用户名: 密码: 验证码:
心肌桥冠状动脉血液动力学数值模拟与体外模拟装置研制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大量研究表明心肌桥对冠状动脉形态学和血流动力学产生一定的影响,其近心端为动脉硬化高发区之一。目前有关心肌桥近心端血液动力学异常与近心端易发动脉粥样硬化产生之间关系的研究报道较为少见。
     由于血流动力学因素在动脉粥样硬化的发生和发展过程中起着重要的作用,深入地研究由心肌桥造成的冠状动脉血流动力学环境的改变,研究这种变化与其近心端动脉粥样硬化病变之间的关系,对冠脉粥样硬化发病机理的认识具有重要的意义,对于心肌桥的治疗具有潜在的临床价值。
     本文以心肌桥冠状动脉近心端这一易发动脉粥样硬化区域作为切入点,分别从数值模拟和实验模拟出发,根据心肌桥主要特点建立心肌桥血液动力学数值仿真模型以及体外模拟装置,研究、分析心肌桥易诱发动脉粥样硬化的血液动力学机制。
     数值模拟
     (1)建立轻度狭窄的心肌桥模型,线化的Navier-Stokes血液动力学方程。根据血流脉动周期变化的特点,采用谐波叠加的方法导出虚宗量系数的压强方程及有关血液动力学指标数学表达式。数值求解压强方程,最终得到各血液动力学指标:压强P、压强梯度dP/dz、管壁剪切应力WSS及脉动振荡因子OSI。采用这些指标进行了以下工作:
     a.对正常冠状动脉血液动力学和心肌桥冠状动脉血液动力学进行了比较;
     b.对血管顺应性影响心肌桥冠状动脉血液动力学进行了比较;
     c.对心率影响心肌桥冠状动脉血液动力学进行了比较。
     (2)构建一般心肌桥冠状动脉模型,心肌桥血液动力学一维管流基本方程。借鉴“边界层流动”的Karman动量积分方程求解方法,得出一维管流方程中的粘性摩擦。用差分方法数值求解。
     a.对正常冠状动脉血液动力学和心肌桥冠状动脉血液动力学进行了比较;
     b.对心肌桥近心端和远心端血液动力学进行了比较;
     c.分析了狭窄程度以及有两段心肌桥对心肌桥血液动力学的影响。
     所得结果表明,心肌桥冠状动脉血液动力学和正常冠状动脉血液动力学有较大的区别;在心肌桥的近心端,若干血液动力学指标异常,压强、壁面切应力、切应力梯度、切应力梯度震荡数的变化比其它部位剧烈。这为心肌桥近心端易诱发粥样硬化从数值仿真角度提供了血液动力学机制的解释。
     体外模拟装置研制和实验模拟
     (1)研制了一个集模拟血流循环及参数测量模块、心肌桥模块和园管流动腔内皮细胞培养模块等功能模块于一体的心肌桥冠状动脉血液动力学体外模拟装置。
     该模拟装置建立了接近人体生理条件的心肌桥冠状动脉血流动力学环境,参数可控制,为深入研究心肌桥造成的壁冠状动脉血流动力学环境的改变与其近心端动脉粥样硬化病变之间的关系,探索动脉粥样硬化形成机理提供了实验环境和研究手段。
     (2)心肌桥冠状动脉血液动力学体外模拟装置功能测评
     模拟装置功能测评结果表明:各功能系统运行状态良好、性能稳定,实验条件控制方便,能较好模拟心肌桥冠状动脉血液循环的流场和相应的应力环境。
     (3)模拟装置的体外模拟实验
     a.利用心肌桥壁冠状动脉血流动力学体外模拟装置进行血流动力学模拟实验。所得结果表明,心肌桥的存在全面影响壁冠状动脉内应力(切应力、正应力与周向应力)平均值与应力波动值,从现有的模拟实验结果来看,心肌桥压迫壁冠状动脉程度愈甚,壁冠状动脉近心端应力平均值及应力震荡愈大,且近心端应力震荡较远心端剧烈,联系到心肌桥壁冠状动脉近心端高发动脉粥样硬化的现象,有理由推断近心端应力水平及应力震荡的增大与动脉粥样硬化有因果关系。
     b.在园管流动腔内皮细胞培养模块中进行了内皮细胞培养预实验。
     (1)建立心肌桥血液动力学数值仿真模型,对心肌桥冠状动脉的各项血液动力学指标进行了计算,首次从数值模拟角度阐述了心肌桥冠状动脉血液动力学异常与近心端易诱发动脉粥样硬化之间的内在联系。
     (2)研制心肌桥冠状动脉血液动力学体外模拟装置,实现了心肌桥冠状动脉近心端与远心端切应力、正应力、周向应力的模拟;进行体外模拟实验,从实验模拟角度分析了心肌桥冠状动脉血液动力学异常与近心端易诱发动脉粥样硬化的内在关联。
     (3)研制园管流动腔内皮细胞培养装置并成功地进行了内皮细胞培养预实验,为进一步在细胞水平探索心肌桥易诱发动脉粥样硬化的血液动力学机制提供了技术手段。内皮细胞培养装置不仅用于心肌桥动脉粥样硬化研究,也可为与内皮细胞有关的心血管疾病的研究提供实验装置与研究手段。
A large number of studies had shown that myocardial bridge has certain impacts on morphology of coronary artery and haemodynamics, and the proximal is one of the areas with high incidence of atherosclerosis. Nowadays there were a few reports about the relationships between abnormal haemodynamics of proximal and proximal atherosclerosis-prone.
     As haemodynamic factors play an important part in the occurrence and development of atherosclerosis, it is of significance to understand pathogenesis of atherosclerosis by extensive studies on the mural coronary artery haemodynamics changing caused by myocardial bridge and studies on the relationships between the changing and proximal atherosclerosis, which has a potential clinical value on treatment of myocardial bridge.
     In this paper, atherosclerosis-prone proximal is regarded as a point of view, and then we set up simulation of haemodynamic model and vitro simulative device from numerical simulation and experimental simulations according to the main feature of myocardial bridge, with which we study and analyze the haemodynamic mechanism of atherosclerosis caused by myocardial bridge.
