用户名: 密码: 验证码:
空天飞行器基于模糊理论的鲁棒自适应控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
空天飞行器(ASV)是各国正在大力发展的新型飞行器,美欧等国都有各自的空天研究计划,并取得了不少研究进展,而我国在高超声速飞行器方面尚处于起步阶段。空天飞行器在运行中表现出的多任务、多工作模式、大范围高速机动等特点使得控制系统设计成为一项极具挑战的研究课题。围绕这一基础科学问题,本文在空天飞行器T-S模糊建模与分析、不确定非线性系统模糊控制、T-S模糊系统建模训练以及模糊自适应控制系统设计四个方面开展了较为深入的研究。
     首先,根据国内外公开发表的文献资料及我们实验室的已有成果,建立起ASV再入段完整的动力学方程和运动学方程,其中气动力系数和力矩系数是迎角、马赫数及气动舵面偏角的函数,发动机模型为反作用发动机的组合推进装置,飞行器的质心、惯性矩是飞行器质量的时变函数。开环分析表明整个模型能够体现出ASV复杂的非线性、强耦合、快速时变以及不确定性等特点,具有一定的代表性,可以满足未来ASV先进制导和控制等问题的理论研究和仿真验证的需要。
     其次,基于T-S模糊逼近理论,通过分析ASV再入段的姿态运动的特点,确立了相应的模糊规则、模糊隶属度函数以及各模糊规则下的模糊子系统,建立了基于T-S模糊模型的ASV再入姿态的运动模型和仿真平台,为后文的控制器设计与分析奠定基础。
     接着,基于已建立的ASV再入姿态的T-S模糊模型,在区域极点配置理论分析的指导下提出了具有极点约束的T-S模糊保性能控制新策略,并利用H∞控制抑制外界干扰,给出了一种模糊鲁棒控制的设计方法。通过Lyapunov理论证明,闭环系统所有状态渐进稳定。根据不同的性能指标要求,分别设计了ASV姿态系统的状态反馈和输出反馈控制器。
     随后,提出了新的基于模糊前馈的模糊鲁棒跟踪方案。首先结合T-S模糊系统的优势将线性系统的前馈控制方案推广至非线性系统,避免了基于线性矩阵不等式(LMI)的T-S模糊跟踪控制方案中需要引入的增广系统,减少了系统设计的维数,降低了设计保守性,并采用Lyapunov方法严格证明出系统跟踪误差渐进稳定,考虑系统不确定性及外界干扰,设计出被控系统的模糊鲁棒跟踪控制器,并在针对复杂非线性系统输出跟踪和ASV姿态角跟踪问题的仿真中验证了方法的有效性。
     然后,为了使得建立的模糊模型能够适应系统参数的变化,提出了一种新的L-M算法,并研究了其在T-S模糊建模中的应用。基于标准的L-M算法,在局部误差界的条件下,根据迭代参数取值的不同,定义迭代步长为逼近误差的函数,给出了改进后的L-M算法的参数迭代公式,并从理论上分析了它的收敛性是二次的。最后将所提算法应用于ASV姿态动态系统的模糊建模,训练时各线性系统参数和模糊隶属度函数参数均可在线调节。此外,训练时不过分依赖专家经验,与标准L-M算法相比,收敛速率明显加快,逼近精度高。
     最后,研究了一种新的自适应调节律,在线调节模糊自适应控制的相关参数,与梯度法自适应调节律相比,参数收敛速度明显加快,针对复杂非线性系统的跟踪控制问题,设计出稳定的间接自适应模糊控制器,并有效改善了由于参数收敛速度慢而带来的系统振荡。接着将此方案推广至包含未建模动态的多输入多输出(MIMO)非线性系统,设计了ASV的姿态模糊自适应控制器。此外,考虑外界干扰对系统的影响,引入了鲁棒控制项,进一步改善了控制效果。
At present, many countries in the world are speeding up their efforts in the research on next generation reusable flight vehicles-aerospace vehicles (ASVs). The United States and European countries have their own aerospace projects and have achieved significant research progress, while, the research on hypersonic vehicles in our country is at in the initial stage. The control system design for the ASVs is a challenge research topic due to their multi-mission profiles, large attitude maneuvers and complicated flight conditions. In this dissertation, four relative problems, i.e. Takagi-Sugeno (T-S) fuzzy modeling and analysis for a conceptual ASV,fuzzy control for uncertain nonlinear system, T-S fuzzy system modeling training and fuzzy adaptive control system design, are studied.
     First of all, a whole of kinetic equations and motion equations during the reentry phase of an ASV are presented based on the publicated literatures and the contributions of our lab. The coefficients of aerodynamic force and moment are given as functions of angle of attack, Mach number and control surface deflections. The propulsion system is a combination of reaction engine. Rigid-body mass moments of inertia and center of gravity location are time-varying functions of vehicle weight. Open-loop dynamics demonstrate that the proposed model can embody the characteristics of ASV, such as complicated nonlinearity, strong coupling, fast time-varying and uncertainties. The model has a certain representative and can be used to meet the requirements of research and simulation for advanced guidance and control problems.
     Next, based on the T-S fuzzy approximation theory and the reentry attitude dynamics of ASV, the fuzzy rules, the membership functions and the fuzzy sub-systems are established. A simulation model for the reentry attitude dynamics based on T-S fuzzy system is presented, and it lays a foundation for the following controller design and analysis.
     Then, based on the presented T-S fuzzy model for ASV reentry attitude dynamics, a new design method of T-S fuzzy guaranteed cost control law with pole constraints is proposed under the guidance of regional pole placement theory. The external disturbance is restricted by using H∞control technique, and a new fuzzy robust control design method is presented. The Lyapunov stability theory is used to prove asymptotic stability of all the states of the closed-loop system. With the different requirement of performance index, state feedback and output feedback controller for ASV attitude dynamic system are designed respectively.
     The next, a new design technique of fuzzy robust tracking control based on fuzzy feedforward is proposed. By taking the advantages of T-S fuzzy systems, feedforward control scheme for linear system is extended to nonlinear system. Without the need of the augmented system of linear matrix inequality (LMI) based T-S fuzzy tracking control method, the dimension of system design is reduced, and less conservative is achieved. The asymptotic stability of system tracking error is guaranteed by using Lyapunov stability theory. Considering the system uncertainties and external disturbance, a fuzzy robust tracking controller of the controlled system is designed. The simulation results for the output tracking of complex nonlinear system and attitude angles tracking of ASV demonstrate the effectiveness of the proposed method.
