]. New Mexico Geological SocietyGuidebook30th Field Conference,1979,59-64.
    [33] Nabighian M N. The analytic signal of two dimensional magnetic bodies withpolygonal cross-section-Its properties and use of automated anomalyinterpretation.[J]. Geophysics,1972,37:507-517.
    [34] Roest W R, Verhoef J, Pilkington M. Magnetic interpretation using the3-Danalytic signal [J]. Geophysics,1992,57(1):116-125.
    [35] Debeglia N, Corpel J. Automatic3-D interpretation of potential field data usinganalytic signal derivatives [J]. Geophysics,1997,62(1):87-96.
    [36] Miller H G, Singh V. Potential field tilt—a new concept for location of potentialfield sources [J]. Journal of Applied Geophysics,1994,32(2-3):213-217.
    [37] Verduzco B, Fairhead J D, Green C M. The meter reader—new insights intomagnetic derivatives for structural mapping [J]. The Leading Edge,2004,23:116-119.
    [38] Wijns C, Perez C, Kowalczyk P. Theta map: Edge detection in magnetic data [J].Geophysics,2005,70(4): L39-L43.
    [39] Cooper G R J, Cowan D R. Enhancing potential field data using filters based onthe local phase [J]. Computers&Geosciences,2006,32:1585-1591.
    [40] Cooper G R, Cowan D R. Edge enhancement of potential-field data usingnormalized statistics [J]. Geophysics,2008,73(3): H1-H4.
    [41] Cooper G R J. Balancing images of potential-field data [J]. Geophysics,2009,74(3): L17-L20.
    [42]张丽莉,郝天珧,吴健生,等.图像增强技术在重磁图像中的应用[J].应用地球物理:英文版,2006,2(3):145-152.
    [43]张凤旭,张凤琴,刘财,等断裂构造精细解释技术——三方向小子域滤波[J].地球物理学报,2007,50(5):1543-1550.
    [44]肖锋,吴燕冈,孟令顺.位场数据处理中小子域滤波的改进[J].石油地球物理勘探,2010,1):136-139.
    [45]蒋甫玉,高丽坤.基于改进的小子域滤波的重力异常及重力梯度张量边缘增强[J].应用地球物理,2012,9(2):119-130.
    [46]马国庆,杜晓娟,李丽丽.优化小子域滤波方法研究及其应用[J].石油地球物理勘探,2013,48(4):658-662.
    [47] Fedi M. Multiscale derivative analysis: A new tool to enhance detection ofgravity source boundaries at various scales [J]. Geophysical research letters,2002,29(2):16-1-16-4.
    [48] Li L, Ma G, Du X. Edge Detection in Potential-Field Data by EnhancedMathematical Morphology Filter [J]. Pure and Applied Geophysics,2013,170(4):645-653.
    [49] Oru B, Keskinsezer A. Structural Setting of the Northeastern Biga Peninsula(Turkey) from Tilt Derivatives of Gravity Gradient Tensors and Magnitude ofHorizontal Gravity Components [J]. Pure and Applied Geophysics,2008,165:1913-1927.
    [50] Oru B. Edge Detection and Depth Estimation Using a Tilt Angle Map fromGravity Gradient Data of the KozaklA+/--Central Anatolia Region, Turkey [J].Pure and Applied Geophysics,2011,168(10):1769-1680.
    [51] Cevallos C, Kovac P, Lowe S J. Application of curvatures to airborne gravitygradient data in oil exploration [J]. Geophysics,2013,78(4): G81-G8.
    [52]周文纳,杜晓娟,李吉焱.重力数据的平面全张量梯度角度边界识别方法[J].石油地球物理勘探,2013,48(6):1009-1015.
    [53] Jiang F-Y, Gao L-K. Edge enhancement of gravity anomalies and gravitygradient tensors using an improved small sub-domain filtering method [J].Applied geophysics,2012,9(2):119-130.
    [54] Tomopson D T. EULDPH: A new technique for making computer assisteddepth estimates from magnetic data.[J]. Geophysics,1982,47:31-37.
    [55] Nabighian M. N., R. O. HANSEN. Unification of Euler and Wernerdeconvolution in three dimensions via the generalized Hilbert transform [J].Geophysics,2001,66:1805-1810.
    [56] Reid A B, J. M. ALLSOP, H. GRANCER, et al. Magnetic interpretation in threedimensions using Euler deconvolution [J]. Geophysics,1990,55:80-91.
    [57] Stavrev P, REID A. Degrees of homogeneity of potential fields and structuralindices of Euler deconvolution [J]. Geophysics,2007,72(1): L1-L12.
