用户名: 密码: 验证码:
电子束诱生硅中位错的发光性质及其物理结构研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
硅作为最重要的半导体材料被广泛地用于微电子器件的制造,而基于硅集成电路工艺的硅基光电子,不仅能够为微电子器件提供大带宽的光互连,还可以降低光电子器件的制造成本,从而成为国际上半导体领域研究的热点之一。但是,与集成电路制造工艺兼容的硅基光源一直没有实现,是制约硅基光电子发展的首要问题。而硅中缺陷发光,尤其是基于硅中位错在红外波段的发光,已经成为实现硅基光源的重要路径之一
     本文创新地提出并成功地运用了电子束辐照的方法,在硅晶体中诱生可控位错,系统研究了其生成机理及其物理结构性能,同时还对不同硅晶体(直拉单晶硅、区熔单晶硅和铸造准单晶硅)等样品中的诱生位错的光致发光及相应器件的电致发光性能进行了详细研究,取得了如下主要的创新结果:
     (1)提出电子束辐照在硅片上引入可控位错的方法,位错密度可达107cm-2量级。该方法具有良好的可控性,通过控制电子束照射位置与角度,可以选择性地在硅片特定区域局域产生位错。研究指出,其显微结构为碎片化、局域化的位错结构;随着辐照时间的延长,宏观和微观的应变均会增大,使得位错与其他缺陷相互反应形成了较为复杂的结构。研究认为,电子束辐照所带来热应力所引起的硅晶格膨胀收缩是诱生位错的主要原因。电子束诱生位错的方法是一种新型的硅中引入位错的工具,为硅中缺陷研究提供了新方法,也为硅基位错提供了新的技术途径。
     (2)通过调节温度与退火时间,实验发现,1050℃12h单步高温长时间热处理可以得到较好的电子束辐照硅中的位错发光,成功地增强并稳定了D1发光中心,大幅度提高了其淬灭温度,获得了室温D1发光。研究指出,D1发光中心的激活能在热处理前后几乎一致,为-86meV;另外,光致发光谱中的D1峰在170K-210K温度区间存在峰位反常移动现象,说明D1发光中心存在重构现象。研究表明,硅中点缺陷在高温长时间热处理中参与了位错结构的重构,从而形成了复杂的位错-点缺陷结构;而经重构的D1发光中心,能够大幅提高并稳定室温的D1发光。
     (3)利用区熔单晶硅和直拉单晶硅诱生位错光致发光对比,对硅中位错发光谱线中的0.78eV峰来源做了系统深入的研究。其激活能为-13meV,远小于D1/D2峰的激活能。0.78eV峰独特的强度-温度衰减规律,说明它与D1/D2峰的来源是不同的。分析表明,0.78eV发光中心与硅中氧原子团簇,不论是热施主亦或是氧沉淀均没有关系。研究推测,该峰源自特定的经重构的位错结构,而该结构容易受点缺陷和温度的影响。
     (4)通过电子束辐照硅晶体制备的硅基发光二极管,系统研究了电子束诱生位错在低温和室温变功率、变温度的电致发光谱,成功获得了1.6μm处的D1室温电致发光。研究表明,在15K时,D1发光中心容易被激活,而带边峰需要更高的注入水平才能出现,证明带边峰与D1峰存在相互竞争的关系。实验还发现,电致发光谱中D1峰相关的-0.86eV副峰仅在较大的注入功率下才会产生。变功率的电致发光谱研究表明,D1中心是由特定的位错引入的能级所组成。相比较于带边辐射复合,注入的电子和空穴更倾向于优先在D1发光中心附近复合发光。
     (5)通过在铸造准单晶中运用电子束辐照的方法引入诱生位错,分别研究了铸造准单晶的原生位错、诱生位错、原生位错与诱生位错共存光致发光谱。研究发现:同一片准单晶上原生位错分布差异很大,不同区域光谱性质有显著差别,原生位错同样存在硅中位错发光的特征的D1-D4峰,D1/D2峰位随温度变化性质与单晶硅不一致;高温长时间热处理后,D1与D2合为大峰包,出现峰位先蓝移后红移的现象,这是因为在准单晶中,原生位错、辐照位错与杂质和点缺陷存在复杂反应,对D1发光中心产生影响。同时,研究认为热处理使得杂质与点缺陷在位错应力场周围形成气团;热处理温度升高,缺陷气团运动,从而可能造成D1峰位反常移动。
It is well known that silicon is one of the most important semiconductor materials which is widely used for microelectronic devices. The silicon photoelectric monolithic integration can provide a large bandwidth optical interconnects, inexpensive manufacturing for optoelectronic devices. These advantages make the silicon-based optoelectronics become one of the hotspots of the international semiconductor research. However, the lack of silicon-based light source which is compatible with the current IC manufacturing process has been the most important issue of silicon optoelectronics. The luminescence based on defects in silicon, especially the light-emitting in the infrared band based on silicon dislocations has become one of the most important paths to silicon-based light source.
