用户名: 密码: 验证码:
航空发动机气冷涡轮叶片的气热耦合数值模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
现代航空燃气涡轮发动机为了获得更高的推重比和热效率,不断提高涡轮入口温度,目前涡轮进口温度已经远远超过叶片材料的熔点温度,必须采用复杂的冷却技术来保持涡轮叶片的正常工作,准确预测涡轮叶片的温度场是提高冷却效率、延长叶片工作寿命的关键问题,随着的计算流体力学的不断发展,气热耦合数值模拟技术已经成在航空发动机工程设计的重要工具,本文的主要工作就是对航空发动机气冷涡轮叶片进行气热耦合数值模拟,并对进一步提高涡轮叶片气热耦合数值模拟的准确性和可靠性进行深入分析。
     本文首先研究了如何准确预测边界层转捩流动的问题,航空发动机中普遍存在转捩流动,边界层转捩前后的流动状态、壁面切应力和换热系数等均不相同,准确预测边界层转捩流动的起始位置对于涡轮叶片的气动和传热设计都具有非常重要的意义,能否准确模拟边界层转捩流动的关键在于如何选择合适的物理模型,本文选择常见的二方程湍流模型和转捩模型对平板边界层转捩实验进行数值模拟,通过详细分析各模型的计算特点和对转捩流动的识别能力,发现常见的高雷诺数K-ǜ湍流模型和低雷诺数K-?湍流模型都是基于全湍流假设,不能准确模拟边界层转捩流动,目前情况下准确模拟边界层转捩流动必须选用合适的转捩模型,本文选用g-Req转捩模型对平板边界层转捩流动进行数值模拟获得了比较令人满意的结果。为了研究涡轮典型工作环境下边界层转捩的特点,本文还研究了压力梯度和温度梯度对转捩流动的影响,发现顺压梯度有助于稳定边界层流动,延缓转捩的发生,而逆压力梯度容易促使边界层流动失稳,促进转捩提前发生;垂直于壁面方向较大的温度梯度所引起的密度分层抑制了湍流的脉动运动,延缓边界层转捩的发生。
     航空发动机涡轮叶片的气动和传热过程非常复杂而且相互影响,本文通过对带有内部径向对流冷却的MarkII和C3X叶片的传热实验进行了气热耦合数值模拟,评估了不同湍流模型和转捩模型的气热耦合计算精度,发现边界层的流动状态对涡轮叶片的传热过程有很大的影响,当涡轮叶片存在转捩流动的时候必须选用合适的物理模型才能提高气热耦合数值计算的准确性和可靠性,本文选用g-Req转捩模型比较准确的模拟了涡轮叶片表面的传热过程。上述关于提高涡轮叶片气动和传热计算精度的研究对进一步模拟航空发动机涡轮叶片气冷结构的传热过程做了数值计算上的准备。
     叶片外表面冷却射流与高温主流燃气之间的相互掺混是一个复杂三维气动与传热过程,本文通过对带有气膜冷却C3X叶片传热实验进行气热耦合数值模拟,发现气膜冷却射流在叶片表面的流动和传热过程和主流边界层的流动状态也密切相关,当主流边界层为层流状态时,气膜冷却射流能保持自身的独特流动状态,冷却射流覆盖区域的冷却效果较好,但当主流边界层转捩为湍流以后,由于冷却射流与主流边界层之间掺混流动增强促使气膜冷却射流与主流边界层迅速融合,冷却射流对叶片表面的冷却效果大大降低;当气膜冷却射流的流动状态保持较好时,气膜冷却射流的动量相对当地的主流边界层要大得多,气膜冷却射流在叶片表面形成若干平行的“气流柱”,主流边界层流体只能从相邻“气流柱”之间压缩流过,并且气膜射流的对转涡对不断裹挟周围的高温流体到边界层内,使这些区域的换热增强;另外叶片表面多排气膜冷却相互叠加作用也很强烈,前缘气膜射流的较大径向流动分速诱使下游气膜冷却射流也明显向叶顶偏斜,下游冷却射流形成密集连续的气膜将前缘冷却射流和主流边界层抬离壁面,在下游较远处才向壁面发生再附。
     实验研究不能完全模拟航空发动机的实际工作条件,利用数值模拟的优势深入研究涡轮叶片的实际工作状态具有很重要的工程意义,本文对航空发动机实际工作条件下涡轮叶片前缘复合冷却结构的传热过程进行了气热耦合数值模拟,复合冷却结构包括气膜冷却、对流冷却、冲击冷却、热障涂层和高温镍基合金,涡轮叶片前缘复合冷却结构的隔热降温效果比较明显,叶片的实际工作温度被有效降低到比较安全的范围,冲击冷却配合气膜冷却使用能有效降低叶片前缘的热负荷,在叶片表面添加热障涂层可以在相同的工作条件下大大提高涡轮叶片的抗氧化和抗热腐蚀的能力,并适当降低金属叶片的工作温度和温度梯度。本文最后研究了燃烧室出口温度不均匀分布对涡轮叶片前缘传热的影响,由于燃烧室内掺混不充分以及壁面冷却形成的涡轮进口温度沿径向不均匀分布是航空发动机运行过程中常见的现象,这种温度的径向不均匀分布使涡轮叶片表面的热负荷变得不均匀,同时使叶片前缘和下游气膜冷却在局部区域的冷却效果降低,在冷却设计中应该考虑进口温度径向分布不均匀对涡轮叶片传热的影响;“热斑”是由涡轮进口温度不均匀性的一种畸变状态,热斑对涡轮叶片表面形成非常集中、强烈的热冲击,叶片局部形成很大的温度梯度,极大影响了涡轮叶片的工作寿命,热斑与涡轮叶片的相对位置变化存在“时钟效应”,当热斑正对叶片前缘时,对叶片的热冲击最大;热障涂层能在一定程度上减小热斑对涡轮叶片的热冲击。
In order to improve aero turbine engine thermal efficiency and thrust-to-weightratio, combustor exit temperature have clearly exceeded the permissible materialtemperature of turbine bladings, and complex cooling techniques are commonlyused to maintain turbine bladings working in safe conditions. Precise heat transferanalysis of turbine bladings is essential to increase cooling configuration efficiencyand extend bladings operating life. With the incessant maturity of numericalsimulation technology, conjugate heat transfer methodology has gradually became aprevailing tools in the desigh process of aero turbine engine. Base this point, themain task of this dissertation is to study the heat transfer of turbine bladings byconjugate heat transfer methodology, and explore how to increase the accuracy and reliabilityof conjugate heat transfer calculation.
