用户名: 密码: 验证码:
汽车车身部件一步逆成形有限元法与碰撞仿真研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在汽车设计制造的整个周期中,车身模具特别是汽车覆盖件模具的设计制造水平,一直是制约汽车产品开发速度与品质的核心因素。基于形变理论的一步逆成形有限元方法作为一种可成形性的快速评价工具非常适合在零件设计阶段和模具设计阶段应用。本文结合国家自然科学基金重点项目 “冲压成形与模具设计的基础理论、计算方法和关键技术”(批准号:19832020)以及国家杰出科学青年基金项目 “基于KBE的冲压模具CAD专家系统理论以及聚合物板材成形理论与计算方法研究”(批准号:10125208),对汽车车身部件一步逆成形有限元法以及它在翻边成形的坯料尺寸预示,弯曲成形的卸载回弹和引入工艺因素的碰撞仿真等方面的应用进行了深入的研究。
    一步逆成形有限元法假定成形过程是比例加载的,而且仅考虑初始的毛坯和变形终了的状态,不考虑变形的中间状态,其基本思想为:从最终构形C出发,将其作为最终构形的中面,通过有限元方法确定在满足一定的边界条件下最终构形中各个节点P在初始构形毛坯C0中的位置P0,比较毛坯和最终构形中节点的位置可得到最终构形中应变,应力和厚度的分布。
    基于离散的Kichhoff假设,最终构形中任意一点到q点变形梯度张量的逆[F]-1为:
     其中: (1)
    从上式可以得到左柯西-格林(Cauchy-Green)张量[B]为:
     (2)
    
    通过计算[B]-1的特征值和特征向量就可以求出单元面内两个主伸长λ1、λ2和它们的转换矩阵[M]。根据体积不变的假设,单元厚度方向的主伸长λ3可以通过面内的两个主伸长λ1、λ2的求出。最终单元的对数应变可由下式求出:
     (3)
    一步逆成形有限元法假设板料的弹塑性变形过程与加载路径无关,所以其基于形变理论的弹塑性本构方程为:
     (4)
    其中为等效应变,为等效应力,各项异性系数r = (r0 + 2r45 + r90)/4。
    由于一步逆成形有限元方法不能根据加载历史处理接触问题,所以工具(凸模,凹模和拉伸筋等)对板料的作用都是通过简单的等效外力替代的。于是就可以得到以下的非线性方程组
     (5)
    上述非线性方程组一般采用Newton-Raphson迭代方法进行求解,其迭代格式为:
     (6)
    其中ω为迭代收敛松弛因子,[KT(ui)]为第i迭代步的切线刚度矩阵。
    一步逆成形有限元法Newton-Raphson迭代初始解{U0}的求解采用基于线弹性反向变形初始解预示算法,其基本思想是忽略各种外载荷,假设最终构形是通过线弹性反向变形到初始构形的,然后根据线弹性有限元方法在初始板料上建立平衡方程,通过迭代求解可以使初始板料的节点残余力满足事先给定的收敛条件,最后求得一步逆成形的初始解。
    对那些包含弯曲压料面成形复杂的覆盖件,一步逆成形有限元法必须考虑弯曲压料面的影响。考虑弯曲压料面的一步逆成形有限元法分两个步骤进行,第一步由最终构形回退到事先给定的弯曲压料面上,即中间构形;第二步由弯曲压料面展开成平坯料即初始构形。弯曲压料面的投影算法就是将节点投影到一个给定
    
    
    的曲面有限元网格上的过程,投影算法过程分成两个步骤即全局搜索和局部搜索。全局搜索确定需要局部求交单元的范围,局部搜索采用弧长法找出中间构形节点所对应的压料面单元。
    利用考虑弯曲压料面的一步逆成形有限元法分别对伸长类平面翻边、收缩类平面翻边、伸长类曲面翻边和收缩类曲面翻边这四种典型情况下的翻边成形进行模拟计算并预示其修边线的位置,最后将其预示出的修边线位置用增量法有限元法进行效核以验证该方法的准确性。计算结果表明利用一步逆成形有限元方法可以事先得到所需翻边高度,因此在生产实践中就不需要反复修正修边模轮廓,不仅可以节约大量材料与人工浪费,也可以缩短整个制模与调模周期,大大减少制模成本。
    文中采用一步逆成形有限元法模拟板材弯曲成形过程,然后采用非线性弹性静力隐式有限元法预示卸载回弹过程。模拟卸载回弹过程的非线性有限元法是在弹塑性大变形有限元法的基础上,采用以Mindlin理论为基础的Belytschko-Lin-Tsay壳单元模型。
    采用逐级更新Lagrange法,板材卸载回弹有限元离散化的单元平衡方程为:
     (7)
    式中k为局部坐标系下的单元刚度矩阵:
     (8)
    d是单元节点位移向量:
     (9)
    f是单元节点内力向量:
     (10)
    采用上述方法模拟了Numisheet’2002的标准考题之一“无约束圆柱弯曲成形”的卸载回弹过程,并与实验结果进行了比较;预示了货车纵梁的冲压成形过程和脱模卸载回弹过程,回弹模拟后将纵梁6个关键截面的口宽与实测值进行了比较,比较结果说明该回弹数值模拟方法对弯曲成形卸载回弹预示是有效的。
    汽车车身部件碰撞仿真是整个汽车碰撞安全性仿真研究的基础。由拉伸实验测出的材料参数是碰撞仿真有限元模型中的一个重要参数。但是拉伸实验所采用的试样通常都取自毛坯而不是最终的冲压件,而加工过程特别是冲压将引起制件
    