     Then, to enhance the adaptation of T-S fuzzy model as system parameters changes, a new Levenberg-Marquardt (L-M) algorithm is proposed, which can be used for Takagi-Sugeno fuzzy modeling. Based on standard L-M algorithm and under the condition of local error bound, the iteration step is defined as a function of approximation error according the different values of iteration parameters. A parameter iteration formula of the modified L-M algorithm is given, and its quadratic convergence is analysed theoretically. Then it is applied to training the ASV attitude dynamic systems based on T-S fuzzy model. This method can adjust the parameters of each linear polynomials and fuzzy membership functions on line. In addition, it does not rely on expert experience excessively when using it for systems modeling. Compared the proposed method with the standard L-M method, the convergence speed is accelerated and high approximation precision is achieved.
     Finally, a new adaptive regulator is studied. It can adjust the parameters of fuzzy adaptive controller. Compared with gradient adaptive law, the parameter convergence rate is accelerated obviously. Aimed at the problem of output tracking control for complex nonlinear system, a stable indirect adaptive controller is presented and the system oscillations due to the low convergence speed of parameters are effectively improved. Then the control scheme is extended to multi-input multi-output (MIMO) square nonlinear plants with non-modeled dynamics and an attitude indirect fuzzy adaptive controller for ASV is designed. In addition, considering the effect of external disturbance, a robust control term is introduced and the control effect is further improved.
引文
[1]李大光,太空作战的指导思想[J].国际太空,2004(3): 27-30
    [2]《世界航天器运载器大全》编委会著,世界航天器运载器大全[M],第1版,北京:宇航出版社,1996年2月
    [3] Bowcutt K G, A perspective on the future of aerospace vehicle design [A], In: 12th AIAA International Space Planes and Hypersonic Systems and Technologies [C], Norfolk: AIAA, 2003-6957
    [4]王振国,罗世彬,吴建军编著,可重复使用运载器研究进展[M],第1版,长沙:国防工业大学出版社,2004.
    [5]朱森元,单级入轨运输器的发射技术研究[J],导弹与航天运载技术, 2001, 5: 1-6
    [6] Chudoba B, Huang X, Coleman G, et al, Future space tourism transportation design requirements [A], In: AIAA/CIRA 13th International Space Planes and Hypersonic Systems and Technologies[C], Capua: AIAA, 2005-3445
    [7] Marrison C, Stengel R F, Design of robust control systems for a hypersonic aircraft [J], Journal of Guidance, Control and Dynamics, 1998, 21(1):58-63
    [8] Wang Q, Stengel R F, Robust nonlinear control of a hypersonic aircraft [J], Journal of Guidance, Control and Dynamics, 2000, 23(4): 577-585
    [9] Tan S H, Hang C C, Chai J S, Gain scheduling: from conventional to neural-fuzzy [J], Automatica, 1997, 33(3):411-419.
    [10] Palm R, Rehfuess U, Fuzzy controllers as gain scheduling approximators [J], Fuzzy sets and systems, 1997, 85(2): 233-246
    [11] Rugh W J, Shamma J S, Research on gain scheduling[J], Automatica, 2000, 36(10): 1401-1425
    [12] Wang J L,Sundararajan N, A nonlinear flight controller design for aircraft [J], Control Eng. Practice, 1995, 3(6): 813-825
    [13] Snell S A, Nonlinear Dynamic-Inversion Flight Control of Supermaneuverable Aircraft [D], University of Minnesota, 1991
    [14] Agustin R M, Mangoubi R S, Hain R M, et al, Robust failure detection for reentry vehicle attitude control systems [A], In: AIAA Guidance, Navigation and Control Conference and Exhibit[C], Reston: AIAA, 1998: 1-14
    [15] Hanson J M, Advanced guidance and control project for reusable launch vehicles [A],In: AIAA Guidance, Navigation, and Control Conference and Exhibit[C], Denver: AIAA, 2000: 1-10
    [16] Hanson J M, A plan for advanced guidance and control technology for 2nd generation reusable launch vehicles [A], In: AIAA Guidance, Navigation and Control Conference and Exhibit[C], Reston: AIAA, 2002: 460-468
    [17] Hanson J M, Jones R E, Advanced guidance and control project for reusable launch vehicles: test results [A], In: AIAA Guidance, Navigation and Control Conference and Exhibit[C], Reston: AIAA, 2002: 508-518
    [18] Lu P, Regulation about time-varying trajectories: precision entry guidance illustrated [A], In: AIAA Guidance, Navigation and Control Conference and Exhibit[C], Reston: AIAA, 1999:704-713
    [19] Shtesel Y B, Zhu J J, Daniels D, Reusable launch vehicle attitude control using time-varying sliding modes [A], In: AIAA Guidance, Navigation and Control Conference and Exhibit[C], Reston: AIAA, 2002: 1409-1418
    [20] Isidori A, Nonlinear control systems[M], 3rd Ed, London, UK:Springer-Verlag, 1995
    [21] MacFarland M B, Adaptive nonlinear control of missiles using neural networks [D], Atlanta, Georgia Institute of Technology, 1997.
    [22]朱恩,大迎角超机动飞行控制技术研究[D],南京:南京航空航天大学,1995.
    [23]王健,先进短距起飞垂直着陆飞机的非线性动态逆控制[D],南京:南京航空航天大学,2000.
    [24] Zhu R G, Jiang C S, Feng B, Adaptive filight control system of armed helicopter using wavelet neural network method [J], Transactions of Nanjing University of Aeronautics and Astronautics, 2004, 21(2):157-162.
    [25] Malinowski A,Zurada J M,Lilly J H, Inverse Control of Nonlinear System Using Neural Network Observer and Inverse Mapping Approach [A], In:IEEE International Conf on Neural Networks [C], Washington D. C.: IEEE, 1995:2513-2518.
    [26] Lane S H, Stengel R F, Flight control design using nonlinear inverse dynamics, automatic flight control [J], Automatica, 1988, 24(4): 471-483.
    [27]朱荣刚,姜长生,邹庆元等,超机动飞行的神经网络动态逆控制[J],南京航空航天大学学报,2003, 35(2):168-172.
    [28] Tomlin C, Lygeros J, Benvenuti L, Output tracking for a non-minimum phase dynamic CTOL aircraft model [A], In: Proceeding of the 34th IEEE Conference in Decision and Control [C], New Orleans: IEEE, 1995:1867-1872.