     First of all, the method to precisely simulate the flow of boundary layertransition was investigated. Boundary layer transition is the common flowphenomenon in aero turbine engine. Before and after transition flow occurs, theboundary velocity profile, wall shear stress and heat transfer coefficient are totallydissimilar in boundary layer. Precise numerical simulation of boundary layertransition is essential to the aerodynamics and heat transfer design of turbinebladings. Different turbulence models and turbulence models were employed in thenumerical simulation of flat plate boundary layer transition experiments. Bycomparing calculated results with different turbulence models to the measured data,it is clear that calculation with g-Req transition model can better simulate the flowin boundary layers because dual-equation turbulence models regard the wholeboundary layer field as a full turbulence flow. Pressure gradient and temperaturegradient are common phenomena in aero turbine engine and influence the onsetlocation of boundary layer transition. Favor pressure gradient stabilize boundarylayer flow, and postpone the onset location of transition. Adverse pressure gradientinduce boundary layer separation and pre-act transition occurs. Higher temperaturegradient normal to plate induces higher density gradient which could reduceturbulence characteristics in boundary layer, and delay transition process.
     Secondly, conjugate heat transfer methodology was employed to MarkII andC3X turbine guide vane which has internal radial convective cooling channels inthis dissertation. By comparing conjugate heat transfer simulation with differentturbulence models, the calculation with g-Req transition model showed goodagreement with measured data. Boundary layer transition had significant influenceon heat transfer of turbine bladings and application of transition models was crucialto the accuracy and reliability of conjugate heat transfer methodology at the presentday. The study mentions above which focused on improving the calculated accuracyof aerodynamics and heat transfer in turbine bladings laid the foundation for furtherinvestigation to cooling techniques of aero turbine engine.
     Conjugate heat transfer methodology was employed to C3X turbine vane withfilm cooling in this dissertation. The results indicated that the flow and heat transferof film cooling ejections were influenced by flow of mainstream boundary layer onvane surface. The unique 3-D turbulent characteristics of film cooling ejects was,but quickly disappeared owing to its intensified mixing with hot gas aftermainstream boundary layer transition, and cooling performance to vane surface wassimultaneously weakened. When the flow characteristics of film cooling ejects wasclearly maintained before transition, film cooling ejects separate mainstreamboundary layer into parallel street on vane surface because the momentum of filmcooling ejects was greater than local mainstream boundary layer, the heat transferwas reinforce in those streets because of compressed hot gas flow in those streetsand the entrainment phenomenon of film cooling ejection. The interaction ofoverlap between leading edge film cooling and downstream film was so strong thathad greater influenced on heat transfer process on vane surface. The radial velocityof leading edge film cooling ejection induced downstream film cooling ejections toflow in same direction, Down stream film cooling ejections raised upper streamcooling ejections away from vane surface, and reattachment occurred at a distance.