     Main works
     Numerical simulation
     (1) Establish mild stenosis myocardial bridge model and linear Navier-Stokes haemodunamic equation. Pressure equation of virtual variables coefficient and mathematical expression of haemodynamic indexes are derived by harmonic superposition according to the characteristic of blood flow pulsation cycle. Solve the pressure equation, and find the haemodynamic indexes:pressure P, pressure gradient dP/dz, wall shear stress WSS and oscillation shear index OSI. We use these indexes to work:
     a. Compare haemodynamics of normal coronary artery with myocardial bridge coronary artery;
     b. Compare hemodynamics of myocardial bridge coronary artery which affected by vascular compliance;
     c. Compare hemodynamics of myocardial bridge coronary artery which affected by heart rate.
     (2) Establish an ordinary myocardial bridge model and myocardial bridge haemodynamic basic equations of one-dimensional pipe flow. Viscous friction of equations of one-dimensional pipe flow is got from the solution of "Boundary layer flow" Karman momentum integral equation. Solve equation with typical line.
     a. Compare haemodynamics of normal coronary artery with myocardial bridge coronary artery;
     b. Compare haemodynamics of myocardial bridge proximal with distal;
     c. Analyze the impacts on haemodynamics respectively by the degree stenosis and two myocardial bridges.
     The result shows that there are great differences between myocardial bridge coronary artery haemodynamics and normal one; there are several abnormal haemodynamic indexes beneath myocardial bridge and proximal, whose pressure, wall shear stress, wall shear stress gradient, gradient oscillatory number change greater than other areas. It offers a haemodynamic mechanism explanation for myocardial bridge proximal easily inducing atherosclerosis from numerical simulation.
     Development of vitro simulative device and simulative experiment
     (1) Develop a coronary artery-myocardial bridge haemodynamic vitro simulative device assembled with blood flow module, parameters measurement module, myocardial bridge module, flexible tubulose cells culture module.
     This device provides a myocardial bridge coronary artery haemodynamic environment approached to human physiological condition, whose parameters are controllable. It provides a experimental condition and investigative measurements for studying the relationship between haemodynamic parameters changing of mural coronary artery cased by myocardial bridge and proximal atherosclerosis and exploring mechanism of atherosclerosis.
     (2) Performance evolution of coronary artery-myocardial bridge haemodynamic vitro simulative device
     Performance evolution of simulative device proves that every functional system is running in a good condition, function is stable and experimental conditions are easily controlled. It could perfectly simulate three-dimensional flow field and relevant stress environments when blood flow circulates in myocardial bridge coronary artery.
     (3) Vitro simulative experiment of simulative device
     a. Results from vitro simulative experiment with myocardial bridge mural coronary artery haemodynamic simulative device show that the existence of myocardial bridge totally impacts on the average stress (wall shear stress, direct stress and circumferential stress) and undulating stress in the mural coronary artery. From the recent results, the more serious the myocardial bridge is, the higher the average stress and stress oscillatory number are at proximal in mural coronary artery, and even proximal is greater than distal. Contacting with the phenomenon that the proximal is atherosclerosis-prone, we have reasons to conclude there is certain relationships between stress level, increasing oscillatory stress and atherosclerosis.
     b. Take endothelial cells culture preliminary experiment in the flexible tubulose cells culture module.
     Characteristic and innovation
     (1) Establish myocardial bridge haemodynamic numerical simulative model and calculate haemodynamic indexes of myocardial bridge, explain the relationships between abnormal haemodynamics and proximal atherosclerosis-prone from numerical simulation for the first time.
     (2) Develop a myocardial bridge coronary artery haemodynamic vitro simulative device, which simulate the wall shear stress, direct stress, circumferential stress of proximal and distal; complete a vitro simulative experiment, and analyze the internal connections between abnormal haemodynamics of myocardial bridge coronary artery and proximal atherosclerosis-prone.
     (3) Develop the flexible tubulose endothelial cells culture device, with which we take an endothelial cells culture preliminary experiment successfully. It provides a further technology to explore the haemodynamic mechanism of atherosclerosis caused by myocardial bridge from cells. The endothelial cells culture device is not only used to study atherosclerosis caused by myocardial bridge, but also be used as the experimental measurement and device to study cardiovascular disease related to cells.
引文
[1]Balamuthusamy S., Kosla S., Benatar D., Arora R.R. Myocardial infarction in a young African-American male due to myocardial bridging [J]. Cardiology,2006, 105:165-167.
    [2]Yetman A.T., McCrindle B.W., MacDonald C., et al. Myocardial bridging in children with hypertrophic cardiomyopathy-a risk factor for sudden death[J]. N Engl J MeO,1998,339:1201-1209.
    [3]Channer K.S., Bukis E., Hartnell G., Rees J.R. Myocardial bridging of the coronary arteries[J]. Clin Radiol,1989,40:355-9.
    [4]Hansen B.F. Myocardial covering on epicardial coronary arteries,prevalence, localization and significance[J]. Scand J Thor Cardiovasc Surg,1982,16: 151-155.
    [5]张国辉.心肌桥对冠状动脉粥样硬化和血流的影响[D].上海:复旦大学,2002.
    [6]Chiu JJ., Wang D.L., Chien S., et al. Effects of disturbed flow on endothelial cells[J].J Biomech Eng,1998,120:2-8.
    [7]Rosencrance G., Deer T.R., Lee K.C., Warren S.G. Coronary artery muscle bridging causing class Ⅲ angina in a patient with no coronary atherosclerosis [J]. W V Med J,1995,91:1967.
    [8]郑志敏等.心肌桥对冠状动脉血流量的影响[J].上海交通大学学报,2006,Vol.26.
    [9]Alegria J.R., Herrmann J., Holmes D.R., et al.Myocardial bridging[J]. Eur Heart J, 2005,26:1159-1168.
    [10]Geiringer E. The mural coronary artery [J]. Am Heart J,1951,41:359-368.
    [11]Ishii T., Hosdoa Y., et al. The significance of myocardial bridge upon atherosclerosis in the left anterior descending coronary artery [J]. J Pathol,1986, 148:279-291.
