用户名: 密码: 验证码:
高填路堤预应变加筋及动力强夯技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在我国公路建设中普遍存在路基不均匀沉降现象,从而导致路基的破坏。如不能及时地采取经济、有效的措施加以解决,将造成公路建设严重的经济损失,如路面养护费用增加、使用年限缩短等。
     本文通过调研、室内土工试验、现场试验、离心模型试验、理论研究及数值分析的有机结合,并将混凝土结构工程中的预应力技术及弹性体高速碰撞中大变形的动力效应等相关原理引入路基工程中,跨学科进行理论上的探讨,更好地解决路基中不均匀沉降问题。即在广泛调研的基础上,对高填路堤稳定性和非均匀沉降等一系列问题进行研究分析,以室内试验、现场观测和理论分析为依托,将预应变加筋和动力强夯这两种典型的处治技术结合起来,围绕路基稳定性及非均匀沉降,科学、系统地提出其有效的控制措施。
     土工合成材料因其轻便、耐久、实用的特点而广泛应用于岩土工程中。使用土工合成材料加固路基,可缩短工期、降低造价、提高路基稳定性并有效延长其服务年限。但置于土中的土工合成材料长期力学性质的变化是否影响加筋土体长期稳定性,却是人们非常关心的一个问题。笔者通过对目前广泛应用于加筋土工程的土工网、土工格栅,进行了长达3年的不同应力水平作用下室内蠕变破坏试验。研究土工网和土工格栅蠕变特性及影响因素,同时探讨其蠕变断裂发生、发展直至破坏的机理,且揭示了外部荷载等级和温度变化对筋材蠕变特性的影响是有特定条件的,最后构建了土工合成材料蠕变计算模型的一般经验公式ε(t)=ε(t)=(σc/E)+(σct/η)。通过大量的实验结果分析,得出土工网、土工格栅的长期强度为抗拉强度的30%~40%。并指出在施工期及通车后各种荷载对加筋土中筋材所引起的总变形,不仅与初始应变有关,还与路堤填土高度引起的土体初始沉降及其各压缩层的正常沉降有关,同时还要考虑筋材在长期荷载作用下产生的蠕变,即加筋土中筋材所引起的总变形εi=△εi’+△εci+△εri’,而且在实际工程中得到了验证和推广。
     为全面推广预应变加筋法新技术,本文提出了预应变加筋法设计新思路及施工新工艺,发展了预应变加筋法的理论依据,提出了新的施工要求。首次将混凝土结构工程施工中的“反拱度”引入预应变加筋路基施工中,并就反拱度大小提出了新的理论计算公式,即反拱度δi=K0αLi(εti)0.5/2。
     通过数值分析进一步证实,土体变形模量和筋材拉伸模量之间的不同匹配,直接影响着加筋土的稳定效果。即土体变形模量不同,则选择的筋材必须具有相应的拉伸模量,才能充分发挥加筋效果。
     加筋土单元内土工合成材料的微观应力与筋材的抗拉强度、周围土体的特性及作用时间等因素有关;当加筋土单元宏观应力不变时,筋材产生应力松弛,使其单元的微观应力逐渐减小,土体单元微观应力逐渐增大,直到加筋土从粘弹性向粘弹塑性转变,单元的微观应力才会趋于稳定。基于不同的研究假设,本文进一步分析了加筋土体之间的相互作用,并从分析宏观加筋土体单元中土和筋材的微观应力角度出发,建立了基于循环荷载作用下加筋土粘弹塑本构模型,旨在为加筋土技术提供科学的理论依据。
     土工离心模型试验(Geotechnical centrifuge modeling)作为一种可再现原型特性的试验方法,正愈来愈受到岩土工程界的关注。本文按n=30的模型比尺进行加筋土离心模型试验,再一次揭示了土工合成材料能有效的限制土体的侧位移,阻止微裂隙的产生,从而提高了路基的稳定性。
     强夯法处治路基,其加固速度快、加固深度大,从而被广泛用于高速公路的路基加固,但强夯法加固机理和设计理论仍待进一步研究。本文结合工程实践,对强夯法处治红砂岩碎石土路基进行了系统研究。根据夯锤与土体的弹塑性碰撞特点,基于动力基础半空间理论,获得了强夯冲击应力和土体变形的模型,并进一步研究了影响强夯冲击应力和土体变形的因素及其规律。本文基于现场试验,借助沉降观测确定了强夯设计参数。此外,将弹性体高速碰撞中的Ansys/Ls-dyna有限元分析加以改进,引入弹塑性土体的强夯大变形的研究中,从而建立了强夯大变形的三维模型,对强夯的动力响应进行了数值模拟;揭示了强夯作用下土体的应力应变规律,建立了强夯后土体的应力场和位移场,并对比分析了理论研究结果、现场试验结果、数值分析结果,三者之间吻合较好。
     同时,本文通过两个实例对高填方路堤不均匀沉降预测的各种模型的拟合和预测精度进行了研究,得出双曲线和指数曲线更适合于6个月左右的中期预测,且两者中双曲线精度更高一些。皮尔曲线、灰色预测、龚帕斯曲线和皮尔神经网络方法更适合于一年以后的长期预测,且这四种预测方法中皮尔神经网络精度更高一些,灰色GM(1,1)模型的曲线拟合效果最好。
At present, the phenomenon of differential settlement of roadbed is widespread in highway construction in China. Since the damage of roadbed is inconvenient to the destruction of maintenance and repair, maintenance and repair costs a lot. These phenomena show various degrees in Jiangxi and Hunan provinces. These problems will inevitably lead to serious economical loss in highway construction, for example, maintenance costs, investment waste and adverse social impacts, if they can not be settled by economic and effective measures.