     Finally, with aid of numerical simulation technology, detail investigation ofengine realistic operating conditions had great significance in aero turbine enginedesign process. Lab environment could not totally simulate aero turbine enginerealistic operating conditions. Conjugate heat transfer methodology was employedto study the heat transfer of compound cooling structure employed in the leadingedge of C3X vane under engine-realistic operating conditions in this dissertation. The compound cooling techniques include film cooling, convection cooling,impingent cooling, thermal barrier coating and nickel based heat resistingsuperalloy. Compound cooling techniques had excellent capability of coolingturbine bladings to a permissible temperature under harsh working conditions. Thecombined usage of internal impingent cooling and outer film cooling couldeffectively reduce the heat load of turbine bladings. Thermal barrier coating couldnot only effectively increase the capability of oxidation resistant and corrosionresistant, but also moderately lower the working temperature of turbine bladings.The non-uniform turbine inlet temperature distribution in radial direction caused byinsufficient mixing and wall film cooling in combustor could usually induceinhomogeneous heat load of vane surface, and weaken the performance ofdownstream film cooling, so researchers should pay more attention to the influenceof non-uniform temperature in cooling technique design process. Hot streakphenomenon was a turbine inlet temperature distortion which had both radial andcircumferential severe temperature gradients. The thermal shock of hot streakusually caused great temperature gradient in turbine bladings, and was very harmfulto operating life. The location of hot streak has a clocking effect on the surfacetemperature distribution of turbine bladings.Turbine vane received the biggestthermal shock when the core of hot streak was positively aligned with turbine vaneleading edge. Thermal barrier coating could little reduce the thermal shock of hotstreak.
引文
1刘大响.对加快发展我国航空动力的思考.航空动力学报. 2001, 16(1): 1~7.
    2蒋洪德.美国航空发动机和计算流体力学发展情况介绍.气动热力学发展战略研讨会专题报告汇编. 1989, (3): 29-36.
    3方昌德.航空发动机的发展前景.航空发动机. 2004.30(1): 1~5.
    4高性能涡轮发动机技术(IHPTET)计划. http://www.fyjs.cn.
    5方昌德.美国AIAA呼吁政府支持综合高性能涡轮发动机技术.中国航空工业发展研究中心航空技术所.
    6方昌德. 2020年前航空发动机的技术发展水平对比和对策研究.综合高性能涡轮发动机技术(IHPTET)计划文集.航空航天部航空科学技术情报研究所. 1992.
    7葛绍岩等.气膜冷却.科学出版社, 1985.
    8曹玉璋等.航空发动机传热学.北京航空航天大学出版社, 2005.
    9 W. Koop. Integrated High Performance Turbine Engine Technology(IHPTET)Program. ISABE 97-7175.
    10方昌德.借鉴国外经验发展我国的航空发动机.国际航空, 2006.4.
    11陈光.航空发动机发展综述.航空制造技术, 2000.6.
    12刘大响,程荣辉.世界航空动力技术的现状及发展动向.北京航空航天大学学报.2002, 28(5).
    13 D. K. Hennecke. Turbine Cooling in Aeroengines. Von Karman Inst. LS 1982.2
    14韩介秦等,燃气轮机传热和冷却技术.西安交通大学出版社, 2005.
    15 R. A. Rudey, R. W. Graham. A review of NASA combustor and turbine heattransfer research. ASME 84-GT-113.
    16王华阁主编.航空发动机设计手册.第16册.空气系统及传热分析.航空工业出版社, 2001
    17 D. M. Nissley, T. G. Meyer, K. P.Walker. Life prediction and constitutivemodels for engine hot section anisotropic materials program, NASA-CR-189223, NASA-Lewis Research Center, 1992. 9.
    18张效伟,朱惠人.大型燃气涡轮叶片冷却技术. 2008,23(1): 1~6.
    19彭泽琰,刘刚.燃烧与燃烧室.航空燃气轮机原理(上册).国防工业出版社,2000.
    20 Nima Pegemanyfar, Michael Pfitzner, Ruud Eggels, Ralf von der Bank, MarcoZedda. Development of an automated preliminary combustion chamber designtool. ASME Paper GT2006-90430.
    21 T. Povey, K. S. Chana, T. V. Jones, J. Hurrion. The effect of hot-streaks on HPvane surface and endwall heat transfer: An experimental and numerical study.ASME Paper GT2005-69066.
    22刘高文,刘松龄.用气膜冷却来防止热斑引起的涡轮叶片过热.推进技术,2005, 26(6).
    23董素艳.有进口“热斑”时涡轮级内流场和温度场的非定常数值模拟.西北工业大学博士论文.
    24 T. L. Butler, O. P. Sharma, H. D. Joslyn, R P. Dring. Redistribution of an inlettemperature distortion in an axial flow turbine stage. AIAA, Journal ofPropulsion and Power, 1989, 5(1) : 64~71.
    25闫朝,内田澄生,坂元康朗,徐建中.热斑对涡轮二级导叶热负荷影响的实验和数值研究.推进技术, 2004, 25(6)
    26刘高文,刘松龄.热斑在1-1/2级涡轮内的非定常迁移数值模拟.航空动力学报, 2004,19(6).
    27 R. J. Roback, R P. Dring. Hot streaks and phantom cooling in a turbine rotorpassage: part 1 2 separate effects.ASME Journal of Turbomachinery. 1993, 115(4) : 657~666.
    28 D. J.Dorney, K. L.Gundy-Burlet. Hot Streak Clocking Effects in a 1-1/2 StageTurbine. Journal of Propulsion and Power, Vol. 12, pp. 619–620.
    29 R. K.Takahashi, R. H. Ni, O. P. Sharma, J. B. Staubach. Effect of Hot StreakIndexing in a 1-1/2 Stage Turbine, AIAA Paper 96-2796.
    30 T. Shang, A. H. Epstein. Analysis of Hot Streak Effects on Turbine Rotor HeatLoad. Journal of Turbomachinery, 119: 544–553.