    [58] Cella F, Fedi M. Inversion of potential field data using the structural index asweighting function rate decay [J]. Geophysical Prospecting,2012,60(2):313-336.
    [59]张季生,高锐,李秋生,等.欧拉反褶积与解析信号相结合的位场反演方法[J].地球物理学报,2011,54(6):1634-1641.
    [60] Salem A, Smith R, Williams S, et al. Generalized magnetic tilt-Eulerdeconvolution; proceedings of the2007SEG Annual Meeting, F,2007[C].Society of Exploration Geophysicists.
    [61] Salem A, Ravat D. A combined analytic signal and Euler method (AN-EUL) forautomatic interpretation of magnetic data [J]. Geophysics,2003,68(6):1952-1961.
    [62] Zhang C, MUSHAYANDEBVU M F, REID A B, et al. Euler deconvolution ofgravity tensor gradient data [J]. Geophysics,2000,65(2):512-520.
    [63]马国庆,杜晓娟,李丽丽.解释位场全张量数据的张量局部波数法及其与常规局部波数法的比较[J].地球物理学报,2012,55(7):2450-2461.
    [64] Salem A, Willams S, Fairhead J D, et al. Tilt depth method: A simple depthestimation method using first order magnetic derivatives [J]. The Leading Edge,2007,26(12):1502-1506.
    [65] Salem A, Williams S, Samson E, et al. Sedimentary basins reconnaissance usingthe magnetic Tilt-Depth method [J]. Exploration Geophysics,2010,41:198-209.
    [66] Fairhead J D, Salem A, Cascone L, et al. New developments of the magnetictilt-depth method to improve structural mapping of sedimentary basins [J].Geophysical Prospecting,2011,59(6):1072-1086.
    [67] Murphy C, Dickinson J, Salem A. Depth estimating full tensor gravity data withthe adaptive tilt angle method [J].22nd International Geophysical Conferenceand Exhibition, Brisbane, Extended Abstracts,2012,
    [68] Cooper G R J. A gradient-ratio method for the semi-automatic interpretation ofgravity map data sets [J]. Geophysical Prospecting,2012,60(5):995-1000.
    [69] Cooper G. A Modified Tilt–depth Method for Kimberlite Exploration;proceedings of the72nd EAGE Conference&Exhibition, F,2010[C].
    [70] Cooper G. The semiautomatic interpretation of gravity profile data [J].Computers&Geosciences,2011,37(8):1102-1109.
    [71] Cooper G. A gradient‐ratio method for the semi‐automatic interpretation ofgravity map data sets [J]. Geophysical Prospecting,2012,60(5):995-1000.
    [72] Murphy C, DICKINSON J, SALEM A. Depth estimating Full Tensor Gravitydata with the Adaptive Tilt Angle method [J]. ASEG Extended Abstracts,2012(1):1-3.
    [73] Salem A, Masterton S, Campbell S, et al. Interpretation of tensor gravity datausing an adaptive tilt angle method [J]. Geophysical Prospecting,2013,61(5):1065-1076.
    [74]肖一鸣,张林祥.重力归一化总梯度法在寻找油气中的应用[J].石油地球物理勘探,1984,19(3):247-254.
    [75]肖一鸣.重力归一化总梯度法[J].石油地球物理勘探,1981,3:006.
    [76]张凤旭,孟令顺,张凤琴,等.利用Hilbert变换计算重力归一化总梯度[J].地球物理学报,2005,48(3):704-709.
    [77]肖鹏飞,李明,徐世浙,等.重力归一化总梯度的稳定解法[J].石油地球物理勘探,2006,41(5):596-600.
    [78] Elysseieva I S, PA teka R. Direct interpretation of2D potential fields for deepstructures by means of the quasi-singular points method [J]. GeophysicalProspecting,2009,57(4):683-705.
    [79] Fedi M, Florio G. Normalized downward continuation of potential fields withinthe quasi-harmonic region [J]. Geophysical Prospecting,2011,59(6):1087-100.
    [80] Sindirgi P, Pamukcu O, Ozyalin S. Application of normalized full gradientmethod to self potential (SP) data [J]. Pure and Applied Geophysics,2008,165(2):409-427.
    [81] Karsli H, Bayrak Y. Application of the normalized total gradient (NTG) methodto calculate envelope of seismic reflection signals [J]. Journal of AppliedGeophysics,2010,71(2-3):90-97.
    [82] Vallée M A, Keating P, Smith R S, et al. Estimating depth and model type usingthe continuous wavelet transform of magnetic data [J]. Geophysics,2004,69(1):191-199.