    [29] Meyer G, Su R, Hunt L R, Application of nonlinear transformation to automatic flight control [J], Automatica, 1984, 20 (1): 103-107.
    [30] Hauser J, Sastry S, Meyer G, Nonlinear control design for slightly non-minimum phase systems: application to V/STOL aircraft [J], Automatica, 1992, 28 (4):665-679.
    [31] Bortoff S A, Approximate state-feedback linearization using spline functions [J], Automatica, 1998, 33 (8):1449-1458.
    [32] Naidu D S, Calise A J, Singular perturbations and time scales in guidance and control of aerospace[J], Journal of Guidance, Control, and Dynamics, 2001, 24 (6): 1057-1078.
    [33] Tomlin C J, Sastry S, Bounded tracking for nonminimum phase nonlinear systems with fast zero dynamics [J], International Journal of Control, 1998, 68 (4): 819-848.
    [34] Baumann W T, Rugh W J, Feedback control of nonlinear systems by extended linearization [J], IEEE Transactions on Automatic Control, 1986, 31 (1): 40-46.
    [35]李铁成,非线性系统的输出调节与受控中心流形[J],控制理论与应用,1995, 12(5): 623-627.
    [36] Doyle F J, Algower F, Morari M, A normal form approach to approximate input–output linearization for maximum phase systems [J], IEEE Transactions on Automatic Control, 1996, 41 (2): 305-309.
    [37] Sastry S, Nonlinear systems: analysis, stability and control [M], 2nd Ed,New York:Springer-Verlag, 1999.
    [38] Brinker J S, Wise K A, Stability and flying qualities robustness of a dynamic inversion aircraft control law [J], AIAA Journal of Guidance, Control, and Dynamics, 1996, 19(6): 1270-1277
    [39] McFarland M B, Calise A J, Neural-adaptive nonlinear autopilot design for an agile anti-air missile [A], In: AIAA Guidance, Navigation and Control Conference [C], San Diego: AIAA, 1996: 1-9
    [40] McFarland M B, Calise A J, Multilayer neural networks and adaptive nonlinear control of agile anti-air missiles [A], In: AIAA Guidance, Navigation and Control Conference [C], Reston: AIAA, 1997: 401-410
    [41] Leitner J, Calise A J, Prasad J V R, Analysis of adaptive neural networks for helicopter flight controls [J], AIAA Journal of Guidance, Control, and Dynamics, 1997, 20(5):972-979
    [42] Prasad J V R, Calise A J, Pei Y, et al, Adaptive nonlinear controller synthesis and flight test evaluation on an unmanned helicopter [A], In Proceedings of the IEEEInternational Conference on Control Applications [C], Hawaii: IEEE, 1999: 137-142
    [43] Calise A J, Lee S, Sharma M, Direct adaptive reconfigurable control of a tailless fighter aircraft [A], In: AIAA Guidance, Navigation, and Control Conference and Exhibit [C], Reston: AIAA, 1998: 88-97
    [44] Calise A J, Lee S, Sharma M, Development of a reconfigurable flight control law for tailless aircraft[J], AIAA Journal of Guidance, Control, and Dynamics, 2001, 24(5):896-902
    [45] Lee S, Neural network based adaptive control and its applications to aerial vehicles [D], Atlanta: Georgia Institute of Technology, 2001
    [46] Johnson E N, Limited authority adaptive flight control [D], Atlanta: Georgia Institute of Technology, 2000
    [47] Johnson E N, Calise A J, El-Shirbiny H A, et al, Feedback linearization with neural network augmentation applied to X-33 attitude control [A], In: AIAA Guidance, Navigation and Control Conference[C], Denver: AIAA, 2000: 1-11
    [48] Johnson E N, Calise A J, Limited authority adaptive flight control for reusable launch vehicles [J], AIAA Journal of Guidance, Control, and Dynamics, 2003, 26(6):906-913.
    [49] Johnson M D, Calise A J, Johnson E N, Evaluation of an adaptive method for launch vehicle flight control [A], In: AIAA Guidance, Navigation and Control Conference[C], Austin: AIAA, 2003: 1-11
    [50] Johnson M D, Calise A J, Johnson E N, Further evaluation of an adaptive method for launch vehicle flight control [A], In: AIAA Guidance, Navigation and Control Conference [C], Providence: AIAA, 2004: 1-17
    [51]朱荣刚,姜长生,邹庆元等,新一代歼击机超机动飞行的动态逆控制[J],航空学报, 2003, 24(3): 534-539.
    [52]武国庆,姜长生,张锐等,基于径向基神经网络的不确定非线性系统的鲁棒自适应控制[J],航空学报, 2002, 23(6): 530-533.
    [53]吴天宝,黄显林,卢鸿谦等,基于非线性动态逆方法的TF/TA控制器设计[J],宇航学报, 2004, 25(3): 289-294.
    [54] Peterson B B, Narendra K S, Bounded error adaptive control [J], IEEE Transactions on Automatic Control, 1982, 27(6): 1162-1168.
    [55] Naik S M, Kumar P R, Ydstie B E, Robust continuous-time adaptive control by parameter projection [J], IEEE Transactions on Automatic Control, 1992, 37(2): 182-197.
    [56] Serrani A, Isidori A, Marconi L, Semiglobal nonlinear output regulation with adaptive internal model [J], IEEE Transactions on Automatic Control, 2001, 46(8): 1178-1194.
    [57] Marconi L, Isidori A, Serrani A, Autonomous vertical landing on an oscillating platform: an internal-model based approach [J], Automatica, 2002, 38(1): 21-32.
    [58] Isidori A, Marconi L, Serrani A, Robust nonlinear motion control of a helicopter [J], IEEE Transactions on Automatic Control, 2003, 48 (3): 413 - 426.
    [59] Utkin V I, Variable structure systems with sliding modes [J], IEEE Transactions on Automatic Control, 1977, 22(2):212-222.
    [60] Chen M S, Hwang Y R, Tomizuka M, A state-dependent boundary layer design for sliding mode control [J], IEEE Transactions on Automatic Control, 20002, 47(10): 1677-1681.
    [61] Kang B P, Ju J L, Sliding mode controller with filtered signal for robot manipulators using virtual plant controller [J], Mechatronics, 1997, 7(3): 277-286.
    [62] Ha Q P, Nguyen Q H, Rye D C, et al, Fuzzy sliding-mode controllers with applications [J], IEEE Transactions on Industrial Electronics, 2001, 48(1):38-41.
