用户名: 密码: 验证码:
兔出血症病毒基因组末端序列对蛋白表达与调控的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
【目的与意义】目前,关于兔出血症病毒(Rabbit hemorrhagic disease virus,RHDV)的基因组结构、基因功能和致病机理等还了解甚少,而阐明此类问题则是有效防控RHD发生的前提。本论文首次对RHDV基因组末端序列的功能进行了系统研究和分析,为进一步阐明RHDV基因组的表达和调控机制以及致病机理等提供了有益线索。
     【方法】首先,克隆了RHDV基因组的5’/3’末端序列(含非编码区non-codingregion,NCR),然后将其插入双顺反子载体中,进行体外翻译,通过检测其下游报告基因(萤火虫荧光素酶基因)的表达,分析5’/3’末端序列对报告基因表达的调控作用;为了进一步验证5’/3’末端序列在细胞水平对报告基因表达的调控作用,又构建了含有5’/3’末端序列不同组合的单顺反子,然后转染细胞,通过检测荧光素酶的表达活性判断靶序列对报告基因表达的影响;为了从基因水平分析5’/3’末端序列对RHDV基因组表达的影响,先构建了携带LUC基因的RHDV复制子;在此基础上,又构建了缺失5’末端序列的RHDV复制子突变体,然后转染细胞,分析缺失突变对LUC表达的影响。
     【结果】RHDV基因组的5’末端序列具有内部起始下游蛋白表达的功能,无论是体外翻译,还是细胞水平,置于RHDV5’末端序列下游的LUC都能得到良好的表达,而3’末端序列具有增强5’末端序列功能的作用,将其与5’末端序列串联,可以提高LUC的表达水平。此外,本论文还成功构建了携带LUC基因的RHDV复制子,将其转染细胞以后,LUC基因在12h就能得到表达,36h可以达到表达高峰;在该复制子的基础上,我们又分别构建了仅缺失5’NCR、缺失NSP1以及同时缺失5’NCR和NSP1的复制子突变体,为在基因水平上分析5’末端序列对RHDV复制和表达的影响奠定了坚实基础。
     【结论】 RHDV基因组的5’/3’末端序列对蛋白的表达有增强作用,此外,5’末端序列中的5’NCR和NSP1序列是维持RHDV5’末端序列内部起始蛋白翻译功能的关键性区域。
【Objective】At present, we know less about the genome structure, function andpathogenic mechanism of Rabbit hemorrhagic disease virus(RHDV),which are the basis ofeffective control RHD. Therefore, this article is trying to explore the expression andregulation mechanism of RHDV genome through analysis the function of the extremesequence of RHDV genome, and hope to provide some useful clues for further exploring thetranslation mechanism of RHDV.
     【Method and Result】In order to evaluate the translation initiation function of the5’endsequence of RHDV genome, a bicistronic reporter plasmid was constructed by the insertion ofa cDNA corresponding to the RHDV5’ extreme sequence (nts1to429) between two reportergene sequences, the first encoding CAT protein and the second encoding LUC protein. Thebicistronic plasmids were individually added to TNT rabbit reticulocyte lysate (RRL) system(Promega),and then the reporter proteins translated in vitro were evaluated by measuringLUC activity. Internal initiation activity of the different sequences (5’/3’) included betweentwo reporters genes was estimated by the accumulation of LUC. Our results showed that allplasmids containing the RHDV5’ extreme sequence in sense orientation allowed theexpression of LUC, indicating that the5’ extreme sequence of RHDV could direct translationinitiation in vivo.
     To confirm and extend the results from these assays in vitro, diffent types ofmonocistrons were constructed and tested by transient-expression experiments in mammaliancells. Our results showed that the5’extreme sequence of RHDV could produce efficient LUCexpression in host cells. Though the expression level of5’ end sequence of RHDV was lowerthan that of EMCV IRES clearly, these results still indicated that RHDV5’end sequence had translation initiation function in vivo.