    31 Sean Jenkins, Krishnakumar Varadarajan, David G Bogard. The effects of highmainstream turbulence and turbine vane film cooling on the dispersion of asimulated hot streak. ASME Paper GT2003-38575.
    32 Krishnakumar Varadarajan, David G Bogard. Effects of hot streaks on adiavaticeffectiveness for a film cooled turbine vane. ASME Paper GT2004-54016.
    33 Sean Jenkins, David G Bogard. The effects of the vane and mainstreamturbulence level on hot streak attenuation. ASME Paper GT2004-54022.
    34 Sean Jenkins, David G Bogard. Scaling the guide vane coolant profiles and thereduction of a simulated hot streak. ASME Paper GT2005-69015.
    35 Sean Jenkins, David G Bogard. Superposition predictions of the reduction ofhot streaks by coolant from a film cooled guide vane. ASME Paper GT2005-69016.
    36董素艳,刘松龄,朱惠人.涡轮级进口温度分布不均匀时流场和温度场的非定常数值模拟.西北工业大学学报, 2001,19(3).
    37董素艳,刘松龄,朱惠人.进口热斑对涡轮级影响的非定常数值模拟,航空动力学报, 2001,16(3).
    38赵庆军,王会社,唐菲,赵晓路,徐建中.进口热斑在无导叶对转涡轮高压级中迁移的控制因素分析.中国科学E辑,技术科学. 2008,38(1).
    39赵庆军,王会社,赵晓路,徐建中.无导叶对转涡轮进口热斑迁移特性分析,工程热物理学报, 2007,28(1).
    40 S. G. Goebel, N Abuaf, J.A.Lovett, C. P.Lee. Measurement of CombustorVelocity and Turbulence Profiles. ASME Paper 93-GT-228.
    41 M. G.Dunn, H. L.Martin, M. J. Streak. Heat flux and pressure measurement andcomparison with prediction for a low aspect ratio turbine stage. ASME Journalof Turbomachinery. 1986,108: 108-115.
    42 M. F.Blair, R. P. Dring, H. D.Joslyn. The effect of turbulence and stator/rotorinteractions on turbine heat transfer. Part I: Design operating conditions. Part II:Effects of Reynolds number and incidence. ASME Journal of Turbo machinery.1989,111: 87-103.
    43 Hylton LD, Milhec M S, Turner E R, Nealy D A. York R E, Analytical andexperimental evaluation of the heat transfer distribution over the surface ofturbine vanes. NASA-CR-168015, 1983.
    44 S. G.Goldstein, R. A.Spores. Turbulent Transport on the Endwall in the RegionBetween Adjacent Turbine Blades. ASME Journal of Heat Transfer, 1988, 110:862-869.
    45 P. W. Giel, G. J. Fossen, R. J. Boyle, D. R.Thurman, K. C. Civinskas. BladeHeat Transfer Measurements and Predictions in a Transonic Turbine Cascade.ASME Paper 99-GT-125.
    46 W. J. Mick, R. E. Mayle. Stagnation Film Cooling and Heat Transfer, IncludingIts Effect Within the Hole Pattern. ASME Journal of Turbomachinery, 1988,110:66-72.
    47 A. B. Mehendale, J. C. Han. Influence of High Mainstream Turbulence onLeading Edge Film Cooling Heat Transfer. ASME Journal of Turbomachinery,1992,114: 707-715.
    48 S. V. Ekkad, J. C. Han, H. Du. Detailed Film Cooling Measurements on aCylindrical Leading Edge Model: Effect of Free stream Turbulence and CoolantDensity. ASME Paper 97-GT-181.
    49 C. Cruse, U. M. Yuki, D. G. Bogard. Investigation of Various ParametricInfluences on a Film Cooled Transonic Turbine Blade. ASME Pape, 97-GT-296.
    50 A. J. H.Teekaram, C. J. P. Forth, T. V. Jones. Film Cooling in the Presence ofMainstream Pressure Gradient. ASME Paper, 90-GT-334.
    51 D. L. Schmidt, D. G. Bogard. Pressure Gradient Effects on Film Cooling.ASME Paper. 95-GT-18.
    52 U. Drost, A. Blocs. Investigation of Detailed Film Cooling Effectiveness andHeat Transfer Distributions on a Gas Turbine Airfoil. ASME Journal ofTurbomachinery. 1999,121:233-242
    53 E. R. Turner, M. D. Wilson, L. D. Hylton, R. M. Kaufman. Analytical andExperimental Evaluation of Surface Heat Transfer Distrubutions with LeadingEdge Showerhead Film Cooling, NASA-CR-174827.
    54 L.D. Hylton, V. Nirmalan, B. K. Sultanian, R. M. Kaufman, The effects ofleading edge and downstream film cooling on turbine vane heat transfer,NASA-CR-182133, 1988.
    55 Shantanu Mhetras, Je-Chin Han, Ron Rudolph. Effect of Flow ParameterVariations on Full Coverage Film-Cooling Effectiveness for a Gas TurbineBlade. ASME Paper. GT2007-27071.