    [63] Wu Y Q, Yu X H, Man Z H, Terminal sliding mode control design for uncertain dynamic systems [J], Systems and Control Letters, 1998, 34(2): 281-287.
    [64] Tao C W, Taur J S, Chan M L, Adaptive fuzzy terminal sliding mode controller for linear systems with mismatche time-varying uncertainties [J], IEEE Transactions on Systems, Man, and Cybernetics, 2004, 34(1): 255-262.
    [65] Zhou D, Mu C D, Xu W L, Adaptive silding mode guidance of a homing missile[J], Journal of Guidance, Control and Dynamics, 1999, 22(4): 589-592.
    [66] McGeoch D J, McGookin E W, Houston S S, MIMO sliding mode attitude command flight control system for a helicopter [A], In: AIAA Guidance, Navigation, and Control Conference and Exhibit [C], San Francisco:AIAA, 2005: 1-15.
    [67] Shtessel Y, Tournes C, Krupp D, Reusable launch vehicle control in sliding modes [A], In: AIAA Guidance, Navigation, and Control Conference[C], New Orleans: AIAA, 1997:335-345.
    [68] Shtessel Y, McDuffie J, Jackson M, et al, Sliding mode control of the X-33 vehicle in launch and re-entry modes [A], In: AIAA Guidance, Navigation, and Control Conference and Exhibit[C], Reston: AIAA, 1998:1352-1362.
    [69] Shtessel Y, Hall C, Jackson M, Reusable launch vehicle control in multiple time sale sliding modes[A], In: AIAA Guidance, Navigation, and Control Conference andExhibit[C], Reston: AIAA, 2000:1-11.
    [70] Hall C E, Shtessel Y B, Sliding mode disturbance observer-based control for a reusable launch vehicle [A], In: AIAA Guidance Navigation and Control Conference and Exhibit[C], Reston: AIAA, 2005:1-26.
    [71]胡孟权,王建培,自适应模糊-滑模控制在重构飞行控制中的应用[J],航空学报,2002, 23(6): 538-541.
    [72]苏心仪,朱纪红,胡金春等,基于模糊逻辑的直升机终端滑模控制[J],清华大学学报(自然科学版), 2004, 44(4): 30-34.
    [73] Saridis G N, Analytic for mulation of the principle of increasing precision with decreasing intelligence for intelligent machines [J], Automatica, 1989, 25(3): 19-34.
    [74] Fu K S, Learning control systems and intelligent control systems: an intersection of artificial intelligence and automatic control [J], IEEE. Trans. on Automatic Control, 1971, 16 (1):70-72.
    [75] Stengel R F, Toward intelligent flight control [J], IEEE Transaction on Systems, Man and Cybernetics, 1993, 23 (6): 1699-1717.
    [76] Lin C L, Su H W, Control theory in guidance and control system design: an overview [A], Proceedings of the National Science Council, ROC, Part A [C], ROC: 2000, 24 (1): 15-30.
    [77] Narendra K S, Parthasarathy K, Identification and control of dynamical system using neural networks [J], IEEE Transactions on Neural Networks, 1990, 1(1):4-27.
    [78] McFarland, Calise A J, Michael B, Multilayer neural networks and adaptive nonlinear control of agile anti-air missiles[A], In: AIAA Guidance, Navigation, and Control Conference[C], Reston:AIAA, 1997:401-410.
    [79] Johnson E N, Calise A J, ElShirbiny H A, Feedback linearization with neural network augmentation applied to X-33 attitude contro1 [A], AIAA Guidance, Navigation, and Control Conference[C], Denver: AIAA, 2000:14-17.
    [80] Calise A J, Lee S, Sharma M, Development of a reconfigurable flight control law for the X-36 tailless fighter aircraft [A], AIAA Guidance, Navigation, and Control Conference and Exhibit[C], Denver: AIAA, 2000: 14-17.
    [81] Rysdyk R T, Calise A J, Adaptive model inversion flight control for tiltrotor aircraft [J], Journal of Guidance Control and Dynamics, 1999, 22(3):402-407.
    [82] Kim B S, Calise A J, Nonlinear flight control using neural networks [J], Journal of Guidance Control and Dynamics, 1997, 20 (1):26-33.
    [83] Brinker J S, Wise K A, Reconfigurable flight control for a tailless advanced fighter aircraft[A], AIAA Guidance, Navigation, and Control Conference[C], Reston: AIAA, 1998: 75-87.
    [84] Steinberg M, A fuzzy logic based F/A-18 automatic carrier landing system [A], In: AIAA Guidance, Navigation and Control Conference [C], Washington: AIAA, 1992: 407-417
    [85] Krishnakumar K, Gonsalves P, Satyadas A, et al, Hybrid fuzzy logic flight controller synthesis via pilot modeling [J], Journal of Guidance, Control and Dynamics, 1995, 18(5):1098-1105.
    [86] Austin K J, Jacobs P A, Application of genetic algorithms to hypersonic flight control [A], IFSA World Congress and 20th NAFIPS International Conference [C], IEEE, 2001:2428-2433.
    [87] Wu S F, Engelen J H, BabuSka R, et al, Intelligent flight controller design with fuzzy logic for an atmospheric re-entry vehicle [A], AIAA Aerospace Sciences Meeting and Exhibit [C], Reno:AIAA, 2000: 1-12.
    [88] Wu S F, Engelen C J H, Chu Q P, et al, Fuzzy logic based attitude control of the spacecraft X-38 along a nominal re-entry trajectory [J], IFAC Journal of Control Engineering Practice, 2001, 9(7):699-707.
    [89] Wu S F, Engelen C J H, Babuska R, et al, Fuzzy logic based full-envelope autonomous flight control for an atmospheric re-entry spacecraft[J], IFAC Journal of Control Engineering Practice, 2003, 11(1):11-25.
    [90] Takagi T, Sugeno M, Fuzzy identification of systems and its applications to modeling and control [J], IEEE Transaction on Systems, Man and Cybernetics, 1985, 15(1):116-132.
    [91] Ying H, General Takagi-Sugeno fuzzy systems with simplified linear rule consequent are universal controllers, models and filters [J], Journal of Information Sciences, 1998, 108(1):91-107.
    [92] Ying H, General SISO Takagi-Sugeno fuzzy systems with linear rule consequent are universal approximators [J], IEEE Trans. on Fuzzy Systems, 1998, 6(4):582-587.