    
    中厚度分布、残余应变和应力等变化。这些变化都会导致碰撞仿真产生误差,然而以?
During the automotive design and manufacture period, it is the main factor of auto product development speed and quality that the design and manufacture level of the auto body die especially auto panel die. The one step inverse forming finite element method based on deformation theory will became a quickly formability evaluation tool and it is applied suitably in part and die design phase. The research contents of this paper are the one step inverse forming FEM of auto body part and applications in the blank sheet prediction of flange forming, the spring back simulation of bend forming and the crash simulation with forming effects. The research works are supported by the key project of National Natural Science Funds “The basic theory, calculation method and key technique of stamping and die design” (19832020) and the key project of National Outstanding Scientific Youth Funds “The CAD expert system theory of stamping design based on KBE and the research on the polymer forming theory and calculation method” (10125208).
    The main assumption adopted by the one step inverse forming FEM is the proportional loading assumption. It only considers the initial and the final state without considering the medium state. The basic idea of this method is that we look for the nodal positions in the initial flat blank from the final part, and then the distribution of strain, stress and thickness in the final configuration can be calculated by comparing the nodal position in the initial flat sheet with the one of the final part. Using a generalized Kirchhoff assumption, the initial and the final position vectors of a material point q can be expressed with respect to point p on the mid-surface of C. The inverse
    
    
    Cauchy-Green left tensor can be obtained by
     with (1)
    The inverse Cauchy-Green left tensor can be obtained by
     (2)
    The eigenvalue calculation of [B]-1 gives two principal plane stretches λ1, λ2 and their direction transformation matrix [M]. Then, the thickness stretch λ3 is calculated by the incompressibility assumption. Finally, the logarithmic strains are obtained
     (3)
    The elastic-plastic deformation is assumed to be independent on the loading path and a total constitutive law is obtained.
     (4)
    Where and are the total equivalent strain and the equivalent stress. The mean planar isotropic coefficient r is obtained from the three anisotropic coefficients: r = (r0 + 2r45 + r90)/4.
    The inverse forming FEM cannot deal with contact problems depending on the loading history, so the tool actions (punch, die and drawbead) are simply represented by some external forces at the final configuration. Then, a non-linear equilibrium system can be obtained.
     (5)
    This non-linear equilibrium system can be calculated by the Newton-Raphson iterative method.
     (6)
    