     In this paper, through research, theoretical analysis, to combine laboratory test, Geotechnical centrifuge modeling test with field test aims to approach the theoretical study and solve practical engineering problems by cross-disciplinary approaches of prestrained technology in concrete engineering and collision theory. Namely, on the basis of extensive research, there is a comparative analysis on a series of issues the current embankment, such as, the stability and non-uniform settlement. With the helping of laboratory testing, on-site observation and theoretical analysis, around prestrained reinforcement engineering and dynamic compaction, combining lately advanced new technologies with methods of application of research, science, this paper systematically puts forward roadbed stability and settlement control of non-uniform effective method. It has a certain significance to improve the roadbed of the working conditions, the using performance of the road.
     Geosynthetics for its lightweight, durable, and practical characteristics in the form of reinforced soil is widely used in geotechnical engineering. Use of geosynthetic reinforcement of high filling embankment can shorten the construction period, reduce costs, improve the stability of the roadbed and the effective extension of its service life. However, geosynthetics has been placed in soil whether its the long-term changes in mechanical properties affects on solid projects stability, that concerns a lot all of us. Based on the creep experiments for geosynthetics, the creep characteristics of Netlon CE131geonet.SDL25geogrid and their influenc factors are studied for two years. Meanwhile, the mechanism of creep for Netlon CE131geonet.SDL25geogrid from occurring to be destroyed is studied too. Based on the experiments, the creep formula ε(t)=(σc/E)+(σc t/η)(in this formula σc is the stress level) for the CE131.SDL25is obtained. For the Netlon CE131geonet, when exterior load is larger than60%of the ultimate tensile strength and the temperature is higher than25℃the creep of Netlon CE131is affected apparently by the change of the temperature. And it is no longer affected by the temperature when stress level is below40%or the temperature is lower than25℃.Because lode of SDL25is not more than40%,the creep characteristics of SDL25is hardly affected. Meanwhile, the calculation model to estimate the prestrained value is also put forward (εi=△εi'+△εci+△εri'); It is important referencial value for prestrained reinforcement engineering.
     In order to popularize prestrained reforcement engineering, a new design thinking and construction technology are put forward. Reverse arch of concrete is applied to prestrained reforcement engineering of bed at first, a new count formula on revrese arch are put forward too, newly revrese arch δi=K0αLi(εti)0.5/2.
     Further confirmed by numerical analysis, soil modulus and tensile modulus of reinforcement between the different match, there is a direct impact on the stability of reinforced effect. Different soil elastic modulus reinforced slopes, a range of reinforcement tensile modulus matching to reinforcement should be chosen. A high tensile modulus of reinforcemen is used for the high elastic modulus of soil slope so that the role of reinforcement and soil is relatively more desirable properties.
     The micro-stress of geogrid in the reinforced soil unit is related to the tensile strength of geogrid, reinforced layer spacing, soil properties and time; When the macro-stress of reinforced soil unit unchanging, the stress relaxation of geogrid would lead to the gradually decrease of micro stress of geogrid unit and gradually increase of micro stress of soil unit, and the micro stress of unit wouldn't tend to stable until the time of Tp while the reinforced soil arrived plastic state; The effect of model parameters of geogrid and the defqrmation and strength parameters of soil on Tp have different degrees. Based on different hypotheses, this paper analyzes the interaction between the reinforced earth and the mechanism of reinforced earth is reasonably explained; from the analysis of micro-stress of geogrid in the reinforced soil unit based on macro the reinforced soil unit, constitutive model of reinforced soil is established based on geogrid viscoelasticity in order to provide the scientific theory for reinforcemen technology.