     To further characterize the regulation of3’ NCR on the function of RHDV genome,additional bicistronic reporter plasmids were constructed, containing RHDV3’NCR. Thebicistronic plasmids were individually added to TNT rabbit reticulocyte lysate (RRL) system(Promega),and then the reporter proteins translated in vitro were evaluated by measuringLUC activity. Internal initiation activity of the different sequences included between the tworeporter genes was estimated by the expression of LUC. Moreover, the bicistronic plasmidswere transfected into vFT7infected BHK-21cells, in order to evaluate internal initiationactivity in vivo, and the expression of LUC protein expressed from the different constructswas determined through detecting LUC activity. Our results indicated that the presence of3’NCR was not required for translation initiation,but it indeed positively modulated thefunction of the5’ end sequence of RHDV.
     To evaluate the influence of the5’/3’ extreme sequence on the expression of RHDVthrough gene level, the RHDV replicon carrying LUC gene was constructed, and then seriesreplicon mutants were also constructed. RK13cells were transfected with these repliconmutants, and the affection of deleted mutation on the expression of RHDV genome wasanalyzed through measuring LUC activity. The experimental results showed that5’endseqnence (429bp) took a key role during the expression of RHDV genome, which isconsistent to above results.
     【Conclusion】RHDV5’ extreme sequence indeed positively regulated the expression ofLUC,and then,it could direct translation initiation in vivo.3’NCR was not required fortranslation initiation,but it indeed positively modulated the function of the5’ end sequence ofRHDV.5’NCR and NSP1sequence was the key sequence,which could matain translationinitiation function of the5’end sequence in vivo.
引文
刘光清,云涛,陈柳.2009.动物病毒反向遗传学.北京:科学出版社:128-140
    唐丽,朱武祥,付士红.2010. nsP2-72Pro定点诱变对辛德毕斯病毒XJ-160复制子载体特性的影响.病毒学报.26(2):121-127.
    Abrantes J, van der Loo W, Le Pendu J, Esteves PJ.2012. Rabbit haemorrhagic disease (RHD) andrabbit haemorrhagic disease virus (RHDV).a review.J Vet Res,43(1):12.
    Andino R, Rieckhof G E, Achacoso P L, Baltimore D.1993. Poliovirus RNA synthesis utilizes anRNP complex formed around the5′-end of viral RNA. EMBO,12:3587–3598.
    Alexandra S, Alan C.Whitmore, Jennifer L.2009. Replicon Particles of Venezuelan EquineEncephalitis Virus as a Reductionist Murine Model for Encephalitis. Virol,83(9):4275–4286
    Alvarez D E, Filomatori C V, Gamarnik A V,2008. Functional analysis of dengue virus cyclizationsequences located at the5′and3′UTRs.Virology,375:223–235.
    Andino R, Rieckhof G E, Baltimore D.1990. A functional ribonucleoprotein complex forms aroundthe5′end of poliovirus RNA.Cell,63:369–380.
    Beerens N, Snijder E J,2006.RNA signals in the3’terminus of the genome of Equine arteritis virusare required for viral RNA synthesis.Gen Virol,87:1977-1983.
    Bradrick S S, Dobrikova E Y, Kaiser C, Shveygert M,Gromeier M.2007.Poly (A)-binding protein isdifferentially required for translation mediated by viral internal ribosome entry sites. RNA,13:1582–1593
    Brown D M, Cornell C T, Tran G P, Nguyen J H, Semler B L.2005. An Authentic3-NoncodingRegion Is Necessary for Efficient Poliovirus Replication.Virol,79:11962-11973
    Brown E A, Day S P, Jansen R W, Lemon S M.1991.The5′nontranslated region of hepatitis A virusRNA: secondary structure and elements required for translation in vitro.Virol.65:5828–5838.
    Brown D M, Kauder S E,Cornell C T, Jang G M, Racaniello V R, Semler B L.2004.Celldependentrole for the poliovirus3’noncoding region in positive-strand RNA synthesis.Virol,78:1344–1351.
    Bung C, Terenin B, Zinovkin R.2010. Influence of the hepatitis C virus3'untranslated region onIRES-dependent and cap-dependent translation initiation. FEBS Letters,584:837-842.