    56 H. Du, S.V. Ekkad, J.C. Han, C. P. Lee. Detailed Film Cooling Measurementsover a Gas Turbine Blade Using a Transient Liquid Crystal Image Technique.International Journal of Rotating Machinery, 2001, 7(6): 415-424.
    57 M.E. Taslim, A. Khanicheh. Experimental and numerical study of impingementon an airfoil leading edge with and without showerhead and gill film holes.ASME Paper, GT2005-68037.
    58 M.E. Taslim and D. Bethka. Experimental and numerical impingement heattransfer in airfoil leading-edge cooling channel with crossflow. ASME Paper,GT2007-28212.
    59 M.E. Taslim, Y. Pan, S.D. Spring. An experimental study of impingement onroughened airfoil leading edge walls with film holes. ASME Paper 2001-GT-0152.
    60 M.E. Taslim and L. Setayeshgar. Experimental leading edge impingementcooling through race track crossover holes. ASME Paper, 2001-GT-0153.
    61 M.E. Taslim, Y. Pan and K. Bakhtari. Experimental racetrack shaped jetimpingement on roughened leading edge wall with film holes. ASME Paper,GT-2002-30477
    62 M. Goodro, J.M. Park, P. Ligrani, M. Fox, H.K. Moon. Effect of hole spacingon jet array impingement heat transfer. ASME Paper, GT2007-28292.
    63 M. Goodro, J.M. Park, P. Ligrani, M. Fox, H.K. Moon. Effect of temperatureratio on jet array impingement heat transfer. ASME Paper GT2007-28293.
    64 J.M. Park, M. Goodro, P. Ligrani, M. Fox, H.K.Moon. Separate effects of machnumber and Reynolds number on jet array impingement heat transfer. ASMEPaper, GT2006-90628.
    65 Q.H. Xu, C. Zhang, Y.Z. Lin, G.E. Liu. Flow field and heat transfercharacteristics in an impingement/effusion cooling system for combustor liner.ASME Paper, GT2005-68220.
    66 C. Zhang, Q.H. Xu, M.M. Zhao, Y.Z. Lin, G.E. Liu. Effect ofimpingment/effusion hole area ratio on discharge coefficients of double coolingwall. ASME Paper, GT2006-90612.
    67 Brian.C.Y. Cheong, Peter. T. Ireland, John.P.C.W. Ling, Shirley Ashforth-Frost.Flow and heat transfer characteristics of an impinging jet in crossflow at lownozzle to plate spacing. ASME Paper GT2005-68636.
    68 J. Rober, Simoneau, A. Dale, Hudson. CFD in the context of IHPTET—theintegrated high performance turbine technology program. NASA-TM-102132,1989.
    69 M. E. Crawford, W. M. Kays. STAN5, a program for numerical computationof two-dimensional internal and external boundary layer Flows. NASA-CR-2742.1976.
    70 M. E. Crawford, W. M. Kays, R. J. Moffat. Full Coverage Film Cooling on Flat,Isothermal Surfaces: A Summary Report on Data and Predictions. NASA CR-3219, 1980.
    71 M. G.. Dunn, W. J. Rae, J. L. Holt. Measurement and Analysis of Heat Flux in aTurbine Stage: Part II -- Discussion of Results and Comparison With prediction,ASME Journal of Engineering for Gas Turbines and Power.1984,106:234-240
    72 M. G.. Dunn, R. E. Chupp. Time-Averaged Heat-Flux Distributions andComparison With Prediction for the Teledyne 702 HP Turbine Stage. ASMEJournal of Turbomachinery, 1988,110: 51-56.
    73 D. B. Taulbee, L. T. Tran, M. G. Dunn. Stagnation Point and Surface HeatTransfer for a Turbine Stage: Prediction and Comparison with Data. ASMEPaper 88-GT-30.
    74 R. F. Bergholz, M. G.. Dunn, G. D. Steuber. Rotor/Stator Heat TransferMeasurements and CFD Predictions for Short-Duration Turbine Rig Tests,ASME Paper. 2000-GT-208.
    75 S. P. Harasgama, F. H. Tarada, R. Baumann, M. E. Crawford, S. Neelakantan.Calculation of Heat Transfer to Turbine Blading Using Two-DimensionalBoundary Layer Methods. ASME Paper 93-GT-79.
    76 B. Weigand, B. Bonhoff, J. R. Ferguson. A Comparative Study Between 2DBoundary Layer Predictions and 3D Navier-Stokes Calculations for a FilmCooled Vane. ASME National Heat Transfer Conference, HTD-350: 213-221.1997.
    77 M. B. Giles, UNSFLO: A Numerical Method for Unsteady Inviscid Flow inTurbomachinery. MIT Gas Turbine Laboratory Report No.195,1988.
    78 R. S. Abhari, G. R. Guenette, A. H. Epstein, M. B. Giles. Comparison of Time-Resolved Turbine Rotor Blade Heat Transfer Measurements and NumericalCalculations. ASME Paper 91-GT-268.
    79 V. J. Garg, R. S. Abhari. Comparison of Predicted and Experimental NusseltNumber for a Film-Cooled Rotating Blade. ASME Paper 96-GT-223.