     Geotechnical centrifuge modeling is deeply concerned more and more in geotechnical engineering because it is regarded as the test of revealing soil's true features. According to modern theory of relativity on the absolute equivalence of gravity and the principle of inertia, so that1/n scale model of the geotechnical centrifuge acceleration field in the run, and to ensure that model and the prototype of the stress and strain are equal, the deformation is similar to the same failure mechanism, the prototype representation Deformation characteristics. This model by n=30for Geogrid Scale Flexible bridge model test, once again reveals the geosynthetic material can effectively limit the lateral displacement of soil to prevent the generation of micro-cracks, thus improving the stability of the roadbed.
     In recent years, with the rapid development of highway, the problem of improving compaction quality and decreasing post-construction settlement of embankment should be solved quickly. Dynamic compaction has been adopted to improve embankment for its wide adaptation to the soils, remarkable effects, economic building materials, low cost and short construction period etc,. However, some problems in the reinforcement mechanism and design theory still exist. Due to the shortage of the standard of design and theoretical basis of dynamic compaction, and the design of its construction parameters has been experiential(without practice) and confused. In the case, it has to be determined by means of small scope tests, so the result for the architects acts blindly and randomly. Putting the dynamic compaction into construction, crushed-stone embankment is improved by dynamic compaction is systematically studied in this paper. Considering the characteristics of imperfect elastic collision and the theory of dynamic foundation in half space, vibration equilibrant equation of hammer is established and the process of impact is analyzed. Solutions of impact stress and deformation are also obtained, furthermore, the influence factors and orderliness of impact stress and deformation are researched in theoretically. The paper determines the parameters of dynamic compaction and analyzes the strengening effect and deformation orderliness via a novelty in-situ experiment. The numerical simulation of whole dynamic process is carried out and the contours of displacement&stress are obtained with explicit dynamic finite element program Ansys/Ls-dyna. The results show that the orderliness of stress&strain are quite consistent with the experiment results and theoretical analysis results.
     At the same time, the prediction precision of kinds of predicting models on roadbed settlement is researched, and it can be drawn that hyperbola and index curver are more suitable for the prediction in middle period about half a year. Pearl curve、gray prediction、 Gompertz curve method and Pearl-neural network are more suitable for the long-period about a year; moreover, Pearl-neural network is the highest precision in four prediction methods, and the precision of GM(1,1) predicting model is the highest.
引文
[1]土工合成材料工程应用手册.北京:中国建筑工业出版社.1994
    [2]邓卫东.土工合成材料及其在公路工程中的应用.公路.2000(8):7-11
    [3][英]布赖恩·哈里斯(Bryan Harris)著.陈祥宝,张宝艳译.工程复合材料.北京:化学工业出版社.2004.6