    Chard L S,Kaku Y, Jones B.2006. Functional analyses of RNA structures shared between the internalribosome entry sites of hepatitis C virus and the picornavirus porcine teschovirus1talfan. Virol,80(3):1271-1279
    Chang K O and David W G.2007.Interferons and Ribavirin Effectively Inhibit Norwalk VirusReplication in Replicon-Bearing Cells.Journal of Virology,81(22):12111–12118
    Chang K O, Sosnovtsev S V, Belliot G.2006.Stable expression of a Norwalk virus RNA replicon in ahuman hepatoma cell line. Virology,353:463-473
    Davis N L, West A, Reap E.2002. Alphavirus replicon particles as candidate HIV vaccines. IUBMBLife,53(4/5):209-211.。
    Davis N L, West A, Reap E, MacDonald G, Collier M., Dryga S, Maughan M, Connell M., Walker C,McGrath K, Cecil C, Ping L H., Frelinger J, Olmsted R, Keith P, Swanstrom R., Williamson C, Johnson P,Montefiori D, Johnston R E.2002. Alphavirus replicon particles as candidate HIV vaccines. IUBMBLife,53:209–211.
    Davis N L, Brown K W, Johnston R E.1996. A viral vaccine vector that expresses foreign genes inlymph nodes and protects against mucosal challenge.Virol,70:3781–3787.
    Dobrikova E, Florez P, Bradrick S, Gromeier M..2003. Activity of a type1picornavirusinternalribosomal entry site is determined by sequences within the3’nontranslated region. Proc Natl Acad SciU.S.A,100:15125–15130.
    Dollenmaier G, Weitz M.2003. Interaction of glyceraldehyde-3-phosphate dehydrogenase withsecondary and tertiary RNA structural elements of the hepatitis A virus3’translated and non-translatedregions. Gen. Virol,84:403-414
    Diviney S, Tuplin A, Struthers M.2008.A hepatitis C virus cis-acting replication element forms along-range RNA-RNA interaction with upstream RNA sequences in NS5B.Virol,82:9008-9022.
    Gutierrez-Escolano A L, Vazquez-Ochoa M., Escobar-Herrera J, Hernandez-Acosta J.2003.La, PTB,and PAB proteins bind to the3’untranslated region of Norwalk virus genomic RNA.Biochem Biophys ResCommun,311:759-766.
    Gamarnik A V, Andino R.2000..Interactions of viral protein3CD and poly(rC) binding protein withthe5′untranslated region of the poliovirus genome.Virol,74:2219–2226.
    Merchan T, Rocha G, Alda F, Silva E,Thompson G.2011. Detection of rabbit haemorrhagic diseasevirus (RHDV) in nonspecific vertebrate hosts sympatric to the European wild rabbit (Oryctolaguscuniculus).Virol,11(6):1489-74.
    Friebe P, Boudet J, Simorre J P, Bartenschlager R..2005.Kissing-loop interaction in the3’end of thehepatitis C virus genome essential for RNA replication. Virol.79:380–392.
    Gamarnik A V,Andino R.1998.Switch from translation to RNA replication in a positive-strandedRNA virus. Genes Dev,12:2293–2304.
    Gritsun T S, Venugopal K, Zanotto P M.1997.Complete sequence of two tickborne flavivirusesisolated from Siberia and the UK: analysis and significance of the5’and3’-UTRs.Virus Res,49:27-39.
    Gupta P K,Dahiya S S,Kumar P.2009.Sindbis virus replicon-based DNA vaccine encoding Rabiesvirus glycoprotein elicits specific humoral and cellular immune response in dogs.Acta Virologica,53(2)83-88.
    Han J H., Houghton M.1992.Group specific sequences and conserved secondary structures at the3’end of HCV genome and its implication for viral replication.Nucleic Acids Res,20:3520.
    Harrington P R, Yount B, Johnston R E, Davis N, Moe C, Baric R S.2002. Systemic, mucosal, andheterotypic immune induction in mice inoculated with Venezuelan equine encephalitis replicons expressingNorwalk virus-like particles.Virol,76:730–742.
    Harris K S, Xiang W, Alexander L, Lane W S, Paul A.V, Wimmer E.1994.Interaction of polioviruspolypeptide3CDpro with the5′and3′termini of the poliovirus genome. Identification of viral and cellularcofactors needed for efficient binding.Biol Chem,269:27004–27014.
    Herold J, Andino R.2000.Poliovirus requires a precise5’end for efficient positive-strand RNAsynthesis. Virol,74:6394–6400.