    [12]徐时.心肌桥形态学观测及相关因素分析的研究[D].甘肃:兰州大学.2009.
    [13]Angelini P., Tivellato M., Donis J., et al. Myocardial bridges:a review [J]. Prog Cardiovasc Dis,1983,26:75-88.
    [14]Faruqui A.M.A., Maloy W.C., Felner J.M., Schlant R.C., Logan W.D., Symptomatic myocardial bridging of coronary artery [J]. Am J Cardiol,1978,41: 1303-1310.
    [15]张国辉等.心肌桥对冠状动脉血流储备的影响[J].中华心血管病杂志,2002,30:1-3.
    [16]Ishii T., Asuwa N., Masuda S., et al. The effect of a myocardial bridge on coronary atherosclerosis and ischemia [J]. J Pathol,1998,185:4-9.
    [17]张国辉等.心肌桥的临床研究现状[J].中国介入心脏病杂志,2002,32:52-54.
    [18]Yamaguchi M., Tangkawattana P., Hamlin R.L. Myocardial bridging as a factor in heart disorders:critical review and hypothesis [J]. ActaAnat, 1996,157: 248-260.
    [191Soran O., Pamir G., Erol C., et al. The incidence and significance of myocardial bridge in a prospectively defined population of patients undergoing coronary angiography for chest pain [J]. Tokai J Exp ClinMed,2000,25:57-60.
    [20]Ferreira A.G., Trotter S.E., Konig B., et al. Myocardial bridges morphological and functional aspects [J]. Br Heart J,1991,66:364-367.
    [21]Mohlenkamp S., Hort W., Ge J., et al. Update on myocardial bridging [J]. Circulation,2002,106:2616-2622.
    [22]Ferreira Jr A.G., Trotter S.E., Konig Jr B., Decourt L.V., Fox K., Olsen E.GJ. Myocardial bridges:morphological and functional aspects[J]. Br Heart J,1991,66: 364-7.
    [23]Jakobs T.F., Becker C.R., Ohnesorge B., et al. Multislice helical CT of the heart with retrospective ECG gating:reduction of radiation exposure by ECG-controlled tube current modulation [J]. Eur Radiol,2002,12:1081-1086.
    [24]Knez A., Becker C., Ohnesorge B., Haberl R., Reiser M., Steinbeck G Noninvasive detection of coronary artery stenosis by multislice helical computed tomography[J]. Circulation,2000,101:221-22.
    [25]Ge J., Erbel R., Rupp recht H.J., et al. Comparison of intravascular ultrasound and angiography in the assessment of myocardial bridging [J]. Circulation,1994,89: 1725-1732.
    [26]Schwarz E.R., Klues H.G., Vom Dahl J., et al. Functional characteristics of myocardial bridging, a combined angiographic and intracoronary Doppler flow study [J]. Eur Heart J,1997,18:434-442.
    [27]Klues H.G., Sehwarz E.R.,Vom Dahl J., et al. Disturbed intracoronaty hemodynamies in myocardial bridging:early normalization by intracoronary stent placement[J]. Circulation,1997,96:2905-2913.
    [28]Ge J., Erbel R., GErge G, et al. High wall shear stress proximal to myocardial bridging and at hero sclerosis:Intracoronary ultrasound and pressure measurements [J]. Br Heart J,1995,73:462-465.
    [29]Yukio Ishikawa, Yoshikiyo Akasaka, et al. Significance of anatomical properties of myocardial bridge on atherosclerosis evolution in the left anterior descending coronary artery [J]. Atherosclerosis,2006,186:380-389.
    [30]Yano K Yoshino H., Taniuchi M., et al. Myocardial bridging of the left anterior descending coronary artery in acute inferior wall myocardial infarction [J]. Clin Cardiol,2001,24:202-208.
    [31]Berry J.F., von Meting GO., Schmalfuss C., et al. Systolic compression of the left anterior descending coronary artery:a case series,review of the literature, and therapeutic options including stenting [J]. Cath Cardiovasc Intervent,2002,56: 58-63.
    [32]Morales A.R., Romanelli R., Tate L.G., Boucek R.J., deMarchena E. Intramural left anterior descending coronary artery:significance of the depth of muscular tunnel [J]. Hum Pathol,1993,24:693-701.
    [33]Ferreira AG Jr., Trotter S.E., Konig BJr, et al. Myocardial bridges:morphological and functional aspects [J]. Br Heart 1991,66(5):364.
    [34]M hlenkamp S., Hort W., Ge J. Update oil myocardial bridgjng[J]. Ci rculatioo. 2002,,106(20):2616-22.
    [35]Stolte M., Weis P., Prestele H. Muscle bridges over the left anterior descending coronary artery:their influence on arterial disease [J]. Virchows Arch [A Pathol Anat Histol] 1977,375:23-36.
    [36]张国辉,葛均波.心肌桥的临床研究现状[J].中国介入心脏病杂志,2002,10(1):3123.
    [37]韩艳丽,王营,姜红菊,等.心肌桥与冠状动脉粥样硬化关系的探讨[J].中国心血管病研究杂志,2006,4(3):197-199.
    [38]胡金麟.细胞流变学[M].北京:科学出版社.2000:313-316.
    [39]张国辉,葛均波,王克强,等.心肌桥对冠状动脉内皮细胞形态和粥样硬化的作用[J].中华心血管病杂志,2003,31:293-295.
    [40]Malek A.M.,Alper S.L.,Izumo S. Hemodynamic shear stress and its role in atherosclerosis [J]. JAMA,1999,282:2035-2042.
    [41]Yoko Kawawa, et al. Detection of myocardial bridge and evaluation of its anatomical properties by coronary multislice spiral computed tomography [J]. European Journal of Radiology,2007,61:130-138.
    [42]Noble J., Bourassa M.G., Pettclerdc R., et al. Myocardial bridging and milk effect of the left anterior descending artery:normal variant or obstruction?[J]. Am J Cardiol,1976,37:993-999.