    80 R. V. Chima, J. W. Yokota. Numerical Analysis of Three-Dimensional InternalFlows, AIAA Journal, 1990,28:798-806.
    81 A.K. Tolpadi, J.A. Tallman, L.E. Gabry. Turbine airfoil heat transfer predictionsusing CFD. ASME Paper GT2005-68051.
    82 J.A. Tallman, C.W. Haldeman, M.G. Dunn, A.K. Tolpadi, R.F. Bergholz. Heattransfer measurements and predictions for a modern, high pressure, transonicturbine, including endwalls. ASME Paper GT2006-90927.
    83 V. K. Garg , D. L. Rigby. Heat Transfer on a Film-Cooled Blade Effect of HolePhysics, International Journal Heat & Fluid Flow. 1999,20: 10-25.
    84 V. K. Garg. Modeling Film-Coolant Flow Characteristics at the Exit of Shower-Head Holes. International Journal Heat & Fluid Flow, 2001,22: 134-142.
    85 J. D. Heidmann, S. D. Hunter. Coarse Grid Modeling of Turbine Film CoolingFlows Using Volumetric Source Terms. ASME Paper 2001-GT-0138.
    86 T. L. Perelman. On Conjugated Problems of Heat Transfer. Jounal of Heat MassTransfer. 1961,3: 293~303.
    87 E. Steinthorsson, A. A. Ameri, D. L. Rigby. TRAF3D.MB A MultiBlock FlowSolver for Turbomachinery Flows. AIAA Paper 97-996.
    88 J. D. Heidmann, A. J. Kassab, E. A. Divo, F. Rodriguez. E. Steinthorsson.Conjugate heat transfer effects on a realistic film cooled turbine vane. ASMEpaper GT-2003-38553.
    89 D. Bohn, K. Kusterer, T. Sugimoto, R. Tanaka. Conjugate analysis of a testconfiguration for a film-cooled blade under off-design conditions. ISABE-2003-1176.
    90 K. Kusterer, D. Bohn, T. Sugimoto, R. Tanaka. Conjugate heat transfer analysisof a test confi guration for a film-cooled blade. IGTC 2003 Tokyo TS-083.
    91 K. Kusterer, D.Bohn, T. Sugimoto, R. Tanaka. Conjugate calculations for afilm cooled blade under different operating conditions. ASME Paper. GT2004-53719.
    92 K. Kusterer, T. Hagedorn, D. Bohn, T. Sugimoto, R. Tanaka. Improvement of afilm-cooled blade by application of the conjugate calculation technique. ASMEPaper. GT2005-68555.
    93 D. Bohn, K. Kusterer. Blowing ratio influence on jet mixing flow phenomena atleading edge. AIAA Paper. 99-0670.
    94 D. Bohn, T. Heuer. Conjugate flow and heat transfer calculation of a highpressure turbine nozzle guide vane. AIAA Paper. 2001-3304.
    95 D. E. Bohn, C. Tümmers. Numerical 3-D conjugate flow and heat transferinvestigation of a transonic convection-cooled thermal barrier coated turbineguide vane with reduced cooling fluid mass flow. ASME Paper, GT2003-38431.
    96 D. Bohn, T. Heuer, J. Kortmann. Numerical conjugate flow and heat transferinvestigation of a transonic convection-cooled turbine guide vane with stress-adapted thicknesses of different thermal barrier coating. AIAA Paper. 2000-1034.
    97 W. D.York, J. H. Leylek, Three dimensional conjugate heat transfer simulationof an in ternally cooled gas turbine vane. ASME Paper, GT2003-28551.
    98 B. Facchini, A.Magi, A. S. D.Greco. Conjugate heat transfer simulation of aradially cooled gas turbine vane. ASME Paper GT2004-54213.
    99 Z.Mazur, A. Hernandez-Rossette, R. Garcia-Illescas, A.Luna-Ramirez. Analysisof conjugate heat transfer of a gas turbine first stage nozzle. ASME Paper,GT2005-68004.
    100T. Takahashi, K. Watanabe, T. Sakai. Conjugate heat transfer analysis of a rotorblade with rib-roughened internal cooling passages, ASME Paper, GT2005-68227.
    101M. F. Blair, et al, The Effect of Turbulence and Stator/Rotor Interactions,Journal of Turbomachinery. 1989,3.
    102P.A. Durbin, R. G.Jacobs, X. Wu. DNS of Bypass Transition. ClosureStrategies for Turbulent and Transitional Flows. Cambridge University Press,449-463.
    103R. E. Mayle. The Role of Laminar-Turbulent Transition in Gas TurbineEngines,”Journal of Turbomachinery. 1991,113:509-537.
    104H. Schlichting. Boundary Layer Theory, McGraw-Hill, Inc. 1979
    105K. L. Suder, I. E. O' Brien, E. Reshotko. Experimental Study of BypassTransition in a Boundary Layer. NASA-TM-1009131988.
    106R. E. Mayle, K. Dullenkopf, More on the turbulent strip theory for wakeinduced transition. ASME Journal of Turbomachinery, 1991,113:428-432.