    Herold J, Andino R.2001.Poliovirus RNA replication requires genome circularization through aprotein-protein bridge.Mol Cell,7:581–591.
    Hoang L D, Anrakul I, Wang X J.2009. A Kunjun replicon vector encoding granulocyte macrophagecolony-stimulating factor for intra-tumoral gene therapy. Gene Ther,16(2):190-199
    Iglesias N G, Filomatori C V, Alvarez D E, Gamarnik A V, Cameron C E, Gotte M, Raney K D.2009.Viral genome replication.Springer,41–60.
    Jang S K.2006. Internal initiation: IRES elements of picornaviruses and hepatitis c virus.Virus Res,119:2–15.
    Lukavsky P J.2009. Structure and function of HCV IRES domains. Virus Res,139:166–171
    Kim Y K, Lee S H, Kim C S, Seol S K., Jang S K..2003.Long-range RNA–RNA interaction betweenthe5′nontranslated region and the core-coding sequences of hepatitis C virus modulates theIRES-dependent translation.Rna,9:599–606.
    Kim Y K, Kim C S, Lee S H, Jang S K.2002.Domains I and II in the5′nontranslated region of theHCV genome are required for RNA replication.Biochem Biophys Res Commun,290:105–112.
    Kolykhalov A A, Mihalik K, Feinstone S M, Rice C M.2000.Hepatitis C, virus-encoded enzymaticactivities and conserved RNA elements in the3’nontranslated region are essential for virus replication invivo.Virol,74:2046–2051.
    Kusov Y Y, Morace G, Probst C, Gauss-Mulle V.1997.Interaction of hepatitis A virus (HAV)precursor proteins3AB and3ABC with the5′and3′termini of the HAV RNA.Virus Res,51:151–157.
    Lee H, Shin H, Wimmer E, Paul A V.2004.Cis-acting RNA signals in the NS5B Cterminal codingsequence of the hepatitis C virus genome. Virol,78:10865–10877.
    Liu Y,Wimmer E,Paul A V.2009. Cis-acting RNA elements in human and animal plus-strand RNAviruses. Biochim Biophys Acta,1789(9-10):495-517
    Lodeiro M F, Filomatori C V, Gamarnik A V.2009.Structural and functional studies of the promoterelement for dengue virus RNA replication. Virol,83:993–1008.
    MacDonald G H, Johnston R E.2000. Role of dendritic cell targeting in Venezuelan equineencephalitis virus pathogenesis. Virol,74:914–922
    Michel Y M, Borman A M, Paulous S.2001.Eukaryotic initiation factor4G-poly (A) binding proteininteraction is required for poly(A) tail-mediated stimulation of picornavirus internal ribosome entrysegment-driven translation but not for X-mediated stimulation of hepatitis C virus translation. Mol CellBiol,21(13):4097~4109
    Mok H, Lee S,Thomas J U.2007.Venezuelan Equine Encephalitis Virus Replicon Particles EncodingRespiratory Syncytial Virus Surface Glycoproteins Induce Protective Mucosal Responses in Mice andCotton Rats.Virol,81(24):13710-13722
    Niepmann M.2009. Internal translation initiation of picornaviruses and hepatitis C virus.J Biochimicaet.Biophysica Acta,1789:529-541.
    Nystrom K, Gall-Recule G L,Grassi P,Abrantes J.2011.Histo-blood group antigens act as attachmentfactors of rabbit hemorrhagic disease virus infection in a virus strain-dependent manner. PLoS Pathog,7(8): e1002188.
    Parsley T B, Towner J S, Blyn L B, Ehrenfeld E. Semle B L.1997.Poly (rC) binding protein2formsa ternary complex with the5′-terminal sequences of poliovirus RNA and the viral3CD proteinase.VirolRNA,3:1124–1134.
    Pasternak A O, Born E van den, Spaan W J, Snijder E J.2003.The stability of the duplex betweensense and antisense transcription-regulating sequences is a crucial factor in arterivirus subgenomic mRNAsynthesis. Virol.77:1175–1183.
    Pilipenko E V, Gmyl A P, Maslova S V.1994.Starting window, a distinct element in thecap-independent internalitiation of translation on picornaviral RNA.Mol Biol,241:398-414
    Pilipenko E V, Maslova S V, Sinyakov A N, Agol V.I.1992.Towards identification of cis-actingelements involved in the replication of enterovirus and rhinovirus RNAs: a proposal for the existence oftRNA-like terminal structures.Nucleic Acids Res,20:1739–1745.