    Where ω is the relaxation factor and [KT(ui)] is the tangent stiffness matrix in the i iterative step.
    The initial solution of one step inverse forming FEM for Newton-Raphson iteration is calculated by the initial solution predictive algorithm based on linear elastic reverse deformation. The basic idea is that we assume the initial flat blank translate into the final part by linear elastic reverse deformation neglecting all of external load. Then the equilibrium equations are established by the linear elastic FEM in the initial flat blank. The nodal residual force vector in the initial flat blank will satisfy the initial convergence conditions by iterative calculation. Finally we can get the initial solution.
    The one step inverse forming FEM must consider the curve binder effect for the complicated auto panel with curve binder. The one step inverse forming FEM with curve binder has two steps. The first step is from the final part to the given curve binder surface, which is named medium configuration. The second step is from the curve binder to the initial flat blank. The projection algorithm of the curve binder is t
引文
Woo, D. M., On the complete solution of the deep drawing problem, Int. J. Mech. Sci., 1968, 10: 89-94.
    Wang, N. M., Large plastic deformation of a circular sheet caused by punch stretching, J. Appl. Mech., ASME, 1970, 37: 431-440.
    Lee, H. and Kobayashi, S., New solution to rigid-plastic deformation problems using a matrix method, Trans. ASME, J. Engineering Industries, 1975, 95: 865-873.
    Marcal, P. V. and King, I. P., Elastic-plastic analysis of two-dimension stress system by the finite element method, Int. J. Mech. Sci., 1967, 9: 143-155.
    Hibbit, H. D., etc., A finite element formulation for problems of large strain and large displacement, Int. J. Solids Structures, 1970, 6: 1069-1086.
    Osias, J. R., etc, Finite elasto-plastic deformation—I, Int. J. Solids Structures, 1974, 10: 321-339.
    McMeeking, R. M. and Rice, J. R., Finite element formulation for problems of large elastic-plastic deformation, Int. J. Solids Structures, 1975, 11: 601-615.
    Wifi, A. S., An incremental complete solution of the stretch-forming and deep-drawing of a circular blank using a hemispherical punch, Int. J. Mech. Sci., 1976, 18.
    Wang, N. M. and Budiansky, B., Analysis of sheet metal stamping by a finite-element method, J. Appl. Mech., 1978, 45: 73-82.
    Tang, S. C., Large elasto-plastic strain analysis of flanged hole forming, Computer & Structures, 1981, 13.
    Tang, S. C., Large strain analysis of an inflating membrane, Computer & Structures, 1982, 15(1).
    Nakamachi, E., etc, 基于Kirchhoff板理论的圆形板胀形问题和凸模拉胀的数值分析,《世界塑性加工最新技术》,机械工业出版社,1987.
    Wennerstorm, H., etc, Numerical Analysis Forming Process, Pittman, J. F. T. (ed.), John Wiley & Sons Ltd., 1984.
    Nakamachi, E., Finite element modeling of the punch press forming of thin elastic-plastic plates, Proc. NUMIFORM’86, 1986.
    
    Majlessi, S. A. and Lee, D., Further development of sheet metal forming analysis method, J. Engng. Industry, 1987, 109.
    Isaki, H., etc, 用有限元法对轴对称压延件的分析,《世界塑性加工最新技术》,机械工业出版社,1987.
    Arlinghaus, F. J., Frey. W. H., etc, Finite element modeling of a stretch formed part, Computer Modeling of Sheet Metal Forming Process, The Metallurgical Society, Warrendale, PA, 1985: 51-64.
    Nakamachi, E., A finite element simulation for the sheet metal forming processes, Int. J. Num. Meths. Engng., 1988, 25: 283-292.
    Honecher, A. and Mattiasson, K., Finite element procedures for 3D sheet forming simulations, Proc. NUMIFORM’89, Thompson, E. G., etc (eds), Balkema A. A., 1989.
    Tang, S. C., etc., Sheet metal forming modeling of automobile body panels, ASM, Int., 1988: 185-193.
    Chung, K. and Lee, D., 板材成形工艺的计算机辅助分析,《世界塑性加工最新技术》,1987.
    Aoh, H. and Nakamachi, E., 3-D sheet metal forming simulations of automobile panel by thin shell finite element method, VDI BERICHTE NR894, 1991: 357-379.
    Tang, S. C., A local 3-D model for automotive sheet metal forming analysis, Advanced Technology of Plasticity, 1993, 3: 1647-1652.
    Nakamachi, E. and Tongru, H., Development of virtual manufacturing system for automotive sheet forming, Advanced Technology of Plasticity, 1993, 3: 1799-1804.
    Tang, S. C., Chappuis, L. B. and Mathe, J., Thin shell element simulation of sheet metal forming processes, ibid, 1990: 1757-1761.
    Nakamachi, E. and Makinouchi, A., Description of tool geometry and formulation of deformation dependant contact problem, VDI BERICHTE, Zurich, Switzerland, 1991: 75-107.
    Kawka, N. and Makinouchi, A., Finite element simulation of sheet metal forming processes by simultaneous use of membrane, shell and solid elements, UNIFORM’92, Sophia, Antipolis, 1992: 491-496.
    Huo, T. R. and Nakamachi, E., 3-D dynamic explicit finite element simulation of sheet metal forming, Proc. of 4th ICTP, Beijing, China, 1993: 1828-1833.
    