    [43]Ge J.B., Jermias A., Rupp A., et al. New signs characteristic of myocardial bridging demonstrated by intracoronary ultrasound and Doppler [J]. Eur Heart J, 1999,20:1707-1716.
    [44]Vidal V., Leguerrier A., Bourdonnec C., Langella B., Rioux C., Logeais Y. Angiographic and surgical aspects of compressive muscular bridges and intramyocardial paths of the anterior interventricular artery (based on 12 cases) [J]. Surg Radiol Anat,1988,10:113-20.
    [45]Ge J.B., Baumgart D., Caspari G, et al. Improved detection of myocardial bridging by intracoronary ultrasound and Doppler flow mapping in combination with intracoronary nitroglycerin provocation [J]. Eur Heart J,1995,16:203.
    [46]霍勇,高炜,张励庭等.冠状动脉心肌桥及其临床意义[J].中国介入心脏病杂志,1998,3(6):97-99.
    [47]HongoY., Tada H., Ito K., et al. Augmentation of vessel squeezing at coronary-myocardial bridge by nitroglycerin:Study by quantitative coronary angiography and intravascular ultrasound [J]. Am Heart J,1999,138:345-350.
    [48]Reig J., Miguel C.R., Moragas A., et al. Morphemic analysis of myocardial bridges in children with ventricular hypertrophy [J]. Pediatr Cardio,1990,11: 186-190.
    [49]Kuri Sill S., Inoue I., Kawagoe T., et al. Acute myocardial infarction associated with myocardial bridging in a young adult [J]. Intern Med,2004,43(12): 1157-1161.
    [50]Argyrio M., Filippatos G.S., Antonellis J., et al. Myocardial infarction and ventricular sepal rupture caused by myocardial bridging [J]. Eur J cardiotboracia Surg,2004,25(4):643.
    [51]Yamguchi M., Tangkawattana P., Haml in R.L. Myocardial bridging as a factor in heart disorders:critical review and hypothesis [J]. Acta Anat,1996,157(3): 248-260.
    [52]Yamaguchi M., Tangkawattana P., Muto M., et al. Myocardial bridges muscle on left anterior descending coronary artery differs from subepicardial myocardium of the left ventricle in dogs[J]. Acta Anat,1997,157:238-247.
    [53]Smith S.C., Taber M.T., Robiolio P.A., et al. Acute myocardial infarction caused by a myocardial bridge treated with intracoronary stenfing [J]. J.Cathet Cardiovasc DiagⅢ,1997,42(2):209.212.
    [54]Zand T., Nunnari J.J., Hoffman A.H., Savilonis B.J., Majno G., Joris I. Endothelial adaptations in aortic stenosis correlation with flow parameters [J]. Am J Pathol 1988,133:407-18.
    [55]刘健.心肌桥的诊治现状.国际心血管病杂,2006,33(4):231-233.
    [56]Reig J., Miguel C.R., Moragas A., et al. Morphemic analysis of myocardial bridges in children with ventricular hypertrophy [J]. Pediatr Cardiol,1990,11: 186-190.
    [57]Yamaguchi M., Tangkawattana A., Karaoura A., et al. Proximal paraconal interventricular myocardial bridging in dog:Ultrastructural characterization [J]. Acta Anta,1995,153:226-235.
    [58]Grever M., Mancono GB.J. Myocardial bridge associated with pacing-induced coronary spasm [J]. Am Hear J,1984,108(6):1540-1543.
    [59]Zarins C.K., Bomberger R.A., Glagor S. Local effects of stenoses:increased flow velocity inhibits atherosclerosis [J]. Circulation,1981,64:221-227.
    [60]Reidy M.A., Langille B.L. The effect of local blood flow patterns on endothelial morphology [J].Exp Molpathol,1980,32:276-289.
    [61]Parashara D.K., Ledley G.S., Koiler M.N., et al. The combined presence of myocardial bridging and fixed coronary artery stenesis [J]. Am Heart J,1993, 125(4):1170-1172.
    [62]Ross L., Dander B., Nidasio G.P., et al. Myocardial bridges and ischemic heart disease [J]. Eur heart J,1980,1(4):39-245.
    [63]Gerald R., Philippe S., Philippe G., et al. Myocardial bridging as a case acute transient left heart dysfunction [J]. Chest,1999,116:574-580.
    [64]Greenhill N.S., Stehbens W.E. Scanning electron-microscope study of the anastomosed vein of artenovenous fistulae [J]. Atherosclerosis 1981,39:383-393.
    [65]Langille B.L., Reidy M.A., Kline R.L. Injury and repair of endothelium at sites of flow disturbances near abdominal aortic coarctations in rabbits fJl. Arteriosclerosis,1986,6:146-154.
    [66]Lee S.S., Wu T.L. The role of the mural coronary artery in prevention of coronary atherosclerosis [J]. Arch Path 1972,93:32-35.
    [67]Ferreira A.G., Trotter S.E., Konig B., et al. Myocardial Bridges:morphological and functional aspects [J]. Br Heart J 1991,66:364-367.
    [68]Martial G., Ady Butnaru., Jacques Lesperaace., et al. Symptomatic Myocardial Bridges:Overview oflschemic Mechanisms and Current Diagnostic and Treatment Strategies [J]. JAm CoilCardiol,2003,41:351-359.
    [69]Cranicianu A., Anatomische Studienuber die koronarterienund experimentelle Untersuchungen uberihre Durchgangigkeit [J].Virchows Arch [Pathol Anat],1922, 238:1-8.
    [70]Masuda T., Ishikawa Y., Akasaka Y., Itoh K., Kiguchi H., Ishii T. The effect of myocardial bridging of the coronary artery on vasoactive agents and atherosclerosis localization [J]. J Pathol,2001,193:408-414.
    [71]Stary H.C., Chandler A.B., Dinsmore R.E., Fuster V., Glagov S., Insull Jr W., Rosenfeld M.E., Schwartz C.J., Wagner W.D., Wissler R.W. A definition of advanced types of atherosclerotic lesions and a histological classification of atherosclerosis:A report from the committee on vascular lesions of the Council on Atherosclerosis[J]. American Heart Association Circulation,1995,92:1355-1374.