    Pilipenko E V, Poperechny K V, Maslova S V, Melchers W J, Slot H J, Agol V I.1996.Cis-element,oriR, involved in the initiation of (-) strand poliovirus RNA: a quasiglobular multi-domain RNA structuremaintained by tertiary ('kissing') interactions.EMBO,15:5428–5436.
    Pijlman G P, Suhrbier A, Khromykh A A.2006.Kunjin virus replicons: an RNA-based,non-cytopathic viral vector system for protein production, vaccine and gene therapy applications. ExpertOpin Biol Ther,6(2):135145.
    Pushko P, Parker M, Ludwig G V, Davis N L, Johnston R E, Smith. J F.1997. Replicon-helpersystems from attenuated Venezuelan equine encephalitis virus: expression of heterologous genes in vitroand immunization against heterologous pathogens in vivo. Virology,239:389–401.
    Rauscher S, Flamm C, Mandl C W, Heinz F X, Stadler P F.1997.Secondary structure of the3’-noncoding region of flavivirus genomes: comparative analysis of base pairing probabilities.Rna,3:779-791.
    Reynard O, Mokhonov V, Mokhonova E.2012.Kunjin Virus Replicon-Based Vaccines ExpressingEbola Virus Glycoprotein GP Protect the Guinea Pig Against Lethal Ebola Virus Infection. Journal ofInfectious Diseases,205(11):1060-1065.
    Richard A. Stein,2010.Human Activities&the Emergence of Pathogens. The American BiologyTeacher,72(8):475-476.
    Roehl H H, Semler B L.1995. Poliovirus infection enhances the formation of two ribonucleoproteincomplexes at the3’end of viral negative-strand RNA. Virol,69:2954–2961
    Roll J B, Moon D H, Evans D J,Almond J W.1995.The39Untranslated Region of Picornavirus RNA:Features Required for Efficient Genome Replication. Virol,69:7835–7844.
    Romero T A, Tumban E, Jun J, Lott W B, Hanley K A.2006.Secondary structure of dengue virus type43’untranslated region: impact of deletion and substitution mutations. Gen. Virol,87:3291-3296.
    Salim N, Lamichhane R, Zhao R.2012.Thermodynamic and Kinetic Analysis of an RNA KissingInteraction and Its Resolution into an Extended Duplex.Biophysical Journal,102:1097-1107
    Sandra C, Eike S, Heiner W, Michael P M.2009.Cyclosporine A inhibits hepatitis C virusnonstructural protein2through cyclophilin A.Hepatology,50(5):1638–1645.
    Serrano P, Pulido M R, Saiz M, Martinez-Salas E.2006.The3′end of the foot-and-mouth diseasevirus genome establishes two distinct long-range RNA–RNA interactions with the5′end region. Gen. Virol,87:3013–3022.
    Schultz D E, Hardin C C, Lemon S M.1996.Specific interaction of glyceraldehyde3-phosphatedehydrogenase with the5′-nontranslated RNA of hepatitis A virus. Biol. Chem.271:14134–14142
    Seal B S, Neill J D, Ridpath J F.1994.Predicted stem loop structures and variation in nucleotidesequence of3’noncoding regions among animal calicivirus genomes.Virus Genes,8:243–247.
    Serrano P, Pulido M R,Saiz M,Martinez-Salas E.2006. The3′end of the foot-andmouth disease virusgenome establishes two distinct long-range RNA-RNA interactions with the5’end region. GenVirol,87:3013-3022
    Simmonds P, Karakasiliotis I, Bailey D, Chaudhry Y, Evans D J, Goodfellow I G.2008.Bioinformaticand functional analysis of RNA secondary structure elements among different genera of human and animalcaliciviruses.Nucleic Acids Res,36:2530–2546.
    Smith D B, Simmonds P.1997.Characteristics of nucleotide substitution in the hepatitis C virusgenome: constraints on sequence change in coding regions at both ends of the genome. Mol Evol,45:238–246
    Sosnovtsev S V, Belliot G, Chang K O, Onwudiwe O, Green K Y.2005.Feline calicivirus VP2isessential for the production of infectious virions. Virol.79:4012–4024.