    Bathe, K. J., ADINA—A finite element program for automatic dynamics incremental nonlinear analysis, Acoustics and Vibration Lab., Mech. Engng., Dept., MIT, 1975.
    MARC_CDC: General purpose finite element analysis program, MARC Analysis Corp. Providence RI.
    Hallquist, J. O., NIKE2D An implicit finite deformation finite element code for analysis the static and dynamic response of two-dimension solids, University of California, Lawerence Livemore National Lab. Report, 1979.
    Karlsson and Sorensen, Inc., ABAQUS, User’s Manual, Providence, 1989.
    Key, S. W., A finite element procedure for large deformation dynamic response of axisymmetric solids, Comput. Meths. Engng., 1974, 4: 231-245.
    Key, S. W., HONDO A finite element computer program for the large deformation dynamic response of axisymmetric solids, Sandia National Lab. Rept., 1974.
    Surana, K. S., Lumped mass matrices with non-zero inertia for general shell and axisymmetric shell element, Int. J. Num. Meths. Engng., 1978, 12: 1635-1650.
    Hughes, T. J. R. and Taylar, R. L., A simple and efficient finite element for plates bending, Int. J. Num. Meths. Engng., 1981, 11: 679-706.
    Taylar, R. L., Finite element for general shell analysis, 5th Int. Seminar on Computational Aspects of the Finite Element Method, Berlin, 1979.
    Belytschko, T., A survey of numerical methods and computer program for dynamic structural dynamics, J. Num. Engng. Des., 1976. 37.
    Belytschko, T., Lin, J. L. and Tsay, C. S., Explicit algorithms for the nonlinear dynamics of shell, Comput. Meths. Appl. Mech. Engng., 1984, 42: 225-251.
    汪大年,金属塑性成形原理,机械工业出版社,1986
    Batoz, J. L., Duroux, P., Guo, Y. Q., Detraux, J. M., An efficient algorithm to estimate the large strains in deep drawing, NUMIFORM’89, 1989, p.383-388.
    Guo, Y. Q., Batoz, J. L., Detraux, J. M., Duroux, P. Finite element procedures for strain estimations of sheet metal forming parts. Int J Num Meth Engng 1990, 39:1385-1401.
    Guo, Y. Q., Batoz, J. L., El, Mouatassim. M., Detraux, J. M.. On the estimation of thickness strains in thin car panels by the inverse approach, NUMIFORM’92, 1992, p.1403-1408.
    Batoz, J. L., Guo, Y. Q., Mercier, F.. The inverse approach including bending effects for the analysis and design of sheet metal forming parts, NUMIFORM’95,
    
    
    1995, p.661-667.
    Barlet, O., Batoz, J. L., Guo, Y. Q., Mercier, F., Optimum design of blank contours using the inverse approach and mathematical programming techniques. NUMISHEET’96, Dearborn, Michigan, USA, 1996, p.178-185.
    Batoz, J. L., Guo, Y. Q., Mercier, F., The inverse approach with simple triangular shell elements for large strain predictions of sheet metal forming parts. Engineering Computations 1998, 15(7): 864-892.
    Barlet, O., Naceur, H., Batoz, J. L., Knopf-Lenoir, C, Shape optimum design of blank contours using a simplified inverse approach. NUMIFORM’98, 1998, p.801-806.
    Naceur, H., Guo, Y. Q., Batoz, J. L., Bouabdallah, S., Knopf-Lenoir, C., Design of process parameters in deep drawing of thin sheets using the simplified inverse approach. NUMISHEET’99, vol. 1, France, 1999, p. 517-522.
    Guo, Y. Q., Batoz, J. L., Naceur, H., Bouabdallah, S., Recent developments on the analysis and optimum design of sheet metal forming parts using the simplified inverse approach. Computers and Structures 2000, 78:133-148.
    Naceur, H., Guo, Y.Q., Batoz, J.L., Knopf-lenoir, C., Optimization of drawbead restraining forces and drawbead design in sheet metal forming process, I. J. Mechanical Sciences 2001, 43(10): 2407-34.
    Naceur, H., Guo, Y.Q., Gati, W., New enhancements in the inverse approach for the fast modeling of autobody stamping process, I. J. Computational Engineering Science 2002, 3(4):355-384.
    Guo, Y.Q., Naceur, H., Debray, K., Bogard, F., Initial solution estimation to speed up inverse approach in stamping modeling, Engineering Computations 2003, 20(7):810-834.
    Naceur, H., Delaméziere, A., Batoz, J. L., Guo, Y.Q., Knopf-lenoir, C., Some improvements on the optimum process design in deep drawing using the inverse approach, Journal of Materials Processing Technology 2004, 146:250-262.
    Lee, C. H., Huh, H., Blank design and strain prediction of automobile stamping parts by an inverse finite element approach, Journal of materials processing technology 1997, 63: 645-650.
    Lee, C. H., Huh, H., Blank design and strain estimates for sheet metal forming processes by a finite element inverse approach with initial guess of linear deformation, Journal of materials processing technology 1998, 82: 145-155.
    