    [72]Yohro T., Burnstock G. Fine structure of "intimal cushions" at branching sites in coronary arteries of vertebrates:A scanning and transmission electron microscopic study [J]. Z Anat Entiwckl-Gesch,1973,140:187-202.
    [73]张国辉,葛均波,钱菊英,等.艾司洛尔对心肌桥患者壁冠状动脉血流动力学的作用[J].中华心血管病杂志,2005,33:158-160.
    [74]Stathaki M., Velidaki A., Koukouraki S., et al. Mvocardial bridging in a patient with exert ional chest pain [J]. Clin NuclMed,2005,30:422-424.
    [75]王宁夫,潘浩,童国新.心肌桥和心肌桥近端合并严重动脉粥样硬化病变的介入治疗疗效观察[J].中华心血管病杂志,2005,33:684-686.
    [76]Marchionni N., Chechi T., Falai M., et al. Myocardial stunning associated with a myocardial bridge [J]. Int J Cardiol,2002,82:65-67.
    [77]Solberg L.A., Strong J.P., Holme I., Helgeland A., Hjermann I., Leren P., Mogensen S.B. Stenoses in the coronary arteries, Relation to atherosclerotic lesions, coronary heart disease, and risk factors [J]. The Oslo Study Lab Invest, 1985,53:648-55.
    [78]Klues H.G., Schwarz E.R., Vom Dahl J., et al. Disturbed intracoronary hemodynamics in myocardial bridging:early normalization by intracoronary stent placement [J]. Circulation,1997,96:2905-2913.
    [79]Cutler D., Wallace J.M. Myocardial bridging in a young patient with sudden death [J].Clin Cardiol,1997,20:581-583.
    [80]Kurtoglu N., Mutlu B., Soydinc S., et al. Normalization of coronary fractional flow reserve with successful intracoronary stent placement to a myocardial bridge[J].J Interv Cardiol,2004,17:33-36.
    [81]Low A.F., Chia B.L., Ng W.L., et al.Bridge over troubling spasm:is the association of myocardial bridging and coronary artery spasm a distinct entity? Three case reports [J]. Angiology,2004,55:217-220.
    [82]Hering D., Horstkotte D., Schwimmbeck P., et al. Acute myocardial infarct caused by a muscle bridge of the anterior interventricular rainus:complicated course with vascular perforation after stent implantation [J]. Z Kardio1,1997,86: 630-638.
    [83]Haager P.K., Schwarz E.R., Vom D.J., et al. Long term angiographic and clinical follow up in patients with stent implantation for symptomatic myocardial bridging [J]. Heart,2000,84:403-408.
    [84]Ng E., Jilaihawi H., Gershlick A.H. Symptomatic myocardial bridging-a niche indication for drug eluting stents [J]? Int J Cardiol,2005,99:463-464.
    [85]刘幼文,刘强,金光临,等.支架置入术治疗有心肌缺血症状心肌桥的疗效观察.临床心血管病杂志,2004,20:332-334.
    [86]Sorajja P., Ommen S.R., Nishimura R.A., et al. Myocardial bridging in adult patients with hypertrophic cardiomyopathy[J].J Am Coll Cardiol,2003,42: 889-894.
    [87]Raizner A.E., Ishimori T., Vesani M.S., et al. Surgical relief of ischemia due to myocardial bridges [J]. Am J Cardiol,1980,45(2):417.
    [88]Kassab G.S. The coronary vasculature and its reconstruction [J]. Ann Biomed Eng 2000,28:903-915.
    [89]Kassab G.S. and Fung Y.C. Topology and dimensions of the pig coronary capillary network [J]. Am J Physiol Heart Circ Physiol,1994,267:319-325.
    [90]Kassab G.S., Rider C.A., Tang N.J., and Fung Y.C. Morphometry of pig coronary arterial trees [J]. Am J Physiol Heart Circ Physiol,1993,265:350-365.
    [91]Mittal N., Zhou Y., Ung S., Linares C., Molloi S., and Kassab G.S. A computer reconstruction of the entire coronary arterial tree based on detailed morphometric data [J]. Ann Biomed Eng,2005,33:1015-1026.
    [92]Yunlong Huo and Ghassan S., Kassab. Pulsatile blood flow in the entire coronary arterial tree:theory and experiment [J]. Am J Physiol Heart Circ Physiol 2006, 291:1074-1087.
    [93]Hughes T.J.R., Lubliner J. On the one-dimensional theory of blood flow in larger vessels. Math Biosci,1973,18:161-170.
    [94]Parker K.H., Jones C.J.H. Forward and backward running waves in the arteries: analysis using the method of characteristics [J].J Biomech Eng,1990,112: 322-326.
    [95]Sherwin S.J., Franke V., Peiro J., Parker K. One-dimensional modelling of a vascular network in space-time variables [J]. J Eng Math,2003,47:217-250.
    [96]Sun Y.H., Anderson T.J., Parker K.H., Tyberg J.V. Wave-intensity analysis:a new approach to coronary hemodynamics [J]. J Appl Physiol,2000,89:1636-1644.
    [97]Wang J.J., Parker K.H. Wave propagation in a model of the arterial circulation[J]. J Biomech,2004,37:457-470.
    [98]Yunlong Huo and Ghassan S. Kassab. A hybrid one-dimensional/Womersley Heart Circ Physiol,2007,292:2623-2633. model of pulsatile blood flow in the entire coronary arterial tree [J]. Am J Physiol
    [99]Stettler J.C., Niederer P., Anliker M. Theoretical analysis of arterial hemodynamics including the influence of bifurcations. Ⅰ. Mathematical model and prediction of normal pulse patterns [J]. Ann Biomed Eng,1981,9:145-164.181
    [100]Formaggia L., Gerbeau J.F., Nobile F., Quarteroni J. On the coupling of 3D and 1D Navier-Stokes equations for flow problems in compliant vessels[J]. Comput Methods Appl Mech Eng 2001,191:561-582.
    [101]Olufsen M.S. Structured tree outflow condition for blood flow in larger systemic arteries [J]. Am J Physiol Heart Circ Physiol,1999,276:257-268.