    [4]栾茂田,肖成志等.长期荷载作用下土工格栅蠕变特性的试验研究.土木工程学报,2006,39(4):87-91
    [5]栾茂田,肖成志,杨庆等.土工合成材料蠕变特性的试验研究及粘弹性本构模型.岩土力学,2005,26(2):187-192
    [6]丁金华,周武华.HDPE土工格栅在有约束条件下的蠕变特性试验.长江科学院院报,2012,29(4):49-51
    [7]Huabei Liu, Xiangyu Wang, Erxiang Song. Effects of relative creep of geosyn-thetic-reinforcements on the responses of geosynthetic MSE walls.2009 international foundation congress and equipment expo.345-452
    [8]Jonathan T. H. Wu and Michael T. Adams. Myth and Fact on Long-Term Creep of GRS Structures. Part of Geo-Denver 2007:New Peaks in Geotechnics Proceedings of Sessions of Geo-Denver 2007.11-20
    [9]R. M. Koerner and G. R. Koerner. On the Creep Reduction Factors for Geotextile Puncture Protection of Geomembranes. Proceedings of the Sessions of the Geo-Frontiers 2005 Congress.4259-4264
    [10]周志刚,李雨舟.土工格栅蠕变特性及其黏弹塑性损伤本构模型研究.岩土工程学报,2011,33(12):1943-1949
    [11]郭军辉,程卫国,张滨.土工格栅低温下蠕变特性试验研究.岩土力学,2009,30(10):3009-3011
    [12]Han Y J, Kim S H, Han K Y. Assessment of long-term performances of polyester geogrids by accelerated creep test. Ploymer Testing,2002,21 (8): 489-495
    [13]Y. G. Hsuan, S. Yeo and R. M. Koerner. Compression Creep Behavior of Geofoam Using the Stepped Isothermal Method. Proceedings of the Sessions of the Geo-Frontiers 2005 Congress:3987-3991
    [14]Allen T. M.and Bathurst R. J. Observed long-term performance of geosynthetic walls and implications for design. Geosynthet. Int.,2002,9(5):567-606
    [15]Jonathan H. T Wu and Helwany S. M. B.. A performance test for assessment of long-term creep behavior of soil-geosynthetic composites. Geosynthet. Int., 1996,3(1):107-124
    [16]Leshchinsky D., Dechasakulsom M., Kaliakin V. N. and Ling H. I.. Creep and stress relaxation of geogrids. Geosynthet. Int.,1997.4(5):463-479
    [17]Akinay Ali E., Brostow Witold. Long-term service performance of polymeric materials from short-term tests:prediction of the stress shift factor from a minimum of data. Polymer.2001.42:4527-4532
    [18]Koo Hyun-Jin, Kim You-Kyum. Lifetime prediction of geogrids for reinforcement of embankments and slopes. Polymer Testing.2005.24:181-188
    [19]Lai J, Bakker A. Analysis of the non-linear creep of high density polyethylene. Polymer.1995.36(1):93-99
    [20]Luo W, Yang T and An Q. Time-temperature-stress equivalence and its application to nonlinear viscoelastic materials. Acta Mechanica Solida Sinica. 2001.14(3):195-199
    [21]杨果林.加筋土筋材长期荷载蠕变试验研究.煤炭学报.2001.26(2):132-136
    [22]P. J. Black and R. D. Holtz. Performance of geotextile separators five years after installation.Journal of Geotechnical and Geoenvironmental Engineering. 1999(5):404-412
    [23]Robert J. Petrov and R. Keery Rowe. Geosyntetic clay liner (GCL)-chemical compatibility by hydraulic conductivity testing and factors impacting its performance. Can. Geotech. J.1997.34:863-885
    [24]Allen, S.R.. The use of an accelerated test procedure to determine the creep reduction factors of a geosynthetic drain. Austin, United States:Geotechnical Special Publication,2005
    [25]Te-Yang Soong, Robert MKoemer. Modeling and extrapolation of creep behavior of geosynthetics. Sixth International Conference on Geosynthetics, 1998:707-710.
    [26]李丽华,王钊,陈轮.加速土工合成材料蠕变试验的荷载叠加法.岩土工程学报.2007(3):13-16