    Lee, C. H., Huh, H., Three dimensional multi-step inverse analysis for the optimum blank design in sheet metal forming processes, Journal of materials processing technology 1998, 80: 76-82.
    Huh, H., Kim, S. H., Kim, S. H., Multi-stage inverse analysis of elliptic cup drawing with the large aspect ratio, Proceedings of the Metal Forming’2000, 2000, pp. 107-116.
    S. H., Kim, S. H., Huh, H., Finite element inverse analysis for the design intermediate dies in multi-stage deep drawing processes with large aspect ratio, Journal of materials processing technology 2001, 113: 779-785.
    Kim, S. H., Huh, H., Construction of sliding constraint surfaces and initial guess shapes for intermediate steps in multi-step finite element inverse analysis, Journal of materials processing technology 2002, 130: 482-489.
    Gerdeen, J. C., Chen, P., Geometric mapping method of computer modeling of sheet metal forming, NUMIFORM’89, 1989, p. 437-44.
    Sowerby, R., Determination of large strains in metal forming, J Strain Anal 1982, 7:95.
    Chung, K., Lee, D., Computer-aided analysis of sheet material forming processes, First International Conference on Technology of Plasticity 1984, vol.1, p.660-665.
    Sklad, M. P., Yungblud, B. A., Analysis of multi-operation sheet forming processes, NUMIFORM’92, 1992, p. 543-547.
    El Mouatassim, M., Thomas, B., Jameux, J. P., Di Pasquale, E., An industrial finite element code for one step simulation of sheet metal forming, NUMIFORM’95, 1995, 9:761-766.
    Liu, S. D., Kolodziejski, J., Assempoor, A., Aboutour, T., Cheng, W., Development of a fast design and trouble-shooting FEM in sheet metal forming. 19th IDDRG Biennal Congress, 1996, p. 265-276.
    Liu, S. D., Assempoor, A., Development of FAST3D a design-oriented one step FEM in sheet metal forming, COMPLAS IV, Part II, 1995, p. 1515-1526.
    Chung, K., Richmond, O., Sheet forming process design on ideal forming theory, NUMIFORM’92, 1992, p. 455-460.
    Goudreau, G. L. and Hallquist, J. O., Recent developments in large-scale finite element Lagrangian hydrocode technology, Comput. Meths. Appl. Mech. Engng., 1982, 33: 726-757.
    Benson, D. J. and Hallquist, J. O., A simple rigid body algorithm for structural dynamics programs, Int. J. Num. Meths. Engng., 1986, 22: 723-749.
    Hallquist, J. O., etc, Implementation of a modified Hughes-Liu shell into a fully vectorize explicit finite element code, Finite Elements for Nonlinear Problems,
    
    
    Bergne, P., etc (eds), Berlin, Springer Verlag, 1986: 465-479.
    Hallquist, J. O., DYNA2D, An explicit finite element and finite different code for axisymmetric and plane strain calculation, University of California, Lawerence Livemore Lab. Rept.
    Hallquist, J. O., Goudreau, G. L., and Benson, D. J., Sliding interfaces with contact-impact in large-scale Lagrangian computations, Comput. Meths. Appl. Meth. Engng., 1985, 51: 107-137.
    Schweizerhof, K. and Hallquist, J. O., Explicit integration and contact formulation for thin sheet metal forming, VDI, BERICHTE: 405-439.
    Nakamachi, E. and Makinouchi, A., Development of process simulation system for autobody panel forming by using FE analysis and laser atercolithography techniques, 17th Biennial Congress of IDDRG, 1992: 235-242.
    AutoForm Engineering GMBH, AutoForm User’s Manual 2001.
    熊火轮,计算机辅助板料成形分析模拟系统,北京航空航天大学博士学位论文,1990。
    张凯峰,三维板壳成形过程的粘塑性壳有限元分析,中国机械工程学会锻压学会第六届年会,北京,1995。
    李尧臣,金属板料冲压成形过程的有限单元法模拟,力学学报,1993,27:351-364。
    李光耀,三维板料成形过程的显式有限元分析,计算结构力学及其应用,1996,13:253-268。
    董湘怀,轴对称及三维金属板料成形过程的有限元模拟,华中理工大学博士学位论文,1991。
    Hu, P., Lian, J., Chen, J. W., Finite element numerical analysis of sheet metal under uniaxial tension with a new yield criterion, J. Mater. Proc. Tech., 1992, 13.
    柳玉起,胡平,刘军华,陈塑寰,板材冲压成形变形局部化与动边界摩擦约束,固体力学学报,1997, 18。
    Hu, P., Zhou, D., Elastic-plastic Hybrid/Mixed finite element method and its application to the non-uniform tension of square sheet metal, Commun. Appl. Num. Meth., 1990, 6.
    Hu, P., et al., Nodular iron joint welded with nickel-iron electrodes: Hybrid/Mixed finite element analysis, J. Strain Anal., 1991, 26.
    Hu, P., Zhou, D., Lian, J., A new modified algorithm for elastic-plastic FEM: Quasi-chord Modulus Method, Mech. Research Commun., 1990, 17.
    