    [83] Cooper G. Interpreting potential field data using continuous wavelet transformsof their horizontal derivatives [J]. Computers&geosciences,2006,32(7):984-92.
    [84] Chamoli A, Srivastava R, Dimri V. Source depth characterization of potentialfield data of Bay of Bengal by continuous wavelet transform [J]. Indian Journalof Marine Sciences,2006,35(3):195-204.
    [85] Fedi M, Cella F, Quarta T, et al.2D Continuous Wavelet Transform of potentialfields due to extended source distributions [J]. Applied and ComputationalHarmonic Analysis,2010,28(3):320-337.
    [86] Nabighian M N. The analytic signal of two-dimensional magnetic bodies withpolygonal cross-section: its properties and use for automated anomalyinterpretation [J]. Geophysics,1972,37(3):507-517.
    [87] Thurston J B, Smith R S. Automatic conversion of magnetic data to depth, dip,and susceptibility contrast using the SPI (TM) method [J]. Geophysics,1997,62(3):807-813.
    [88] Hsu S-K, Coppens D, Shyu C-T. Depth to magnetic source using the generalizedanalytic signal [J]. Geophysics,1998,63(6):1947-1957.
    [89] Beiki M. Analytic signals of gravity gradient tensor and their application toestimate source location [J]. Geophysics,2010,75(6): I59-I74.
    [90] Oru B. Depth estimation of simple causative sources from gravity gradienttensor invariants and vertical component [J]. Pure and applied geophysics,2010,167(10):1259-1272.
    [91] Beiki M, Pedersen L B. Eigenvector analysis of gravity gradient tensor to locategeologic bodies [J]. Geophysics,2010,75(6): I37-I49.
    [92] Beiki M, Pedersen L B. Window constrained inversion of gravity gradienttensor data using dike and contact models [J]. Geophysics,2011,76(6): I59-I72.
    [93] Wedge D, Sivarajah Y, Holden E-J, et al. Mass anomaly visualisation and depthestimation from full tensor gradient gravity data [J]. ASEG Extended Abstracts,2013(1):1-5.
    [94] Li Y, Oldenburg D W.3-D inversion of magnetic data [J]. Geophysics,1996,61(2):394-408.
    [95] Li Y, Oldenburg D W.3-D inversion of gravity data [J]. Geophysics,1998,63(1):109-19.
    [96] Fedi M, Rapolla A.3-D inversion of gravity and magnetic data with depthresolution [J]. Geophysics,1999,64(2):452-460.
    [97] Zhdanov M S, Ellis R, Mukherjee S. Three-dimensional regularized focusinginversion of gravity gradient tensor component data [J]. Geophysics,2004,69(4):925-937.
    [98] Zhdanov M S, Liu X, Wilson G A, et al. Potential field migration for rapidimaging of gravity gradiometry data [J]. Geophysical Prospecting,2011,59(6):1052-1071.
    [99] Zhdanov M S, Lee S K, Yoshioka K. Integral equation method for3D modelingof electromagnetic fields in complex structures with inhomogeneous backgroundconductivity [J]. Geophysics,2006,71(6): G333-G45.
    [100] Zhdanov M S, Portniaguine O. Time‐domain electromagnetic migration in thesolution of inverse problems [J]. Geophysical Journal International,1997,131(2):293-309.
    [101] Zhdanov M S, Cai H Z, Wilson G A. Migration transformation oftwo-dimensional magnetic vector and tensor fields [J]. Geophysical JournalInternational,2012,189(3):1361-1368.
    [102] Zhdanov M S, Liu X, Wilson G A, et al.3D migration for rapid imaging oftotal-magnetic-intensity data [J]. Geophysics,2012,77(2): J1-J5.
    [103] Le Wan M S Z. Iterative migration of gravity and gravity gradiometry data [M].SEG Houston2013Annual Meeting. Houston.2012:1211-1215.
    [104] Fedi M. DEXP: A fast method to determine the depth and the structural index ofpotential fields sources [J]. Geophysics,2007,72(1): I1-I11.
    [105] Fedi M, Abbas M A. A fast interpretation of self-potential data using the depthfrom extreme points method [J]. Geophysics,2013,78(2): E107-E16.
    [106] Fedi M, Florio G. Determination of the maximum-depth to potential fieldsources by a maximum structural index method [J]. Journal of AppliedGeophysics,2013,88:154-160.
    [107] Moreau F, Gibert D, HOLSCHNEIDER M, et al. Wavelet analysis of potentialfields [J]. Inverse Problems,1997,13(1):165.
    [108] Hornby P, Boschetti f, Horowitz F. Analysis of potential field data in thewavelet domain [J]. Geophysical Journal International,1999,137(1):175-196.