    [93] Wang L X, Universal approximation by hierarchical fuzzy systems [J], Fuzzy Sets and Systems, 1998, 93(3):223-230.
    [94] Tanaka K, Ikeda T, Wang H O, Robust stabilization of a class of uncertain nonlinear systems via fuzzy control: quadratic stabilizability, H∞control theory, and linearmatrix inequalities [J], IEEE Transactions on Fuzzy Systems, 1996, 4(1):1-13.
    [95] Taniguchi T, Tanaka K, Ohtake H, et al, Model construction, rule reduction, and robust compensation for generalized form of Takagi–Sugeno fuzzy systems [J], IEEE Transactions on Fuzzy Systems, 2001, 9(4):525-538.
    [96] Tanaka K, Hori T, Wang H O, A multiple Lyapunov function approach to stabilization of fuzzy control systems [J], IEEE Transactions on Fuzzy Systems, 2003, 11(4): 582-589.
    [97] Lin C, Wang Q G, Lee T H, Fuzzy descriptor systems and nonlinear model following control [J], IEEE Transactions on Fuzzy Systems, 2006, 14(4) :542-551.
    [98] Wei X J, Jing Y W, A novel design of fuzzy tracking control for nonlinear time-delay systems [A], Proceedings of 2004 IEEE World Automation Congress[C], IEEE, 2004: 263-268.
    [99] Tseng C S, Model reference output feedback fuzzy tracking control design for nonlinear discrete-time systems with time-delay [J], IEEE Transactions on Fuzzy Systems, 2006, 14(1):58-70.
    [100] Hong S K, Lee J, Nam Y, T-S fuzzy gain-scheduled control based on affine parameter dependent model with application to aircraft roll control[A], In: AIAA Guidance, Navigation, and Control Conference and Exhibit[C], Denver: AIAA, 2000: 1-10.
    [101] Park Y, Tahk M J, A new optimal controller synthesis for fuzzy systems with input constraint and its application to spacecraft control [A], In: AIAA Guidance, Navigation, and Control Conference and Exhibit[C], San Francisco: AIAA, 2001: 1-9.
    [102] Rao S S, Liu Q, Fuzzy optimal control of structures [A], 47th AIAA/ASME/ ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference[C], USA: AIAA, 2006: 1-14.
    [103] Song B, Ma G F, Li C J, Robust fuzzy controller design for a rigid spacecraft attitude regulation system [A], In: 1st International Symposium on Systems and Control in Aerospace and Astronautics[C], New York: IEEE, 2006:424-429.
    [104] Wang H O, Tanaka K, Griffin M F, An approach to fuzzy control of nonlinear systems: Stability and design issues [J], IEEE Trans. Fuzzy Syst., 1996, 4(1): 14-23.
    [105] Jadbabaie A, Jamshidi M, Titli A, Guaranteed-cost design of continuous-time Takagi-Sugeno fuzzy controllers via linear matrix inequalities [A], In IEEE World Congress Computational Intelligence [C], New York: IEEE, 1998: 268-273.
    [106] Tseng C S, Chen B S, Uang H J, Fuzzy tracking control design for nonlinear dynamic systems via T-S fuzzy model [J], IEEE Trans. Fuzzy Sys, 2001, 9 (3): 381-392.
    [107] Wu S F, Costa R R, Nonlinear dynamic modeling and simulation of an atmospheric re-entry spacecraft [J], Aerosp. Sci. Technol., 2001, 5:365-381.
    [108] Shtessel Y, Hall C, Sliding mode control of the X-33 with an engine failure [A], In: 36th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit[C], Huntsville: AIAA, 2000-3883.
    [109] Slotine J J, Tracking control of nonlinear system using sliding surface with application to robust manipulators[J], Int. J. Contr., 1983, 38(3):465-492.
    [110] Man Z H, Paplinski A P, Wu H R, A robust MIMO terminal sliding mode control scheme for rigid robot manipulators [J], IEEE Transaction on Automatic Control, 1994, 39:2464-2469.
    [111] Yu S H, Yu X H, Robust global terminal sliding mode control of SISO linear uncertain systems [A], Proceeding of the 35th Conference on Decision and Control[C], New Yorl: IEEE, 2000: 2198-2203.
    [112] Yu X H, Man Z H, Fast terminal sliding mode control design for nonlinear dynamical systems [J], IEEE Transactions on Circuits and Systems-I: Fundamental Theory and Applications, 2004, 49(2): 261-265.
    [113] Shtessel Y, Zhu J J, Daniels D, Reusable launch vehicle attitude control using time-varying sliding modes[A], In: AIAA Guidance, Navigation, and Control Conference and Exhibit [C], Monterey: AIAA, 2002-4779.
    [114] Shtessel Y, Strott J, Zhu J J, Time-varying sliding modes control with sliding mode observer for reusable launch vehicle [A], In: AIAA Guidance, Navigation, and Control Conference and Exhibit [C], Austin: AIAA, 2003-5362.
    [115] Johnson E N, Calise A J, El-Shirbiny H A, Feedback linearization with neural network augmentation applied to X-33 attitude control [A], In: AIAA Guidance, Navigation, and Control Conference and Exhibit [C], Denver: AIAA, 2000-4157.
    [116] Smith R, Ahmed A, Robust parametrically varying attitude controller designs for the X-33 vehicle [A], In: AIAA Guidance, Navigation, and Control Conference and Exhibit [C], Denver: AIAA, 2000-4158.
    [117] Bikdash M, Sartor K, Homaifar A, Fuzzy guidance of the shuttle orbiter during atmospheric reentry [J], Control Engineering Practice, 1999, 7(3): 295-303.
    [118] Lian B H, Bang H, Hurtado J E, Adaptive backstepping control based autopilotdesign for reentry vehicle [A], In: AIAA Guidance, Navigation, and Control Conference and Exhibit [C], Providence: AIAA, 2004-5328.
    [119] Wallner E M, Well K H, Attitude control of a reentry vehicle with internal dynamics [A], In: AIAA Guidance, Navigation, and Control Conference and Exhibit [C], Monterey: AIAA, 2002-4647.
    [120] Caporicci M, Basile L, ESA activities on atmospheric re-entry systems [A], In: 12th AIAA International Space Planes and Hypersonic Systems and Technologies [C], Norfolk: AIAA, 2003-7017.
    [121] Juliana S, Chu Q P, Mulder J A, Baten T J V, Flight control of atmospheric re-entry vehicle with non-linear dynamic inversion [A], In: AIAA Guidance, Navigation, and Control Conference and Exhibit [C], Providence: AIAA, 2004-5330.