    胡平,张卿,Mises 材料弹塑性有限元分析的新途径, 科学通报, 1991, 21。
    Hu, P., Liu, Y. B., Chen, S. Y., Improvement of the common elastic-plastic FEM and Hybrid/Mixed Quasi- secant Modulus Method, Comp. & Struct., 1992, 44.
    Hu, P., Lian, J., Liu, Y. Q., Li, Y. X., A quasi-flow corner theory of elastic-plastic finite deformation, Int. J. Solids Struct. 1998, 33.
    Barlat, F., Lian, J., Plastic behavior and stretchability of sheet metals. Part I: A yield function for orthotropic sheets under plane stress conditions, Int. J. Plasticity, 1989, 5:51.
    Lian, J., Barlat, F., Baudelet, B., Plastic behavior and stretchability of sheet metals. Part II: Effect of yield surface shape on sheet forming limit, Ibit.
    Lian, J., Chen, J. W., Isotropic polycrystal yield surfaces of BCC and FCC metals: crystallographic and continuum mechanics approaches, Acta Metall. Mater., 1991, 39.
    Hu, P., Na, J. X., Li, D. Y., Bifurcation and post-bifurcation behavior in sheet metal tension with strong anisotropy, J. Mater. Proc. Tech., 1998, 74.
    Lian, J., Baudelet, B., Necking development and strain to fracture under uniaxial tension, Mater. Sci. Eng., 1986, 84.
    Lian, J., Chen, J. W., Plastic instability and strain to fracture for damage materials, Mater. Sci. Eng., 1991, A131.
    Lian, J., Baudelet, B., Forming limit diagram of sheet metal in the negative minor strain region, Mater. Sci. Engng., 1987, 86.
    付沛福,吴淑芳,胡平,李运兴,全自动自适应网格细化,计算力学学报,1997, 14。
    胡平,大型覆盖件冲压成形CAE软件系统,中国科协第9次青年科学家论坛报告文集,ISBN 7-302-02252-6/O.171, 清华大学出版社, 1996。
    胡平,李运兴,柳玉起, 冲压件成形与模具设计数值仿真一体化技术, 第四届全国塑性力学及其应用学术研讨会论文集, 北京理工大学出版社, 1997。
    沈启彧,卫原平,王玉国,阮雪榆,基于形变理论的金属板料成形有限元分析,模具技术,1999,5:3-6。
    沈启彧,卫原平,王玉国,赵春林,阮雪榆,金属板料成形的快速有限元分析,计算力学学报,2000,17(2):242-245。
    沈启彧,卫原平,王玉国,阮雪榆,金属板料成形的一步有限元模拟方法,上海交通大学学报,2000,34(10):1404-1405。
    王烨,沈启彧,卫原平,王玉国,张永清,反向方法在板料成形毛坯设计中
    
    
    的应用研究,锻压技术,2001,1:18-24。
    Wang, Y., Shen, Q. Y., Wang, Y. G., Zhang, Y. Q., Research on applying one-step simulation to blank design in sheet metal forming, Journal of materials processing technology 2002, 120: 111-114.
    Shi, X. X., Wei, Y. P., Ruan, X. Y., Simulation of sheet metal forming by a one-step approach: choice of element, Journal of materials processing technology 2001, 108: 300-306.
    兰箭,钣料成形的有限元逆算法研究,华中理工大学博士学位论文,2001。
    徐国艳,施法中,有限元反向法计算筒形件毛料形状,塑性工程学报,2002,9(2):42-45。
    徐国艳,施法中,板料冲压成形盒形件的毛料计算,中国机械工程,2003,14(9):788-790。
    徐国艳,施法中,反向法在冲压件成形设计初期阶段的应用,塑性工程学报,2003,10(1):40-43。
    钟志华,李光耀,薄板冲压成型过程的计算机仿真与应用,北京理工大学出版社,1998。
    钟志华,张维刚,曹立波,何文,汽车碰撞安全技术,机械工业出版社,2003。
    中国汽车工程学会,汽车安全技术(SAE-China’2004),人民交通出版社,2004。
    赵海鸥,LS-DYNA动力分析指南,兵器工业出版社,2003。
    黄天泽,黄金陵,汽车车身结构与设计,机械工业出版社,1989。
    崔令江,汽车覆盖件冲压成形技术,机械工业出版社,2003。
    雷正保,汽车覆盖件冲压成形CAE技术,国防科技大学出版社,2003。
    王仁,黄文彬,黄筑平,塑性力学引论,北京大学出版社,1992。
    李国琛,M. 耶纳,塑性大应变微结构力学(第二版),科学出版社,1998。
    Richard, L., Burden, J., Douglas, F., Numerical Analysis (Seventh Edition), Thomson Learning Inc, 2001.
    李庆扬,王能超,易大义,数值分析(第4版),清华大学出版社 施普林格出版社,2001。
    Karima, M., Tse, W., Formability and uniformity aspects in drawbead controlled geometries, J. Mater. Shaping Technol., 1989, 6: 181-193.
    邓陟,王选进,陈鹤峥,金属薄板成形技术,兵器工业出版社,1993。
    Nine, H. D., Drawbead forces in Sheet Metal Forming, Mechanics of Sheet Metal Forming, Wang, N. M. (ed.), Plenum, New York, 1978: 179-207.
    