    [102]Judd R.M., Redberg D.A., Mates R.E. Diastolic coronary resistance and capacitance are independent of duration of diastole [J]. Am J Physiol Heart Circ Physiol,1991,260:943-952.
    [103]Lee J., Chambers D.E., Akizuki S., Downey J.M. The role of vascular capacitance in coronary arteries [J]. Circ Res,1984,55:751-762.
    [104]Kamiya A., Togawa T. Adaptive regulation of wall shear stress to flow change in the canine carotid artery [J]. Am J Physiol,1980,239:14-21.
    [105]Weissman N.J., Nidorf S.M., Guerrero J.L., el al. Optimal stage duration in dobutamine stress echocardiography[J]. J Am Coll Cardio1,1995,25:605-609.
    [106]Olufsen M.S. Numerical simulation and experimental validation of blood flow in arteries with structured-tree outflow conditions [J]. Ann Biomed Eng,2000,28: 1281-1299.
    [107]David M., Wootton L., David N., Kul. Fluid Mechanics of Vascular Systems, Diseases, and Thrombosis, Annu [J]. Annual Review of Biomedical Engineering, 1999, Vol.1:299-329.
    [108]Glagov S., Zarins C., Giddens D.P., Ku D.N. Hemodynamics and atherosclerosis. Insight and Perspectives gained from Studies of Human Arteries [J]. Arch Pathol Lab Med,1988,112(10):1018-1031.
    [109]Chang L.J., Tarbell J.M. A numerical study of flow in curved tubes simulating coronary arteries [J]. J Biomech,1998,21(11):927-37.
    [110]Strony J., Beaudoin A., Brands D., Adelman B. Analysis of shear stress and hemodynamic factors in a model of coronary artery stenosis and thrombosis [J]. AJP-Heart and Circulatory Physiology,1993, Vol 265:1787-1796.
    [111]B. Lieber, D. Giddens. Post-stenotic core flow behavior in pulsatile flow and its effects on wall shear stress. Journal of Biomechanics,1990,23(6):597-605.
    [112]Young D.F. Flow Characteristics in models of arterial stenoses Ⅰ. Steady flow [J]. Journal of Biomechanics,1973,6:547-559.
    [113]Ishikawa Y, Ishii T., Asuwa N., Masuda S. Absence of atherosclerosis evolution in the coronary arterial segment covered by myocardial tissue in cholesterol-fed
    rabbits. Virchows Arch,1997,430:163-71.
    [114]Forrester J.H., Young, D.F. Flow through a converging-diverging tube and its implications in occlusive vascular disease [J]. Journal of Biomechanics,1970,3: 307-316.
    [115]Ahmed S.A., Giddens D.P. Velocity measurement in steady flow through axisymmetric stenoses at moderate Reynolds numbers [J]. Journal of Biomechanics,1983,16:505-516.
    [116]Cavalcanti S., Bolelli P., Belardinelli E. Pressure drops through arterial stenosis models in steady flow condition [J]. Journal of Biomechanical Engineering Transactions ASME,1992,114:416-418.
    [117]Ahmed S.A., Giddens D.P. Pulsatile poststenotic flow studies with laser Doppler anemometry [J]. Journal of Biomechanics,1984,17:695-705.
    [118]Gijsen F.J.H., Palmen D.E.M., Van der Beek M.H.E., Van de Vosse F.N., Van Dongen M.E.H., Janssen J.D. Analysis of the axial oweld in stenosed carotid artery bifurcation models FLDA experiments [J]. Journal of Biomechanics,1996, 11,1483-1489.
    [119]Lieber B. Order and random structures in pulsatile flow through constricted tubes. [D]. Atlanta:Georgia Institute of Technology,1985.
    [120]Ojha M., Cobbold R.S.C., Johnston K.W., Hummel R. Pulsatile flow through constricted tubes:an experimental investigation using photochromic tracer methods [J]. Journal of Fluid Mechanics,1989,203:173-197.
    [121]Smith F.T. The separation flow through a severely constricted symmetric tube [J]. Journal of Fluid Mechanics,1979,90:725-754.
    [122]Deshpande M.D., Giddens D.P., Mabon F.R. Steady laminar flow through modelled vascular stenoses [J]. Journal of Biomechanics,1976,9:165-174.
    [123]Young D.F., Tsai F.Y. Flowch aracteristics in models of arterial stenosis Ⅰ. Steady flow. Journal of Biomechanics,1973,6:395-410.
    [124]Fukushima T., Azuma T., Matsuzawa T. Numerical analysis of blood flow in the vertebral artery [J]. Journal of Biomechanical Engineering Transactions ASME, 1982,104:143-147.
    [125]Lee T.S. Numerical studies of fluid flow through tubes with double constrictions [J]. International Journal for Numerical Methods in Fluids,1990,11:1113-1126.
    [126]Siegel J.M., Markou C.P., Ku D.N., Hanson S.R. A scaling law for wall shear rate through an arterial stenosis [J]. Journal of Beomechanical Engineering Transactions ASME,1994,116:446-451.
    [127]Scott P. S., Mirza F. A., Vlachopoulos J. A finite element analysis of laminar flows through planar and axisymmetric abrupt expansions [J]. Computers and Fluids,1986,14(4):423-432.
    [128]Nakamura M., Sawada T. Numerical study on the flow of a non-Newtonian fluid through an axisymmetric stenosis [J]. Journal of Biomechanical Engineering Transactions ASME,1988,110:137-143.
    [129]Hogen H.A., Henriksen M. An evaluation of a micropolar model for blood flow through an idealized stenosis [J]. Journal of Biomechanics,1989,22:211-218.
    [130]Srivastava V.P., Saxena M. Two-layered model of Casson fluid flow through stenotic blood vessels:applications to the cardiovascular svstem [J]. Journal of Biomechanics,1994,27:921-928.
    [131]Moayeri M.S., Vali A. Effects of non-Newtonian properties of blood on flow characteristics through a stenosis [J]. Iranian Journal of Science and Technology, 1996,20 (1):25-43.