    Susan W. Barnett, Brian Burke, Yide Sun.2010.Antibody-Mediated Protection against MucosalSimian-Human Immunodeficiency Virus Challenge of Macaques Immunized with Alphavirus RepliconParticles and Boosted with Trimeric Envelope Glycoprotein in MF59Adjuvant J.Virol.84(12):5975-5985
    Terra-Dawn M P, Jeffrey S K.2012.The structures of nonprotein-coding RNAs that drive internalribosome entry site function.WIREs,3(2):195–212.
    Thompson J M, Whitmore A C, Konopka J L, Collier M L, Richmond E M, Davis N L, Staats H F,Johnston R E.2006. Mucosal and systemic adjuvant activity of alphavirus replicon particles. Proc Natl.Acad Sci USA,103:3722–3727.
    Thurner C, Witwer C, Hofacker I L, Stadler P F.2004.Conserved RNA secondary structures inFlaviviridae genomes. Gen Virol,85:1113-1124.
    Tijms M, van Dinten L C, Gorbalenya A E, Snijder E J.2001.A zinc finger-containing papain-likeprotease couples subgenomic mRNA synthesis to genome translation in a positive-stranded RNAvirus.Proc Natl Acad Sci U. S. A.,98:1889–1894..
    Timothy D. Carroll,S R.Matzinger,Mario B,Linda F.2011.Alphavirus replicon-based adjuvantsenhance the immunogenicity and effectiveness of Fluzone in rhesus macaques.Vaccine,29(5):931-940
    Todd S, Nguyen J H, Semler B L.1995.RNA-protein interactions directed by the3’end of humanrhinovirus genomic RNA. Virol,69:3605–3614.
    Tuplin A, Evans D J, Simmonds P.2004.Detailed mapping of RNA secondary structures in core andNS5B-encoding region sequences of hepatitis C virus by RNase cleavage and novel bioinformaticprediction methods. Gen Virol,85:3037–3047.
    Tuplin A, Wood J, Evans D J, Patel A H, Simmonds P.2002.Thermodynamic and phylogeneticprediction of RNA secondary structures in the coding region of hepatitis C virus.Rna,8:824–841.
    van den B E, Posthuma C C, Gultyaev A P, Snijder E J.2005.Discontinuous subgenomic RNAsynthesis in arteriviruses is guided by an RNA hairpin structure located in the genomic leader region.Virol,79:6312–6324
    van Ooij M J, Polacek C, Glaudemans D H.2006.Polyadenylation of genomic RNA and initiation ofantigenomic RNA in a positive-strand RNA virus are controlled by the same cis-element.Nucleic AcidsRes,34:2953–2965.
    Verheije M H, Olsthoorn R C, Kroese M V, Rottier P J, Meulenberg J J.2002.Kissing interactionbetween3’noncoding and coding sequences is essential for porcine arterivirus RNA replication.Virol,76:1521-1526
    Wallner G, Mandl C W, Kunz C, Heinz F X.1995.The flavivirus3’-noncoding region: extensive sizeheterogeneity independent of evolutionary relationships among strains of tick-borne encephalitisvirus.Virology,213:169-178.
    Wang T H, Rijnbrand R C, Lemon S M.2000.Core protein-coding sequence, but not core protein,modulates the efficiency of cap-independent translation directed by the internal ribosome entry site ofhepatitis C virus. Virol.74:11347–11358.
    Xiang W, Harris K S, Alexander L, Wimmer E,1995.Interaction between the5′-terminal cloverleafand3AB/3CDpro of poliovirus is essential for RNA replication.Virol,69:3658–3667.
    Yi M., Lemon S M..2003. Structure-function analysis of the3’stem loop of hepatitis C virus genomicRNA and its role in viral RNA replication.Rna,9:331–345.
    You S, Stump D D, Branch A D, Rice C M.2004.A cis-acting replication element in the sequenceencoding the NS5B RNA-dependent RNA polymerase is required for hepatitis C virus RNAreplication.Virol,78:1352–1366.
    You S, Rice C M.2008.3’RNA elements in hepatitis C virus replication: kissing partners and longpoly(U). Virol,82:184-195.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700