    Swift, J. M., Plastic bending under testing, Engineering, 1948, Oct. 333-335, 357-359.
    Stoughton, T. B., Model of drawbead forces in sheet metal forming, Proc. 15th Biennial Congress of IDDRG, Dearborn, MI, 1988, May 16-18: 205-215.
    李大永,板材冲压成形CAE若干关键问题的研究,吉林工业大学博士学位论文,2000。
    孙家广,杨长贵,计算机图形学,清华大学出版社,1995。
    周培得,计算几何—算法分析与设计,2000。
    李新友,计算机图像综合技术—CAD/CAM工程师必读,机械工业出版社,1997。
    彭群生,鲍虎军,金小刚,计算机真实感图形的算法基础,科学出版社,1999。
    Hu, P., Li, D. Y., Li, Y. X., Analytical models of stretch and shrink flanging, Int. J. Mach. Tools & Manufacture, 2003, 43(13):1367-1373。
    曹颖,李峰,李大永,胡平,拉伸收缩翻边过程的修边线预示,工程力学,2001,18(2):35-40。
    胡平,李运兴,李大永,板材冲压翻边的解析理论模型,力学学报,2001,33(6):803-811。
    李大永,范海燕,王玉国,翻边成型中预示修边线的一种简便方法,汽车工艺与材料,2002,5:11-14。
    胡平,刘海鹏,柳玉起,厚钣金件压弯翻边与回弹的数值研究,固体力学学报,2002, 23(1): 72-80。
    刘军华,板材成形卸载回弹与切边回弹的数值模拟及其回弹控制,吉林大学硕士学位论文,2002。
    Finn, M. J., Galbraith, P. C., Wu, L., Use of a coupled explicit-implicit solver for calculating spring-back in automotive body panels, J. of Mats. Proc. Tech. 1995, 50: 395-409.
    Shu, J. S., Hung, H., Finite element analysis and optimization of springback reduce: the “Double-Bend” technique, Int. J. Mach. Tools Manufact., 1996, 36:423-434.
    Lee, S. W., Yang, D. Y., An assessment of numerical parameters influencing springback in explicit finite element analysis of sheet metal forming process, J. of Mats. Proc. Tech., 1998, 80-81: 60-67.
    Narasimhan, N., Lovell, M., Predicting springback in sheet metal forming: an explicit to sequential solution procedure, Finite Elements in Analysis and Design, 1999, 33:29-42.
    李淑慧,李明哲,蔡中义,板材多点弯曲过程及回弹现象的数值模拟,农业机械学报,2000,31:112-115。
    Kawka, M., Kakita, T., Makinouchi, A., Simulation of multi-step sheet metal forming processes by a static explicit FEM code, J. of Mats. Proc. Tech., 2000,
    