    [27]严秋荣,邓卫东,邓昌中.高强土工合成材料蠕变强度的试验研究.重庆交通大学学报(自然科学版),2008(4):107-110
    [28]汪承志.土工格栅蠕变特性及其加筋结构长期工作性能分析[大连理工大学博士学位论文].大连:大连理工大学:2011.5
    [29]Rowe R K, Soderman K L.运用高强度土工合成材料加固极软土——有限元 分析的作用.长江科学院国家自然科学基金项目研究组译.见:土工织物与土工膜译文集.1989
    [30]徐少曼,林瑞良.提高土工筋材加筋效果的新途径.岩土工程学报,1997,19(2):49-55
    [31]徐少曼,林瑞良.预应变土工织物加筋堤坝软基的模型试验与分析.见:全国第四届土工合成材料学术会议论文集.上海:1996:134-138
    [32]王钊.土工织物的拉伸蠕变特性和预拉力加筋堤.岩土工程学报,1992,14(2):12-20
    [33]徐少曼,林瑞良,康进王.提高路堤下软基土工织物加筋效果的综合措施.中国公路学报,2003(2):67-69
    [34]翁升,马时冬.土工布加筋垫层对路基变形和稳定的影响.岩土力学,2001,22(1):42-46
    [35]杜运兴.预应力CFRP加筋土技术的应用与研究[湖南大学博士论文],长沙:湖南大学,2003:32-35
    [36]李帆.预应变土工织物加筋道路软基的试验研究.交通科技,2001(6):16-18
    [37]Bak eer Reda M, Sayed Sayed M, Cates Peter, et al. Pullout and shear tests on geogrid reinforced lightweight aggregate. Geotextiles and Geomembranes,1998,16:119-133
    [38]FLEMING I R, SHARMA J S, JOGI M B. Shear strength of geomembrane-soil interface under unsaturated conditions. Geotextiles and Geomembranes,2006,24(3):274-284
    [39]周志刚,张起森,郑健龙.土工加筋技术在公路铁路工程中应用研究新进展.长沙交通学院学报,2002,18(1):34-39
    [40]陈惠民.应用土工合成材料处理软土基效果分析.华东公路,1996(1):73-75
    [41]赵维炳,雷国辉,陈永辉等.土工筋材加筋与塑料板排水联合加固软基的计算方法研究.岩土工程学报,1998,20(3):61-65
    [42]苗英豪,王秉纲.土工合成材料加筋路堤机理研究进展.中外公路,2007,27(3):45-49
    [43]杨锡武,欧阳仲春.山区高等级公路加筋高路堤陡边坡研究.公路交通科技,2001,18(1):17-20
    [44]周志刚,郑健龙,李强.土工加筋材料处治填挖交界路基非均匀沉降设计方法研究.中国公路学报,2003,16(1):27-31
    [45]史旦达,刘文白等.单、双向塑料土工格栅与不同填料界面作用特性对比 试验研究.岩土力学,2009,30(8):2237-2244
    [46]李丽华,王钊,陈轮.考虑筋材蠕变特性的加筋土流变模型.岩土力学,2007(8):34-37
    [47]Craig.W.H.and Edouard Phillips. Idea of centrifuge modeling. Geotechnique, 1989,(39):679-700
    [48]Fuglsang L.D.,Oveson N.K..The Application of The Theory of Modeling to Centrifuge Studies.Centrifuge in Soil Mechanics,1988
    [49]朱维新.土工离心模型试验研究概况.岩土工程学报.1986,8(2):82-94
    [50]濮家骝.土工离心模型试验及其应用的发展趋势.岩土工程学报,1996,18(5):92-94
    [51]刑建营,刑义川,梁建辉.土工离心模型试验研究的进展与思考.水利与建筑工程学报,2005,3(1):27-31
    [52]Kutter B.L..Centrifuge modeling of the response of clay embankments to earth-quakes.Londun:Cambridge University,1983
    [53]Y.Xu.,S.Zhu.,L.Zhang.and L.Ru.. LXJ-4-450 geotechnical centrifuge in Beijing, Centrifuge 94, Singapore,Leung, Lee and Tan(eds):35-39
    [54]Y.Dou,P.Jing..Development of NHRI-400g-t geotechnical centrifuge,Centrifuge 94, Singapore, Leung,Lee & Tan(eds):69-74
    [55]Miyake M.,Yanagihata T.Heap shape of Materials Dumped from Hopper barges by drum Centrifuge,ISOPE 1999, Breast:745-748
    [56]De Souza E. A centrifuge for solving mining problems.ICPMG'02, Pillips,R., Guo,P&Popescu,R.(eds):49-54
    [57]Smith, R.W.Payne, S.J.Miller, D.L.Environmental geocentrifuge facility developments.ICPMG'02.Pillips,R.,Guo,P&Popescu,R.(eds):55-58
    [58]Matsuda T.,Higuchi S.Development of the large geotechnical centrifuge and shaking table of obayashi,ICPMG'02,Pillips,R., Guo,P&Popescu,R.(eds):63-68
    [59]汪小刚,张建红等.用离心模型研究岩石边坡的倾倒破坏.岩土工程学报,1996,18(5):14-21
    [60]刘守华,蔡正银,徐光明,李景林.用离心模型研究港区软基变形特性.工业建筑,2004,34(12):54-58
    [61]谢永利,潘秋元,曾国熙.应用离心模型试验研究软基变形性状.岩土工程学报,1995,17(4):45-50
    [62]刘维宁,张师德,吴邦颖.昔格达组场地上高大结构型挡土墙的离心加载试验研究.岩石力学与工程学报,1995,14(4):362-370
    [63]岳祖润,彭宗,张师巷.压实粘性填土挡墙土压力离心模型试验.岩土工程学报,1992,14(6):90-96
    [64]张剑锋等编译.岩土工程勘测设计手册.北京:水力电力出版社,1992
    [65]赵恒惠.挡土墙后粘性填土的土压力计算.岩土工程学报,1983,5(1):134-146
    [66]杜延龄.土石坝离心模型试验研究.水利水电技术,1997,28(6):54-58.