    [132]Young D.F., Tsai F.Y. Flow Characteristics in models of arterial stenoses Ⅱ. Unsteady flow[J]. Journal of Biomechanics,1973b,6:547-559.
    [133]Siouffi M., Pelissier R., Farahifar D., Rieu R. The effect of unsteadiness on the flow through stenoses and bifurcations [J]. Journal of Biomechanics,1984,17: 299-315.
    [134]Ahmed S.A., Giddens D.P. Pulsatile poststenotic flow studies with laser Doppler anemometry [J]. Journal of Biomechanics,1984,17:695-705.
    [135]Lieber B.B., Giddens D.P. Apparent stresses in disturbed pulsatile flows [J]. Journal of Biomechanics,1988,21:287-298.
    [136]Rooz E., Young D.F., Rogge T.R. A finite-element simulation of pulsatile flow in flexible obstructed tubes [J]. Journal of Biomechanical Engineering Transactions ASME,1982,104:119-124.
    [137]Stergiopulos N., Spiridon M., Pythoud F., Meister J.J. On the wave transmission and reflection properties of stenoses [J]. Journal of Biomechanics,1996,29: 31-38.
    [138]Back L.D., Radbill J.R., Crawford D.W. Analysis of pulsatile viscous blood flow through diseased coronary arteries of man [J]. Journal of Biomechanics,1977,10: 339-353.
    [139]O'Brien V., Ehrlich L.W. Simple pulsatile flow in an artery with a constriction [J]. Journal of Biomechanics,1985,18:117-127.
    [140]Tu C., Deville M., Dheur L., Vanderschuren L. Finite element simulation of pulsatile out thought arterial stenosis [J]. Journal of Biomechanics,1992,25: 1141-1152.
    [141]Tu C., Deville M. Pulsatile flow of non-Newtonianuids through arterial stenoses [J]. Journal of Biomechanics,1996,29 (7):899-908.
    [142]Tutty O.R. Pulsatile flow in a constricted channel [J]. Journal of Biomechanical Engineering Transactions of ASME,1992,114:50-54.
    [143]Rappitsch G., Perktold K. Pulsatile albumin transport in large arteries:a numerical simulation study [J]. Journal of Biomechanical Engineering Transactions of the ASME,1996,118:511-519.
    [144]Buchanan J.R., Kleinstreuer C. Simulation of particle hemodynamics in a partially occluded artery segment with implications to the initiation of microemboli and secondary stenoses [J]. Journal of Biomechanical Engineering Transactions of ASME,1998,120:446-454.
    [145]Deplano E., Siouffi M. Experimental and numerical study of pulsatile flows through stenosis:wall shear stress analysis [J]. Journal of Biomechanics,1999,32, 1081-1090.
    [146]Misra J.C., Patra M.K., Misra S.C. A non-Newtonian model for blood flow through arteries under stenotic conditions [J]. Journal of Biomechanics,1993,26: 1129-1141.
    [147]Misra J.C., Chakravarty S. Flow in arteries in the presence of stenosis [J]. Journal of Biomechanics,1986,19:907-918.
    [148]Cavalcanti S. Hemodynamics of an artery with mild stenosis [J]. Journal of Biomechanics,1995,28:387-399.
    [149]Bernhare S., Tilgner, et al. Oscillatory flow a tube time-dependent wall deformation and its application to myocardial bridges [J]. ESAIM,2005,14: 25-40.
    [150]Stefan Bernhard, Stefan Mohlenkamp, et al. Transient integral boundary layer in myocardial bridges [EB/OL]. Biomedical Engineering Online,2006,5:1-25. method to calculate the translesional pressure drop and the fractional flow reserve
    [151]Hao Liu, Takami Yamaguchi. Computer modeling of fluid dynamics related to a myocardial bridge in a coronary artery [J]. Biorheology,1999,36:373-390.
    [152]Ralph W.E., Pedley T.J. Flow in a channel with a time-dependent indentation in one wall [J]. J Biomech Eng,1990,112:468-475.
    [153]Pedley T.J. Modelling Flow and Oscillations in Collapsible Tubes [J]. Theo Comp Fluid Dyn,1998,10:277-294.
    [154]钱煦.应力方向对内皮细胞力学传递和功能的影响.北京大学学报,2007,43(4):435-440.
    [155]Elzinga C., Westerhof N. The effect of an increase in isotropic state and end-diastolic volume on the pumping ability of the feline left heart [J]. Circulation Research,1978,42(5):620-628.
    [156]Sabbah H.N., Stein P.D. Effect of aortic stenosis on coronary flow dynamics: studies in an in-vitro pulse duplicating system [J]. J.Biomech.Eng,1982,104: 221-225.
    [157]Hwang N.H.C., Zen-Nan Xue and Gross D.R. Prosthetic heart valve replacements [J]. CRC Critical Reviews in Biomedical Engineering,1983,9(2): 99-132.
    [158]Reul H. Hydraulic analog model of the systemic circulation-Designed for fluid mechamical studies in the left heart and systemic arteries [J]. Adv.cardiovasc.phys, 1983,5(4):43-54.
    [159]McInnis B.C., Guo Z.W., Lu P.C, et al. Adaptive control of left ventricular by pass assist devices [J]. IEEE Transactions on Automatic Control,1985,30(4): 322-329.
    [160]Martin Hartrumpf, Johannes MAlbes, Tanja Krempl, et al. The hemodynamic performance of standard bileaflet valves is impaired by a tilted implantation position [J]. European Journal of Cardio-thoracic Surgery,2003,23:283-291.
    [161]DANIEL K., HILDEBRAND, ZHONGJUN J., WU JOHNE. MAYER J.R., et al. Design and Hydrodynamic Evaluation of a Novel Pulsatile Bioreactor for Biologically Active Heart Valves[J]. Annals of Biomedical Engineering,2004, 32(8):1039-1049.
    [162]席葆树.人工心瓣膜检测技术资料.北京:清华大学出版社,1986.
    [163]谭哲东,吴效明,岑人经.肺癌介入治疗的血流动力学实验研究[J].华南理工大学学报,1999,27(9):100-103.