    
    80-81: 54-59.
    L. papeleux, Gohy, S., Collard, X., Ponthot, J. P., Springback simulation in sheet metal forming using implicit algorithms, NUMISHEET’99, 1999, p:23-28.
    Joannic, D., Gelin, J. C., Shape defects in sheet metal forming operations after springback, NUMISHEET’99, 1999, p:29-34.
    Samuel, M., Experimental and numerical prediction of springback and sidewall curl in U-bending of anisotropic sheet metals, J. of Mats. Proc. Tech., 2000, 105: 382-393.
    Lei, L. P., Hwang, S. M., Kang, B. S., Finite element analysis and design in stainless steel sheet forming and its experimental comparison, J. of Mats. Proc. Tech., 2001, 110: 70-77.
    Li, G. Y., Tan, M. J., Liew, K. M., Springback analysis for sheet forming processes by explicit finite element method in conjunction with the orthogonal regression analysis, Int. J. Solids Struc., 1999, 36:4653-4668.
    Abdelsalam, U., Sikorshi, A., Karima, M., Application of one step springback for product and early process feasibility of sheet metal stampings, NUMISHEET’99, 1999, p:47-52.
    Hsu, T. C., Shien, I. R., Finite element modeling of sheet metal forming process with bending effects, J. of Mats. Proc. Tech., 1997, 63: 733-737.
    Kazama, K., Nukaga, T., Makino, H., Spring back simulation of Truck’s Frame Side Member, NUMISHEET’99, 1999, p:65-70.
    Belytschko, T., Lin, J.L. and Tsay, C.S., Explicit algorithms for the nonlinear dynamics of shell, Comput. Meths. Appl. Mech. Engng., 1984, 42: 225-251.
    申国哲,金属板材成形的动力半显式算法及其工程应用,吉林大学博士学位论文,2002。
    Mcmeeking, R. M., Rice, J. R., A finite element simulation of the sheet metal forming process, Int. J. Solids Struct, 1975, 11:601-616.
    富田佳宏,数值弹塑性力学,胡平,李运兴,柳玉起译,吉林科学技术出版社,1995.
    Onate, E. and Kleiber, M., Int. J. Num. Meth. Engng., 1988, 25:227.
    柳玉起,板材成形塑性流动规律及起皱回弹的数值研究,吉林工业大学博士学位论文,1996。
    张觉慧,谭郭松,高卫民,黄锡朋,汽车碰撞的有限元法及车门的抗撞性研究,同济大学学报,1997,25(4):450-454。
    雷正保,钟志华,汽车碰撞仿真发展研究趋势,长沙交通学院学报,1999,15(1):18-22。
    顾立强,林忠钦,国内外汽车碰撞计算机模拟研究的现状及趋势,汽车工程,1999,21(1):1-9。
    贾宏波,黄金陵,谷安涛,王中校,李掌宇,数值模拟技术在汽车碰撞分析
    
    
    中的应用,中国公路学报,1999,12(2):100-104。
    Kellicut, A., Cowell, B., Kavikondala, K., Dutton, T., Iregbu, S., Sturt, R., Application of the results of forming simulation in crash models, NUMISHEET’99, 1999, p: 509-514.
    Dutton, T., Iregbu, S., Sturt, R., Kellicut, A., Cowell, B., The effect of forming on the crashworthiness of vehicles with hydroformed frame siderails, 1999, SAE 1999-01-3208.
    Lee, S. H., Han, C. S., Oh, S. L., Wriggers, P., Comparative crash simulations incorporating the results of sheet metal analyses, Engineering Computations, 2001, 20(5-6):744-758.
    Huh, H., Kim, K. P., Kim, S. H., Song, J. H., Kim, H. S., Hong, S. K., Crashworthiness assessment of front side members in an auto-body considering the fabrication histories, International Journal of Mechanical Sciences, 2003, 45:1645-1660.
    Huh, H., Kim, K. P., Kim, S. H., Kim, H. S., Hong, S. K., Crashworthiness of front side members in an auto-body considering the fabrication effect, 12th International Pacific Conference on Automotive Engineering, 2003, T27.
    Kim, K. P., Huh, H., Collapse analysis of an auto-body structure by a finite element limit method. Proceedings of the Sixth USNCCM, Dearborn, USA, 2003. p. 737-742.
    Kim, K. P., Huh, H., Collapse analysis of auto-body structures considering the effect of fabrication, Key Engineering Materials, 2003, 233-236:737-742.
    Kim, H. S., Hong, S. K., Hong, S.G., Huh, H., The evaluation of crashworthiness of vehicles with forming effect, 2003, 4th European LS-DYNA Users Conference, B-1:25-33.
    Shaw, J., Watanabe, K., Steel Strength and Processing Effects on Impact Deformation for a Crash Energy Management Component, 2001, SAE Paper 2001-01-1053.
    Simunovic, S., Shaw, J., Aramayo, G., Steel Processing Effects on Impact Deformation of UltraLight Steel Auto Body, 2001, SAE Paper 2001-01-1056.
    B?ttcher, C. S., Frik, S., Consideration of manufacturing effects to improve crash simulation accuracy, 2003, 4th European LS-DYNA Users Conference, B-1:01-08.
    Hallquist J, LS-DYNA Users Manual Version 960, 2002, Livermore Software Technology Corporation.
    蒋友谅,非线性有限元,北京工业学院出版社,1988。
    许焕然,倪行达,王裴,工程中有限元方法,吉林工业大学,1985。
    Wang, N. M. etc., An analytical and experimental study of stretch flanging, Int. J. Mech. Sci,1974, 16: 135-143.
    王勖成,邵敏,有限单元法基本原理与数值方法,清华大学出版社,1997。
    何君毅,林祥都,工程结构非线性问题的数值解法,国防工业出版社,1994。

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700