    107陈迎春,司江涛,韩先锂,魏剑龙.转捩对超临界机翼压力分布的影响分析.空气动力学报. 2003,21(4):470~475.
    108R. Michel, Etude de la Transition sur les Profiles d’Aile; Etablissement d’unCritére de Determination de Point de Transition et Calcul de la Trainee deProfile Incompressible.Tech. Rep., ONERA, 1951. Report 1/1578A
    109J.A. Ekaterinaris, M.S. Chandrasekhara, M.F. Platzer. Analysis of LowReynolds Number Airfoil Flows. Journal of Aircraft. 1995: 625~630.
    110U. Mehta, K.C. Chang, T. Cebeci. Relative Advantages of Thinlayer Navier-Stokes and Interactive Boundary-Layer Procedures. Tech.Rep, NASA,Technical Memorandum. 1985.
    111B.J. Abu-Gharmam, R. Shaw. Natural Transition of Boundary Layers-TheEffects of Turbulence, Pressure Gradient, and Flow History. Journal ofMechanical Engineering Science. 1980, 22(5): 213~228
    112F.P. Brtolotti. Analysis of Birth and Evolution of Disturbance in Three 2-Dimensional Boundary Layers, Using the Parabilized Stability Equation, ProcIUTAM 95 Symp, on Nonlinear Instability and Transition in 3D Boundarylayer , in P ress.
    113AMO. Smith, N.Gamberoni. Transition, Pressure Gradient and Stability Theory.Report ES 26388, Douglas Aircraft Co., El Segundo, California. 1956.
    114J.L.Van, A. Ingen. Suggested Semi-Empirical Method for the Calculation ofBoundary Layer Transition Region. Report UTH-74, Univ. of Techn., Dept. ofAero. Eng., Delft. 1956.
    115 E.W.Warren, H.A.Hassan. Alternative to the en Method for DeterminingOnsetof Transition. AIAA Journal, 1997,36(1): 111-113.
    116 A.M. Savill. New Strategies in Modelling By-Pass Transition, ClosureStrategies for Turbulent and Transitional Flows, edited by B.E. Launder andN.D. Sandsam, Cambridge University press, 2002:464-492.
    117 H.Stock, E.Degenhart. A Simplified en Method for Transition Prediction inTwo dimensional Incompressible Boundary Layers. Z.Flugwiss Weltraumforsch.1989, 13.
    118 D. C. Wilcox. Turbulence Modeling for CFD. DCW Industries, Inc.,1998.
    119 F.R.Menter. Two-Equation Eddy-Viscosity Turbulence Models for EngineeringApplications. AIAA Journal, 1994, 32(8): 1598~1605.
    120 A. M. Savill. Some Recent Progress in The Turbulence Modeling of By-passTransition. Near-Wall Turbulent Flows, edited by R.M.C. So, C.G. Speziale andB.E. Launder, Elsevier Science Publishers B.V. 1993: 829~848
    121 A.M.Savill. Further Progress in The Turbulence Modeling of By-passTransition. Engineering Turbulence Modeling and Experiments 2, Edited by W.Rodi and F. Martelli, Elsevier Science Publishers B. V. 1993: 583~592
    122 A M. Savill. Evaluating Turbulence Model Prediction of Transition: anERCOFTAC SIG Project. Appl. Sci. Research, 1992, 51:555
    123 K. J. A. Westin, R. A. W. M. Henkes. Application of Turbulence Models toBypass Transition. Journal of Fluids Engineering. 1997, 119: 859~866.
    124 http://transition.imse.unige.it
    125 S. Dhawan, R. Narasimha. Some Properties of Boundary Layer During theTransition from Laminar to Turbulent Flow Motion. Journal of Fluid Mechanics.1958, 3: 418~436.
    126 J. P. Gostelow, A. R. Blunden, G. J. Walker. Effects of Free-Stream Turbulenceand Adverse Pressure Gradients on Boundary Layer Transition. ASME Journalof Turbomachinery. 1994, 116: 392~404.
    127 J. Steelant, E. Dick. Modeling of Bypass Transition with Conditioned Navier-Stokes Equations Coupled to an Intermittency Transport Equation. InternationalJournal for Numerical Methods in Fluids. 1996, 23: 193~220.
    128 Y. B. Suzen, P. G. Huang. Modeling of Flow Transition Using an IntermittencyTransport Equation. NASA- CR- 1999- 209313.
    129 Y. B. Suzen, P. G. Huang, L. S. Hultgren, et al. Predictions of Separated andTransitional Boundary Layers under Low-Pressure Turbine Airfoil ConditionsUsing an Intermittency Transport Equation. Journal of Turbomachinery, 2003,125(3): 455~464.
    130 J. R. Cho, M. K. Chung. A k-e-w Equation Turbulence Model Journal of FluidMechanics. 1992, 237: 301~322.
    131 F.R.Menter, R.B.Langtry, S.R. Likki, Y.B. Suzen, P.G. Huang, S.Volker. ACorrelation based Transition Model using Local Variables Part 1- ModelFormulation ASME Paper. GT2004-53452
    132 R.B. Langtry, F.R. Menter, S.R. Likki, Y.B. Suzen, P.G. Huang, S.Volker. ACorrelation based Transition Model using Local Variables Part 2-Test Cases andIndustrial Applications. ASME Paper. GT2004-53454.