    [122] Mooij E, Direct model reference adaptive control of a winged reentry vehicle [A], In: AIAA 9th International Space Planes and Hypersonic Systems and Technologies Conference [C], Norfolk: AIAA, 99-45484.
    [123] Mooij E, Model reference adaptive guidance for reentry trajectory tracking[A], In: AIAA Guidance, Navigation, and Control Conference and Exhibit [C], Providence: AIAA, 2004-4775.
    [124] Fatemi J, Mooij E, Gurav S P, Reentry vehicle design optimization with intergrated trajectory uncertainties [A], In: AIAA 13th International Space Planes and Hypersonic Systems and Technologies Conference [C], AIAA, 2005-3386.
    [125] Mooij E, Barkana I, Stability analysis of an adaptive guidance and control system applied to winged reentry vehicle [A], In: AIAA Guidance, Navigation, and Control Conference and Exhibit [C], San Francisco: AIAA, 2005-6290.
    [126] Ohno M, Yamaguchi Y, Hata T, Takahama M, Robust flight control law design for an automatic landing flight experiment [J], Control Engineering Practice, 1999, 7(9):1143-1152.
    [127] Ohara A, Yamaguchi Y, Morito T, LPV modeling and gain scheduled control of re-entry vehicle in approach and landing phase [A], In: AIAA Guidance, Navigation, and Control Conference and Exhibit [C], Montreal: AIAA, 2001-4038.
    [128] Costa R R D, Chu Q P, Mulder J A, Re-entry flight controller design using nonlinear dynamic inversion [A], In: AIAA Guidance, Navigation, and Control Conference and Exhibit [C], Montreal: AIAA, 2001-4219.
    [129] Finzi A E, Lavagna M, Gregorio A D, Atmospheric re-entry trajectory tracking andcontrol for an unmanned space vehicle with a Lyapunov approach [A], In: AIAA Guidance, Navigation, and Control Conference and Exhibit [C], Austin: AIAA, 2003-5441.
    [130]郭锁风,申功璋,吴成富等编著,先进飞行控制系统[M],第1版,北京:国防工业出版社,2003.
    [131] Shaughnessy J D, Pinckney S Z, McMinn J D, et al, Hypersonic vehicle simulation model: winged-cone configuration [R], NASA TM-102610, 1990.
    [132] Free J, Glubke S, Overview of the TRMM RCS design integration and in-orbit operations[A], In: 35th AIAA/ASME/SAE/ASEE Joint Propulsion Control Conference and Exhibit [C], Los Angeles: AIAA, 99-31252.
    [133]朱亮,姜长生,方炜,空天飞行器六自由度数学建模研究[J],航天控制,2006,24(4): 39-44.
    [134] Restrepo C, Valasek J, Preliminary Study Using Forward Reaction Control System Jets during Space Shuttle Entry [A], In: AIAA Guidance, Navigation, and Control Conference [C], Colorado: AIAA, 2006:1-10.
    [135] Throckmorton D A, Shuttle entry aerothermodynamic flight research: the orbiter experiments programComponent development for micropropulsion systems [A], In: 17th Aerospace Ground Testing Conference [C], Nashville: AIAA, 92-3987.
    [136] Danehy P M, Wilkes J A, Brauckman G J, Visualization of a capsule entry vehicle reaction control system thruster [A], In: 44th AIAA Aerospace Science Meeting and Exhibit[C], Reno: AIAA, 2006-1532.
    [137] Powers B G, Active control technology experience with the space shuttle in the landing regime[R], NASA-TM-85910.
    [138] Muss J, Development of the X-33 gCH4/gO2 RCS thruster[A], In: 35thAIAA/ASME/SAE/ASEE Joint Propulsion Control Conference and Exhibit [C], Los Angeles: AIAA, 99-31055
    [139] Nakano M M, Space shuttle on-orbit flight control system[R], AIAA Paper, 82-1576.
    [140] Lowry N C, Hall R A, An improved three-pulse algorithm for axisymmetric RCS control[A], In: AIAA Guidance Navigation and Control Conference and Exhibit [C], Austin: AIAA, 2003-5329.
    [141] Hirokawa R, Sato K, Autopilot design for a missile with reaction-jet using coefficient diagram method[A], In: AIAA Guidance Navigation and Control Conference and Exhibit [C], Montreal: AIAA, 2001-4162.
    [142] Weil R D, Wise K A, Blended aero & reaction jet missile autopilot design using VSS techniques [A], In: Proceedings of the 30th Conference on Decision and control[C], 2828-2829.
    [143] Innocenti A T M, A sliding mode pitch autopilot synthesis for high angle of attack maneuvering[J], IEEE Transactions on Control Systems Technology, 1998, 6(3):359-371.
    [144]张金槐著,远程火箭精度分析与评估[M],第1版,长沙:国防科技大学出版社,1995年5月.
    [145] Richard H S, Control allocation for the next generation of entry vehicle[R], ADA-398505, 2001.
    [146] Johnson M D, Calise A J, Johnson E N, Further evaluation of an adaptive method for launch vehicle flight [R], AIAA Paper, 2004-5016, 2004.
    [147] Wells S R, Application of sliding mode methods to the design of reconfigurable flight control systems [D], California: University of California, 2002.
    [148] Costa R R, Chu Q P, Mulder J A, Re-entry flight controller design using nonlinear dynamic inversion [J], Journal of Spacecraft and Rockets, 2003, 40(1): 64-71.
    [149] Rubenstein D S, Carter D W, Attitude control system design for return of the Kistler K-1 orbital vehicle [J], Journal of Spacecraft and Rockets, 2000, 37(3): 273-282.
    [150]《飞机设计手册》编辑委员会编,飞机设计手册第一卷[M],第1版,北京:航空工业出版社, 1996:13-278.
    [151]鲁道夫.布罗克豪斯著,飞行控制[M],第1版,北京:国防工业出版社, 1999年9月.
    [152] Zhu J J, Banker D, Hall C E, X-33 ascent flight control design by trajectory linearization– a singular perturbation approach [A], In: AIAA Guidance, Navigation, and Control Conference and Exhibit[C], Denver: AIAA, 2000: 1-19.
    [153] Zhu J J, Huizenga A, A type two trajectory linearization controller for a reusable launch vehicles-a singular perturbation approach[A], In: AIAA Atmospheric Flight Mechanics Conference and Exhibit[C], Providenc: AIAA, 2004: 1-16.