    [109] Moreau F, Gibert D, Holschneider M, et al. Identification of sources of potentialfields with the continuous wavelet transform: Basic theory [J]. Journal ofGeophysical Research: Solid Earth (1978–2012),1999,104(B3):5003-5013.
    [110] Sailhac P, Galdeano A, Gibert D, et al. Identification of sources of potentialfields with the continuous wavelet transform: Complex wavelets and applicationto aeromagnetic profiles in French Guiana [J]. Journal of Geophysical Research:Solid Earth (1978–2012),2000,105(B8):19455-19475.
    [111]陈玉东.复小波变换反演重力异常[J].物探与化探,2003,27(5):354-361.
    [112]陈玉东.二维连续复小波变换识别重力场源[J].物探与化探,2006,30(2):141-147.
    [113]陈玉东.应用连续复小波变换反演位场[J].地学前缘,2003,10(1):212.
    [114] Mauriello P, Patella D. Localization of maximum-depth gravity anomalysources by a distribution of equivalent point masses [J]. Geophysics,2001,66(5):1431-1437.
    [115] Guo L H, Meng X H, Shi L, et al.3-D correlation imaging for gravity andgravity gradiometry data [J]. Chinese Journal of Geophysics-Chinese Edition,2009,52(4):1098-1106.
    [116] Guo L H, Shi L, Meng X H.3D correlation imaging of magnetic total fieldanomaly and its vertical gradient [J]. Journal of Geophysics and Engineering,2011,8(2):287-293.
    [117] Guo L H, Meng X H, Shi L.3D correlation imaging of the vertical gradient ofgravity data [J]. Journal of Geophysics and Engineering,2011,8(1):6-12.
    [118]郭良辉,孟小红,石磊,等.重力和重力梯度数据三维相关成像[J].地球物理学报,2009,4):1098-1106.
    [119]马国庆,杜晓娟,李丽丽.改进的位场相关成像方法[J].地球科学—中国地质大学学报,2013,38(5):1121-1127.
    [120] Gribb J. Application of The Generalized Linear Inverse to the inversion of staticptential data [J]. Geophysics,1976,41(6):1365-1369.
    [121]吴琼,滕云田,张兵, et al.世界重力梯度仪的研究现状[J].物探与化探,2013,37(5):761-768.
    [122] Brett J. Theory of FTG Measurement [M]. http://bellgeospace.com/tech/technology_theory_of_FTG.html.2000.
    [123] Murphy C A. The Air-FTG airborne gravity gradiometer system [M].Airborne Gravity2004Workshop.2004:7-14.
    [124] Affleck C A, Hofmeyer G M. Rotating accelerometer gradiometer [M]. GooglePatents.1994.
    [125]张永明,张贵宾,盛君.航空重力梯度测量技术及应用[J].工程地球物理学报,2007,3(5):375-380.
    [126]李海兵,蔡体菁.旋转加速度计重力梯度仪误差分析[J].中国惯性技术学报,2009,17(5):525-528.
    [127]李海兵,蔡体菁.全张量重力梯度仪测量方程及误差分析[J].东南大学学报:自然科学版,2011,40(3):517-521.
    [128] LI X. Vertical resolution: Gravity versus vertical gravity gradient [J]. TheLeading Edge,2001,20(8):901-904.
    [129]王万银,邱之云,杨永.位场边缘识别方法研究进展[J].地球物理学进展,2010,25(1):196-210.
    [130] Li X. On "Theta map: Edge detection in magnetic data"(C. Wijns, C. Perez, andP. Kowalczyk,2005, GEOPHYSICS,70, L39-L43)-Discussion [J]. Geophysics,2006,71(3): X11-X11.
    [131] Cooper G R J, Cowan D R. Edge enhancement of potential-field data usingnormalized statistics [J]. Geophysics,2008,73(3): H1-H4.
    [132]王彦国,王祝文,张凤旭.基于均方差比归一化垂向梯度法的位场边界检测[J].中国石油大学学报:自然科学版,2012,36(2):86-91.
    [133]吕延防,付广,姜振学,等.延吉盆地东部坳陷油气运聚系统及有利探区预测[J].长春科技大学学报,1998,28(1):59-63.
    [134]许岩,刘立,赵羽君.延吉盆地含油气系统与勘探前景[J].吉林大学学报(地球科学版),2004,34(2):227-230.
    [135]郄瑞卿,薛林福,孙晶.多源信息叠合在延吉盆地油气远景预测的应用[J].地球物理学进展,2009,24(6):2128-2134.
    [136]姚新民,周志祥,裘军跃.延吉盆地石油地质特征初探[J].石油天然气地质,1991,12(4):464-471.