    [67]陈湘生,濮家骝,罗小刚,殷昆亭.土壤冻胀离心模拟试验.煤炭学报,1999,42(6):615-619
    [68]Pu Jialiu, Liu F.D., Li J.K..Development of medium-size geotechnical centrifuge at Tsinghua University.Leung C F,Lee F H,Tan T S,eds.Centrifuge 94 Proceedings of the Int Conf Centrifuge 94. Rotterdam:Balkeam A,1994, 53-56
    [69]章为民,日下部治(日本).砂性地层地震反应离心模型试验研究.岩土工程学报,2001,23(1):28-31
    [70]丁金华,包承纲.软基和吹填土上加筋堤的离心模型试验及有限元分析.土木工程学报,1999,32(1):21-25
    [71]蔡正银,章为民,赖忠中.京九铁路加筋土挡墙离心模型试验.水利水运科学研究,1996,2:160-166
    [72]胡红蕊,陈胜立,沈珠江.防波堤土工织物加筋地基离心模型试验及数值模拟.岩土力学,2003,24(3):389-394
    [73]胡黎明等.LNPALs在非饱和土中迁移的离心试验模拟.岩土工程学报,2002,24(6):690-694
    [74]蔡正银等.遮帘式板桩码头土压力离心模型试验研究.港工技术,2005,12(增刊):51-55
    [75]水伟厚.对强夯置换概念的探讨和置换墩长度的实测研究.岩土力学,2011,32(supp.2):502-506
    [76]颜波,林沛元等.强夯地基处理夯沉量及夯击能量耗散分析.岩土工程学报,2011,33(supp.1):242-245
    [77]董倩,况龙川.碎石土地基强夯加固效果评价与工程实践.岩土工程学报,2011,33(supp.1):330-334
    [78]Xin Lu, George Filz, Jie Han. Dynamic Compaction of Fill in a Mountainous Area. Proceedings of the 2009 US-China Workshop on Ground Improvement Technologies:281-289
    [79]Sarfraz Ali and Liaqat Ali. Remediation of Liquefaction Potential Using Deep Dynamic Compaction Technique. Proceedings of Selected Papers from the 2009 GeoHunan International Conference:42-47
    [80]Xin-zhuang Cui. In-Situ Dynamic Compaction Tests on Subgrade for Reconstruction of Old Road to Expressway. Proceedings of Selected Papers from the 2009 GeoHunan International Conference:118-123
    [81]Yong Tan. Application of Deep Dynamic Compaction to U.S. Route 44 Relocation Project. Proceedings of the Geotechnical Earthquake Engineering and Soil Dynamics IV Congress 2008:1-10
    [82]Wei-Lie Zou, Zhao Wang,Zheng-Fa Yao. Effect of Dynamic Compaction on Placement of High-Road Embankment. Journal of Performance of Constructed Facilities.2005,19(4):316-323
    [83]Y.K.Chow,D.M.Yong,K.Y.Yong and S.L.Lee.Dynamic compaction analy-sis. Journal of Geotechnical Engineering,1992,118(8):1141-1157
    [84]费香泽,王钊,周正兵.强夯加固深度的试验研究.四川大学学报(工程科学版),2002,34(4):56-59
    [85]Chaim J Poran, Jorge A. Design of dynamic compaction. Canadian Geotech-nique,1992,29:796-802.
    [86]Y.K.Chow, D.M.Yong, K.Y.Yong and S.L.Lee. Dynamic compaction of loose granular soils. Journal of Geotechnical Engineering,1994,120(7):1115-1133
    [87]Fitzhardinge C. F. R.. Dynamic compaction and slurry trench cut-off at Thap Salao Dam,10th Southeast Asian Geotech. Conf., Thailand Proc.1990,4:53-58
    [88]Lukas R. G.. Discussion of optimum moisture content for dynamic compaction of collapsible soils. Journal of Geotechnical Engineering,1999,125(12):1100-1109
    [89]费香泽.黄土强夯的模型试验研究[武汉大学博士学位论文].武汉:武汉大学:2002.5
    [90]韩文喜,张倬元,李强.利用强夯模拟试验研究饱和砂土强夯动本构关系.工程地质学报,2001,04:362-367
    [91]费香泽,王钊,周正兵.黄土强夯的模型试验研究.岩土力学,2002,04:437-441
    [92]于克萍,程侠,折学森.强夯处理黄土路堤的模型试验.长安大学学报(自然科学版),2003,23:22-24
    [93]李志.无粘性土强夯夯点间加固效果的估算.华东地质学院学报,2002,25:117-123
    [94]金岗.山区高速公路填石路堤的强夯处理.公路交通科技(应用技术版),2009(11):86-88
    [95]刘汉龙,高有斌,曹建建,徐士龙.强夯作用下接触应力与土体竖向位移计算.岩土工程学报,2009,10:1493-1497
    [96]牛志荣,路国运.土体受冲击时Rayleigh波作用机制探讨.岩土力学,2009,6:1583-1589
    [97]颜斌,徐张建.低能级强夯前后路基黄土湿陷性研究.长安大学学报(自然科学版),2009,4:25-29
    [98]贾敏才,王磊,周健.砂性土宏细观强夯加固机制的试验研究.岩石力学与工程学报,2009,s1:3282-3290
    [99]董伟,闫澍旺,冯守中,闫福生.采用强夯置换墩加固湿地中高速公路路基的研究[J].岩石力学与工程学报,2009(s1):2966-2971
    [100]匡健,李晓静.黄泛区强夯加固地基效果的数值模拟研究.铁道建筑,2012,2:62-65
    [101]田水,王钊.夯击方式对强夯加固效果的影响.岩土力学,2008,11:3119-3213
    [102]蒋鹏,李荣强,孔德坊.强夯大变形碰撞数值分析.岩土工程学报,2000,22(2):222-226
    [103]王启平,谢能刚,史小路.基于强夯大变形的地基流固耦合分析.北京科技大学学报,2004,26(4):345-348
    [104]R.L.Hu,Z.Q.Yue,L.G.Tham and L.C.Wang. Digital Image Analysis of Dynamic Compaction Effects on Clay Fills. Journal of Geotechnical and Geoenviron-mental Engineering.2005,131(11):1411-1422
    [105]Colin B. Brown.Entropy and granular materials:Model. Journal of Engineering Mechanics,2000,126(6):599-604.