    [154] Bevacqua T, Best E, Huizenga A, et al, Improved trajectory linearization flight controller for reusable launch vehicles [A], In: 42nd AIAA Aerospace Sciences Meeting and Exhibit[C], Reno: AIAA, 2004:1-16.
    [155] Sgarlata P, Winters B, X-34 Propulsion System Design [A], 33rd AIAA/ASME/ SAE/ASEE Joint. Propulsion Conference and Exhibit [C], Seattle:AIAA, 2003:1-14.
    [156] Richard H S, Control allocation for the next generation of entry vehicle [R], ADA-398505, 2001.
    [157]陈谋,不确定非线性综合火力/飞行/推进系统鲁棒控制方法研究[D],南京:南京航空航天大学,2003.
    [158] Yuan X H, Reo J C, He Y J, et al, Synthesis of H2 guaranteed cost fuzzy controller for missile attitude system via linear matrix inequalities [A]. 2004 IEEE International Conference on Systems, Man and Cybernetics [C], 2004, 2309-2313.
    [159]曾珂,徐文立,张乃尧,典型T-S模糊系统是通用逼近器[J],控制理论与应用,2001, 18(2):294-297.
    [160] Zeng X J, Singh M G, Approximation theory of fuzzy systems MIMO case [J], IEEE Trans. on Fuzzy Systems, 1995, 3(2):219-235.
    [161]曾珂,徐文立,张乃尧,线性T-S模糊系统作为通用逼近器的充分条件[J],自动化学报, 2001, 27(5):606-612.
    [162]张乃尧,阎平凡,神经网络与模糊控制[M],北京:清华大学出版社,1998.
    [163] Bronshtein I N, Semendyayew K A, Handbook of mathematics [M], New York: Van Nostrand Reinhold, 1985.
    [164] Tanaka K, Ikeda T, Wang H O, Robust stabilization of a class of uncertain nonlinear systems via fuzzy control: quadratic stability, H∞control theory and linear matrix inequalities [J], IEEE Transactions on Fuzzy Systems, 1996, 4(1):1-13.
    [165] Yoneyama J, Nishikawa M, Katayama H, Ichikawa A, H∞control for Takagi-Sugeno fuzzy systems [J], International Journal of Systems Science, 2001, 32(7): 915-924.
    [166] Lo J C, Lin M L, Robust H∞nonlinear control via fuzzy static/dynamic output feedback [J], IEEE Trans. Circuits and Systems-I: Fundamental Theory and Applications, 2003, 50(11): 1494-1502.
    [167]郑科,徐建明,俞立,基于T-S模型的倒立摆最优保性能模糊控制[J],控制理论与应用, 2004, 21(5):703-708
    [168] Wu H N, Cai K Y, H2 guaranteed cost fuzzy control design for discrete-time nonlinear systems with parameter uncertainty [J], Automatica , 2006, 42(7): 1183-1188
    [169] Guan X P, Chen C L, Delay-dependent guaranteed cost control for T-S fuzzy systems with time delays [J], IEEE Trans. Fuzzy Systems, 2004, 12(2): 236-249.
    [170] Ji Z C, Zhou Y H, Optimal guaranteed cost control of a class of fuzzy systems via piecewise fuzzy Lyapunov function approach [A], Fourth International Conference onFuzzy Systems and Knowledge Discovery (FSKD 2007)[C], New York: IEEE, 2007:331-335
    [171]俞立,鲁棒控制―线性矩阵不等式处理方法[M],北京:清华大学出版社, 2002年
    [172] Moheimani S O R, Petersen I R, Quadratic guaranteed cost control with robust pole placement in a disk [J], IEE Proceeding on Control Theory Application, 1996, 143(1):37-43.
    [173] Hong S K, Nam Y, Stable fuzzy control system design with pole-placement constraint: an LMI approach [J], Computers in Industry, 2003, 51(1): 1-11.
    [174] Zhao J, Gorez R, Wertz V, Synthesis of fuzzy control systems with desired performances [A], In: Proceedings of the IEEE International Symposium on Intelligent Control [C], Dearborn:IEEE, 1996, 115-120.
    [175] Chilali M, Gahinet P, H∞design with pole placement constraints: an LMI approach [J], IEEE Transactions on Automatic Control, 1996, 41(3): 358-367.
    [176] Joh J, Langari R, Jeung E T, et al, A new design method for continuous Takagi-Sugeno fuzzy controller with pole placement constraints: an LMI approach [A], Proceeding of IEEE International Conference on Systems, Man, and Cybernetics[C]. New Jersey: IEEE, 1997:2969-2974
    [177] Boyd S, Ghaoui L E, Feron E, et al, Linear matrix inequalities in systems and control theory [M], Philadelphia, PA: SIAM, 1994.
    [178] Petersen I R, A stabilization algorithm for a class of uncertain linear systems [J], Systems & Control Letters, 1987, 8(2):351-357.
    [179] Chadli M, Maquin D, Ragot J, Static output feedback for Takagi-Sugeno systems: an LMI approach [A], In: Proceedings of the 10th Mediterranean Conference on Control and Automation [C], Washington D.C.: IEEE, 2002:1-7.
    [180] Goh K C, Safonov M G, Ly J H, Robust synthesis via bilinear matrix inequalities [J], International Journal of Robust and Nonlinear Control, 1996, 6(9):1079-1095.
    [181] Huang C H, Ioannou P A, Maroulas J, et al, Design of strictly positive real systems using constant output feedback [J], IEEE Transaction on Automatic Control, 1999, 44(3): 569-573.
    [182] Wang J Z, Zhang J F, An LMI approach to static output feedback stabilization of linear systems [J], Control Theorem and Applications, 2001, 18(6): 843-846.
    [183] Wei X J, Jing Y W, A novel design of fuzzy tracking control for nonlinear time-delay systems [A], In: Proc. 2004 IEEE World Automation Congress[C], Piscataway: IEEE,2004:263-268.
    [184] Tseng C S, Model reference output feedback fuzzy tracking control design for nonlinear discrete-time systems with time-delay [J], IEEE Transactions on Fuzzy Systems, 2006, 14(1):58-70.
    [185] Tong S, Wang T, Li H X, Fuzzy robust tracking control for uncertain nonlinear systems [J], International Journal of Approximate Reasoning, 2002, 30(2): 73-90.