    [164]何培芳,何川,吴天清等.人体心脏舒张最大吸力的模拟实验研究[J].中国医学物理学杂志,2004,21(1):30-32.
    [165]李洪,钱坤喜.模拟心血管系统装置的研制及其在血液动力学测试中的应用[J].北京生物医学工程,2005,24(5):347-350.
    [166]张旭静,王春安,王桂清.切应力与内皮细胞关系研究进展[J].中华国际医学杂志,2004,4(6):362,365.
    [167]Hashimoto A., Takekoshi N., Murakmi E. Clinical significance of myocardial squeezing of the coronary artery [J]. JPN Heart,1984,25:913-922.
    [168]Pola'cek P., Kralove H. Relation of myocardial bridges and loops on the coronary arteries to coronary occlusions [J]. Am Heart J,1961,61:44-52.
    [169]Schwarz E.R., Klues H.G., Vom D.J., et al. Functional characteristics of myocardial bridging. A combined angiographic and intracoronary Doppler flow study [J]. Eur-Heart-J,1997,18:434-442.
    [170]胡清华.心肌桥[J].国外医学·心血管疾病分册,1996,26(6):335-337.
    [171]陈远年,廖瑞.关于国人心肌桥的初步报告[J].解剖学报,1965,8(1):106-112.
    [172]赵俊,孙善全.心肌桥和壁冠状动脉的形态学及相关性研究[J].解剖学杂志,1998,21(1):443-446.
    [173]霍勇,高炜,张励庭,等.冠状动脉心肌桥及其临床意义[J].中国介入心脏病杂志,1998,3(6):97-99.
    [174]Fred M. Costello, George A. Stouffer. Hemodynamics of Myocardial Bridging[J].Catheterization and Cardiovascular Interventions,2008,71:590-593.
    [175]柳兆荣.心血管流体力学[M].上海:复旦大学出版社.1986.
    [176]S Bernhard, S Mohlenkamp, A Tilgner. Transient integral boundary layer method to calculate the translesional pressure drop and the fractional flow reserve in myocardial bridges [EB/OL].BioMed Eng Online,2006,5.
    [177]Holenstein R., P. Niederer, and M. Anliker. A viscoelastic model for use in predicting arterial pulse waves [J]. ASMEJ.Biomech.Eng,1980,102:318-319.
    [178]王庆伟,许世雄.心血管系统体循环输入阻抗的几种集中参数模型的比较和应用[J].医用生物力学,2003,18:6.
    [179]Yuji Shimogonyaa, Takuji Ishikawaab, Yohsuke Imaia.Can temporal fluctuation in spatial wall shear stress gradient initiate a cerebral aneurysm? A proposed novel hemodynamic index,the gradient oscillatory number (GON)[J]. J.Biomech,2009, 42:550-554.
    [180]S Bernhard, S Mohlenkamp, A Tilgner, Transient integral boundary layer method to calculate the translesional pressure drop and the fractional flow reserve in myocardial bridges[EB/OL]. BioMed Eng Online,2006,5.
    [181]M6hlenkamp S, Eggebrecht HTE, Miinzberger S, Schweizer T, Quast B, Erbel R: Muskelbrucken der Koronararterien:mogliche ischamierelevante Normvarianten [J]. Herz,2005,30:37-47.
    [182]Westerhof N., Bosnian F., De Vries C.J., Noordergraaf A. Analog studies of the human systemic arterial tree [J]. J Biomech,1969,2:121-143.
    [183]Stergiopulos N., Young D.F., Rogge T.R., Computer simulation of arterial flow with applications to arterial and aortic stenosis [J]. J Biomech,1992,25: 1477-1488.
    [184]P. Segers, F. Dubois, D. De Wachter, P. Verdonck. Role and relevancy of a cardiovascular simulator [J]. J Cardiovasc Eng,1998,3(1):48-56.
    [185]S. G.C. Kalse, H. Bijl, and B. W. van Oudheusden. A One-Dimensional Viscous-Inviscid Strong Interaction Model for Flow in Indented Channels With Separation and Reattachment [J]. J Biomed Eng,2003,125:355-362.
    [186]Berr J.F., von Mering GO, Schmalfuss C., et al. Systolic compression of the left anterior descending coronary artery:a case series, review of the literature, and therapeutic options including stinting[J].Cath-Eter Cardiovasc Interv,2002,56(1): 58-63.
    [187]章宏甲,黄谊.机床液压传动[M].第1版.北京:机械工业出版社,1991:103-106.
    [188]Hao.Ding, Aike Qiao, Lixing.Shen et al. Design of compliance chamber and after-load in apparatus for cultured endothelial cells subjected to stresses [J]. Cell Biol Int,2006,30:439-444.
    [189]Hobbs W.J., Fynn S., Todd D.M., et al. Reversal of atrial electrical remodeling after cardioversion of persistent atrial fibrillation in humans [J]. Circulation, 2000,101:11145-1151.
    [190]H. Ding, Z. Chen, L. Shen, et al. Heart Pump System in "Heart-Mural coronary artery-Myocardial Bridge" Simulative Device [J]. Australasian Physical& Engineering Sciences in Medicine,2009,32(2):105-111.
    [191]柳兆荣,何烽,徐刚,等.动脉管壁切应力的确定[J].中国科学(A辑),2001,31(7):651-660.
    [192]刘宝玉,柳兆荣.刚性圆管中血液周期振荡流的切应力分[J].力学季刊,2002,23(3):7-8.
    [193]徐芝纶.弹性力学简明教程[M].北京:人民教育出版社.1982:87-89.
    [194]Davies P. F. Flow-mediated endothelial machanotransduction[J]. Physiol Rev, 1995,75:519-560.
    [195]Ando J, Komatsuda T, Kamiya A. Cytoplasmic calcium responses to fluid shear stress in cultured vascular endothelial cells[J].In Vitro Cell Dev Biol,1988,24: 71-977.
    [196]Naruse K, Sokabe M. Involvement of stretch-activated ion channels in Ca2+ mobilization to mechanical stretch in endothelial cells[J]. Am J Physiol,1993,264: 797-805.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700