    133 R.B. Langtry. A Correlation-Based Transition Model using Local Variables forUnstructured Parallelized CFD codes , Institut für Thermische.Str?mungsmaschinen und Maschinenlaboratorium. Universit?t Stuttgart. 2006.
    134 T.J.Barth, D.C. Jesperson. The Design and Application of Upwind Schemes onUnstructured Meshes. AIAA Paper 89-0366.
    135 M.J. Raw. Robustness of Coupled Algebraic Multigrid for the Navier-StokesEquations. AIAA Paper 96-0297
    136 B.R.Hutchinson, G.D.Raithby. A Multigrid method Based on the AdditiveCorrection Strategy, Numerical Heat Transfer. 1986, 9:511-537
    137 ANSYS CFX HELP, solver: Discretisation and Solution Theory.
    138章梓雄,董曾南.粘性流体力学.清华大学出版社,1998.
    139 B. E. Launder, D. B. Spalding. Lectures in Mathematical Models ofTurbulence. Academic Press, London, England, 1972.
    140叶孟琪,陈义良.复杂剪切湍流场中湍流模型的研究.水动力学研究与进展. 1996,11(3).
    141刘正先,苗永淼.有曲率影响的湍流流场中几种k-ǜ模型的数值.天津大学学报. 2000,33(1).
    142 M. Hishida, Y. Nagano, M.Tagawa. Transport processes of heat andmomentum in the wall region. Proceeding of English international heat transferconference, 1986,3:925-930
    143 V. Yakhot, S. A. Orszag. Renormalization Group Analysis of Turbulence: I.Basic Theory. Journal of Scientific Computing. 1986.1(1):1-51.
    144 D. C . Wilcox. Turbulence Modeling for CFD. DCW Industries, Inc., LaCanada, California, 1998.
    145 F. R. Menter. Two Equation Eddy Viscosity Turbulence Models forEngineering Applications. AIAA Journal, 1994, 32(8):1598-1605.
    146 E.R. Van Driest, C.B Blumer. Boundary Layer Transition: FreestreamTurbulence and Pressure Gradient Effects. AIAA Journal, 1963,1(6):1303-1306.
    147 F.R.Menter,T. Esch, S.Kubacki. Transition Modelling Based on LocalVariables, 5th International Symposium on Engineering Turbulence Modellingand Measurements, Mallorca, Spain. 2002.
    148苏步青.拓扑学初步.上海,复旦大学出版社, 1986.
    149陶文铨.数值传热学.西安交通大学出版社, 2001.
    150 S.T.Imlay, M.Soetrisno, D.W.Roberts. Copuled Flow and Heat TransferAnalysis Using Structured-Unstructured Grids. AIAA Paper 96-0622.
    151 K.H.Kao, M.S.Liou. Application of Chimera/Unstructured Hybrid Grids ofConjugate Heat Transfer. AIAA Journal, 35(9),1997.
    152 R.Marini. A Finite Element Conjugate Heat Transfer Method. The Degree ofMaser of Applied Science of Concordia University, Montreal, Quebec, Canada.
    153刘振侠,张丽芬.采用热-流耦合方法对气冷涡轮叶片换热的计算.西北工业大学学报, 2008, 25(2): 315-318.
    154 T. Young, B. Mahony, B.Humphreys. Durability of Hybrid Laminar FlowControl (HLFC) Surfaces. Aerospace Science and Technology. 2003, 7(3).
    155 D.P. Reijnen. Experiment Study of Boundary Layer Suction in a TransonicCompressor. Docotor degree dissertation, MIT, 1997.
    156 J. Coupland. Flat Plate Transitional Boundary Layers Experiments. 1990.http://cfd.me.umist.ac.uk/ercoftac/classif.html
    157 ANSYS CFX HELP, solver: Turbulence and Wall Function Theory.
    158陈懋章.粘性流体力学基础.高等教育出版社, 2001.
    159 FLUENT HELP.
    160李轶明,颜大椿.加热平板表面温度分层产生的湍流逆转捩现象,北京大学学报(自然科学版), 200,41(3).
    161张振,孙智利,颜大椿.湍流边界层逆转捩机制的实验研究.北京大学学报(自然科学版), 2006,42(3).
    162陶建军,颜大椿.竖直加热平板自然对流边界层中流动稳定性与转捩过程的实验研究,北京大学学报, 1999,35(3).
    163 http://www.alleghenyludlum.com/ludlum/Documents
    164 J. Steelant, E. Dick, Modeling of laminar-turbulent transitional for highfreestream turbulence. Journal of Fluids Engineering. 2001,123:22-30.
    165孙奇,李军等.后加载和高负荷前加载叶型气动性能的试验研究.西安交通大学学报. 2007, 41(1).
    166张红松,王富耻,马壮等.等离子喷涂ZrO2热障涂层的热冲击性能.机械工程材料, 2007,31(1).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700