    [106]Hu R.L..Quantitative model and engineering geologic characteristics of micros-tructures of viscous soil,Geological Publishing House, Beijing,1995:68-70
    [107]Hu R.L.,Li X.Q.,Guan G.L..Geomorphologic elements of microstructures of viscous soil and their quantitative information processing techniques.Chin.Jo. Earth,1996(17):229-236
    [108]吴铭炳,王钟琦.强夯机理的数值分析.工程勘察,1993,3:32-34
    [109]梁志荣,曹名葆,叶柏荣.强夯特性的数值分析.地基处理,1992,12:56-57
    [110]李本平.有限元法分析强夯加固机理[浙江大学博士学位论文].杭州:浙江 大学,1993.12
    [111]钱家欢,帅方生.边界元法在地基强夯加固中的应用.中国科学(A辑),1987,3:8-10
    [112]钱家欢,钱学德等.动力固结的理论与实践.岩土工程学报,1986,6:17-20
    [113]蒋鹏.强夯机理分析及其计算模型[成都理工学院硕士学位论文].成都:成都理工学院,1999.4
    [114]牛志荣.土体动力压密问题及其工程应用[太原理工大学硕士学位论文].太原:太原理工大学,2003.9
    [115]郭乃正,邹金锋,杨小礼,李亮.高填方路堤强夯试验与数值模拟研究.铁道科学与工程学报,2007,3:89-92
    [116]折学森.软土地基沉降计算.北京:人民交通出版社,1998
    [117]罗鑫,王桂尧.高路堤沉降分析的灰色预测.长沙交通学院学报,2002,18(4)
    [118]王小平,曹立明.遗传算法——理论、应用与软件实现.西安:西安交通大学出版社,2002
    [119]颜庆津著.数值分析.北京:北京航空航天大学出版社.2000
    [120]吴景海.关于“土工合成物加强软土地基的极限分析”一文的讨论.岩土工程学报.1999,21(2):250-25
    [121]喻泽红,张起森.土工网与土相互作用机理的有限元分析.岩土工程学报.1997,19(3):76-81
    [122]王桂尧,张起森,高燕希.论土工聚合物对地基应力及差异沉降的影响规律.长沙交通学院学报.1998,14(3):47-54
    [123]周志刚.土工合成材料层加固软土地基的薄膜效应.工程力学,1998,15(2):45-50
    [124]俞仲泉,李少青.运用土工织物与砂垫层复合加固海堤软基的试验研究.河海大学研究报告,1992:45-49
    [125]曾锡庭.青岛前湾港区工作船港池防波堤现场试验与分析.天津港湾工程研究所研究报告,1991:78-83
    [126]FHW A.Mechanically stablized earth walls and reinforced soil slopes design and construction guidelines.Washington:FHW A,1997
    [127]周志刚,郑健龙,李强.土工加筋材料处治填挖交界路基非均匀沉降设计方法研究.中国公路学报.2003,16(1):27-31
    [128]C.V.S.Benjamim,B-S.Bueno,J.G.Zornberg.Field monitoring evaluation of geotextile-reinforced soil-retaining walls. Geosynthetics Internatioanal,2007 14(2):100-118
    [129]K.Hatami and R.J.Bathurst. A numerical model for reinforced soil segmental walls under surcharge loading.Journal of Geotechnical and Geoenvironmental Engineering,2006,132(6):673-684
    [130]Huabei Liu and Hoe I.Ling. Unified elastoplastic-viscoplastic bounding surface model of geosynthetics and its applications to GRS-RW analysisJournal of engineering machanics,2007,7 (133):801-815
    [131]郑颖人,孔亮.岩土塑性力学原理.北京:中国建筑工业出版社,2010.5:112-117
    [132]周志刚,郑健龙,张起森,高燕希.Netlon土工合成材料与土界面性能的研究.长沙交通学院学报,1998,14(3):34-39
    [133]Murad Y., Khalid Farrag, Izzaldin Almoh'd and Ather Mohiuddin. Evaluation of interaction between geosynthetics and marginal cohesive soils from pullout tests, American Society of Civil Engineers,2004:299-309