    [186]邓长辉,王福利,王姝等,一类时滞系统的模糊跟踪控制及其仿真[J],系统仿真学报, 2006, 18(1):
    [187] Cai Z, Su C Y, Output tracking control of Takagi-Sugeno fuzzy systems with application to an under-actuated robot[A], In: IEEE International Conference on Fuzzy Systems[C], New York: IEEE, 2002: 1416-1421.
    [188]杨涤,冯文剑,吴瑶华,用前馈加反馈控制实现输出跟踪[J],宇航学报, 1990, 10(1):84-90.
    [189]段广仁,强文义,冯文剑等,模型参考控制系统设计的一种完全参数化方法[J],宇航学报,1994, 15(1):7-13.
    [190]姜长生,吴庆宪,陈文华等编著,现代鲁棒控制基础[M],第1版,哈尔滨:哈尔滨工业大学出版社,2005.
    [191]周克敏,Doyle J C,Glover K著,毛剑琴等译,鲁棒与最优控制[M],第1版,北京:国防工业出版社,2002.
    [192]姜长生,孙隆和,吴庆宪等.系统理论与鲁棒控制[M],第1版,北京:航空工业出版社,1998.
    [193] Chen C T, Linear system theory and design [M], New York: CBS College Publishing, 1984.
    [194] Marquardt D, An algorithm for least squares estimation of nonlinear parameters [J], J. Soc. Ind. Appl. Math., 1963, 11(2):431-441.
    [195] Hagan M T, Menhaj M B, Training feedforward networks with the Marquardt algorithm [J], IEEE Transactions on Neural Networks, 1994, 5(6):989-993.
    [196] Chen T C, Han D J, Acceleration of Levenberg-Marquardt training of neural networks with variable decay rate [A], In: Proceedings of the International Joint Conference on Neural Networks [C], New York:IEEE, 2003: 1873-1878.
    [197] Amir A S, Mohammad B T, Abbas H, Modified Levenberg-Marquardt method for neural networks training [J], Transaction on Engineering, Computing and Technology, 2005,6(6):46-48.
    [198] Zhou G, Si J, Advanced neural-network training algorithm with reduced complexity based on Jacobian deficiency [J], IEEE Transaction on Neural Networks, 1988,9(3): 448-453.
    [199] Chan L W, Szeto C C, Training recurrent network with block-diagonal approximated Levenberg-Marquardt algorithm [A], In: Proceedings of the International Joint Conference on Neural Networks [C], New York: IEEE, 1999, 3: 1521-1526.
    [200] Wilamowski B M, Chen Y, Malinowski A, Efficient algorithm for training neural networks with one hidden layer [A], In: Proceedings of the International Joint Conference on Neural Networks [C], New York: IEEE, 1999, 3: 1725-1728.
    [201] Yamashita N, Fukushima M, On the rate of the convergence of the Levenberg-Marquardt method [J], Computing, 2001, 15:239-249.
    [202] Fan J Y, Yuan Y X, On the quadratic convergence of the Levenberg-Marquardt method without nonsingularity assumption [J], Computing, 2005, 74(1): 23-39
    [203]杨柳,陈艳萍,一种新的Levenberg-Marquardt算法的收敛性[J],计算数学,2005, 27(1):55-62.
    [204] Passino K M, Biomimicry for optimization, control and automation [M], Springer-Verlag, London, UK, 2005.
    [205] Tong S C, Li Y M, Direct adaptive fuzzy backstepping control for a class of nonlinear systems [J], Int. J. Innovative Computing, Information and Control, 2007, 3(4):887-896.
    [206] Wang T, Tong S C, Adaptive fuzzy output feedback control for SISO nonlinear systems [J], Int. J. Innovative Computing, Information and Control, 2006, 2(2): 51-60.
    [207] Lin T C, Wang C H, Liu H L, Observer-based indirect adaptive fuzzy neural tracking control for nonlinear SISO systems using VSS and H∞approaches [J], Fuzzy Sets and systems, 2004, 143(2):211-232.
    [208] Chan P T, Rad A B, Wang J, Indirect adaptive fuzzy sliding mode control: Part II: parameter projection and supervisory control [J], Fuzzy Sets and Systems, 2001, 122(1):31-43
    [209] Wang L X, Stable adaptive fuzzy controllers with application to inverted pendulum tracking [J], IEEE Transactions on systems, man and cybernetics-Part B: cybernetics, 1996, 26(5):677-691
    [210] Ioannou P A, Kokotovic P, Instability analysis and improvement of robustness of adaptive control [J], Automatica, 1984, 20(5): 583-594.
    [211] Narendra K S, Annaswamy A, A new adaptive law for robust adaptation without persistent excitation [J], IEEE Transactions on Automatic Control, 1987, 32(2): 134-145.
    [212] Naik S, Kumar P, Ydstie B, Robust continuous time adaptive control by parameter projection [J], IEEE Transactions on Automatic Control, 1992, 37(2):182-198.
    [213] Peterson B, Narendra K S, Bounded error adaptive control [J], IEEE Transactions on Automatic Control, 1982, 27: 1161-1168.
    [214] Zhang L, Fuzzy controllers based on optimal fuzzy reasoning for missile terminal guidance [A], 45th AIAA Aerospace Sciences Meeting and Exhibit[C], Reno: AIAA, 2007:8-11.
    [215] Barkana I, Simple adaptive control for non-minimum phase autopilot design [A], AIAA Guidance, Navigation, and Control Conference and Exhibit [C], Providence: AIAA, 2004:1-12.
    [216] Bennis R J M, Chu Q P, Mulder J A, Ortega G, Adaptive fuzzy control for rendezvous and docking by reinforcement learning [A], AIAA Guidance, Navigation, and Control Conference and Exhibit, Montreal [C], Canada: AIAA, 2001.
    [217] Jiang T Y, Prasad J V R, Calise A J, Adaptive fuzzy logic flight controller for rotorcraft [A], AIAA, Guidance, Navigation and Control Conference [C], San Diego: AIAA, 1996.
    [218] Ordonez R, Passino K M, Stable multi-input multi-output adaptive fuzzy/neural control [J], IEEE Transactions on fuzzy systems, 1999, 7(3):345-353
    [219] Spooner J T, Passino K M, Stable adaptive control using fuzzy systems and neural networks [J], IEEE Trans. Fuzzy Syst., 1996, 4(3):339-359.
    [220] Wang L X, Adaptive fuzzy systems and control: design and stability analysis [M], Englewood Cliffs, NJ: Prentice-Hall, 1994.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700