    [137]朱传庆,杨书江,李同彬,等.塔里木盆地主要断裂的地球物理特征及与天然地震的关系[J].地球物理学进展,2009,23(6):1685-1691.
    [138] Spiegel M R. Theory and Problems of Complex Variables [M]. New York:McGraw-Hill Book Company,1972.
    [139] Zhou W, Du X, Li J. A discussion about hyperbolic tilt angle method [J].Computers&Geosciences,2013,52:493-495.
    [140] Cooper G R J. Reply to a discussion about the "Hyperbolic tilt angle method"by Zhou et al [J]. Computers&Geosciences,2013,52:496-497.
    [141]曾华霖.重力场与重力勘探[M].地质出版社,2005.
    [142] Naudy H. Automatic determination of depth on aeromagnetic profiles [J].Geophysics,1971,36(4):717-722.
    [143] Ku C C, Sharp J A. Werner deconvolution for automated magneticinterpretation and its refinement using Marquardt's inverse modeling [J].Geophysics,1983,48(6):754-774.
    [144]张恒磊,胡祥云,刘天佑.基于二阶导数的磁源边界与顶部深度快速反演[J].地球物理学报,2012,55(11):3839-3847.
    [145] Oru B, Sertcelik I, Kafadar O, et al. Structural interpretation of the ErzurumBasin, eastern Turkey, using curvature gravity gradient tensor and gravityinversion of basement relief [J]. Journal of Applied Geophysics,2013,88:105-113.
    [146] Zhou W, Du X, Li J. The limitation of curvature gravity gradient tensor for edgedetection and a method for overcoming it [J]. Journal of Applied Geophysics,2013,98:237-242.
    [147]《重力勘探资料解释手册》编写组.重力勘探资料解释手册[M].地质出版社,1983.
    [148] Pedersen L, Rasmussen T. The gradient tensor of potential field anomalies:Some implications on data collection and data processing of maps [J].Geophysics,1990,55(12):1558-1566.
    [149] Mataragio J, Kieley J. Application of full tensor gradient invariants in detectionof intrusion-hosted sulphide mineralization: implications for depositionmechanisms [J]. first break,2009,27(7):95-98.
    [150] Mataragio J, Kieley J. Use Of Full Tensor Gravity Invariants In Detection OfIntrusion-Hosted Sulphide Mineralization: Implications For EmplacementMechanisms; proceedings of the11th International Congress of the BrazilianGeophysical Society, F,2009[C].
    [151] Blakely R J, Simpson R W. Approximating edges of source bodies frommagnetic or gravity anomalies [J]. Geophysics,1986,51(7):1494-1498.
    [152] Nettleton L L. Gravity and magnetics in oil prospecting [M]. McGraw-Hill NewYork,1976.
    [153] Mohan N, Anandababu L, Rao S S. Gravity interpretation using the Mellintransform [J]. Geophysics,1986,51(1):114-122.
    [154] Abdelrahman E, Bayoumi A, Elaraby H. A least-squares minimization approachto invert gravity data [J]. Geophysics,1991,56(1):115-118.
    [155] Shaw R, Agarwal B. A generalized concept of resultant gradient to interpretpotential field maps [J]. Geophysical prospecting,1997,45(6):1003-1011.
    [156] Salem A, Ravat D, Mushayandebvu M F, et al. Linearized least-squares methodfor interpretation of potential-field data from sources of simple geometry [J].Geophysics,2004,69(3):783-788.
    [157] Essa K S. Gravity data interpretation using the s-curves method [J]. Journal ofGeophysics and Engineering,2007,4(2):204.
    [158] Fedi M, Pilkington M. Understanding imaging methods for potential field data[J]. Geophysics,2012,77(1): G13-G24.
    [159] Abbas M, Fedi M. Automatic DEXP Imaging of Potential Fields Independent ofthe Structural Index; proceedings of the75th EAGE Conference&Exhibitionincorporating SPE EUROPEC2013, F,2013[C].
    [160] Commer M, Newman G A. New advances in three dimensional controlledsource electromagnetic inversion [J]. Geophysical Journal International,2008,172(2):513-535.
    [161] Commer M. Three dimensional gravity modelling and focusing inversion usingrectangular meshes [J]. Geophysical Prospecting,2011,59(5):966-979.
    [162]栗学磊,李文成,王凤刚,等.重力资料聚焦反演成像改进及其应用[J].世界地质,2013,32(2):366-371.
    [163]王浩然,陈超,杜劲松.重力梯度张量数据的三维反演方法与应用[J].石油地球物理勘探,2013,48(3):474-481.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700