    [134]介玉新,李广信.加筋土数值计算的等效附加应力法.岩土工程学报,1999,21(5):614-616
    [135]Sawicki A. Rheological model of geosynthetic-reinforced soil. Geotextiles and Geomembranes,1999,17 (1):33-49
    [136]中华人民共和国行业标准.公路土工合成材料应用技术规范(JTJ/T019-98).北京:人民交通出版社,1998:35-39
    [137]李雨舟.土工合成材料蠕变特性及加筋土本构模型研究[长沙理工大学硕士学位论文].长沙:长沙理工大学,2009:30-61
    [138]D.S.Kimetal. Evaluation of Ground Densification by Dynamic Compaction Using SASE Method. Proc. of International Offshore and Polar Engineering Conference. Golden,1997,1:707-713
    [139]水伟厚.冲击应力与10000kN.m高能级强夯系列试验研究[同济大学博士学位论文].上海:同济大学,2003.9
    [140]水伟厚,高广运,吴延伟等.湿陷性黄土在强夯作用下的非弹性完全碰撞与冲击应力解析.建筑结构学报,2003,5:92-96
    [141]王铁宏,水伟厚,高广运等.Non-perfect Elastic Collision&Impact Stress Analysis During Dynamic Compaction on Collapsible Loess. GEOTECHNICAL ENGINEERING IN URBAN CONSTRUCTION, Tsinghua University Press,2003:115-120
    [142]曾庆军.强夯和强夯置换加固效果及冲击荷载下饱和粘土孔压特性[浙江 大学博士学位论文].杭州:浙江大学,2000.12
    [143]陈仁伟.强夯大变形加固机理的数值分析[浙江大学博士学位论文].杭州:浙江大学,2004.2
    [144]孙进忠,谭捍华,王树理等.强夯振动的频域分析.岩土工程学报,2000(22):412-415
    [145]罗嗣海,杨泽平,龚晓南.强夯的地面变形规律初探.地质科技情报,2000(19):92-95
    [146]高大钊,袁聚云主编.土质学与土力学.北京:人民交通出版社,2001
    [147]王桂尧,胡振南,匡希龙.红砂岩路基强夯处理大变形数值模拟方法与效果分析.岩土力学,2008(29):2451-2456
    [148]胡振南.碎石土路基强夯处理的数值模拟及试验研究[长沙理工大学硕士学位论文].长沙:长沙理工大学,2006.5
    [149]Livermore Software Technology Corporation. LS-DYNA Database Binary Output Files,1994
    [150]Livermore Software Technology Corporation. LS-DYNA Keyword User's Manual,2003
    [151]Livermore Software Technology Corporation. LSPOST:A New Post Processor for LS-DYNA,1999
    [152]徐军海.高速公路软土地基沉降反演与预测研究[河海大学博士学位论文].南京:河海大学,2004:6-15
    [153]罗鑫.高路堤沉降预测方法研究[长沙理工大学硕士学位论文],长沙:长沙理工大学,2003:9-18
    [154]高玮,郑颖人.巷道围岩松动圈预测的进化神经网络法.岩石力学与工程学报,2002,21(5):658-661
    [155]张慧梅,李云鹏等.人工神经网络在软土地基路基沉降预测中的应用.长安大学学报,2002,22(4):20-22
    [156]钱玉林,丁毅.路基沉降预测及其工程应用.扬州大学学报,2001,4(2):75-78
    [157]Liu Song yu,Jing Fei.Settlement prediction of embankments with stage construction on soft ground. Journal of Geotechnical Engineering,2003, 25(2):113-117
    [158]翁升.软基路堤最终沉降量的灰色预测及反演分析[华侨大学硕士学位论文].泉州:华侨大学,2001:55-80
    [159]宰金珉,梅国雄.全过程的沉降量预测方法研究.岩土力学,2000, 21(4):322-325
    [160]徐晓宇.高填方路基沉降变形特性及其预测方法研究[长沙理工大学硕士学位论文],长沙:长沙理工大学,2005
    [161]徐晓宇,王桂尧,匡希龙.基于皮尔—遗传神经网络的高路堤沉降预测研究.公路交通科技,2006,1:40-44
    [162]徐晓宇,王桂尧,匡希龙.基于遗传算法和神经网络的高路堤沉降预测研究.中南公路工程,2006,2:30-33

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700