     In this dissertation, the electron beam irradiation technique has been creatively and successfully applied to inducing dislocations in silicon and its generation mechanism, physical structure and properties have been systemetically investigated. The photoluminescence and electroluminescence properties of different irradiated silicon samples (Czochralski silicon, float-zone silicon and cast quasi-single crystalline (QSC))silicon have been studied intensively. In the following, the primary achievements in this work are described.
     (1) The method of electron beam irradiation can induce dislocations into silicon with densities up to~107cm-2. The method has good controllability, one can selectively generate localized dislocations at a specific area by controling the position and angle of the electron beam. The dislocation structure is fragmented and localized. By increasing of the irradiation time, the macro-and micro-strain increase. The dislocations and other defects will react with each other by forming more complex structures. We believe that the silicon lattice expansion and contraction caused by thermal stress introduced under the the electron beam irradiation is the main reason for the induced dislocations. The method of electron beam irradiation is a new method to induce dislocations in silicon, which offters the new option for the study of defects in silicon and the silicon-based light-emitting materials.
     (2) The photoluminescence of dislocations in Czochralski silicon induced by electron beam irradiation are studied extensively by applying a wide range of temperature and time combinations. By applying the1050℃12h single step annealing, the Dl luminescence center has been successfully enhanced and stabilized and its quenching temperature has been substantially increased to room temperature. The D1peak activation energy is almost the same before and after heat treatment, which is-86meV. It is first reported that there is an abnormal energy movement of D1peak in the temperature range of170K-210K, which proves the existence of the reconstruction of D1luminescence center. Structural studies reveal that silicon point defects could participate in the reconstruction of the dislocation structure in the high temperature and long time annealing, thereby forming a complex dislocation-point defect structure. It is the reconstructed D1luminescence center which can strongly enhance and stabilize D1emitting at room temperature.
     (3) The origin of the0.78eV line has been investigated systematically by comparing the photoluminescence of the electron irradiated float zone silicon and Czochralski silicon. The activation energy of0.78eV line is-13meV which is much smaller than that of D1/D2lines. The0.78eV line has its unique dependence of the intensity on temperature, which reveals its nature is different than that of D1/D2lines. It is shown that the0.78eV luminescence center has no relation with the silicon oxygen atoms in the clusters, neither in the form of the thermal donor nor the oxygen precipitates. The0.78eV line may come from specific reconstructed dislocation structure which is easily influenced by point defects and temperature.
     (4) By preparing the silicon light emitting diodes, the power-dependent and temperature-dependent electroluminescence property of the electron irradiated silicon sample have been studied extensively. The strong Dl line around1.6μm is successfully achieved at room temperature. Studies show that the D1luminescence center is easily activated at15K, while the band-to-band luminescence requires a higher injection level. It reveals the competition of the Dl line and the band-to-band luminescence. It is also found that the~0.86eV peak beside the D1line in the electroluminescence spectra which only exist in the larger injected power. The power-dependent electroluminescence spectra study shows the D1center is composed by several dislocations induced energy levels. Compared to the band-to-band radiative recombination, the injected electron and hole will preferentially recombine near the D1luminescence center.
     (5) The photoluminescence of as-grown dislocations and irradiated dislocations in the QSC silicon have been investigated extensity. It is found that the distribution of the native dislocations in the same QSC silicon wafer is widely varied, and the luminescence properties show significant differences in different regions. There are identical dislocation related D1~D4lines in the as-grown dislocations. The dependence of D1/D2peak positions on the temperature is different with the single crystalline silicon. The D1and D2lines envelope together as a large peak after the high temperature and long time annealing. There is a phenomenon that the peak position first blue shifts than redshifts with the increase of the temperature. In the QSC silicon, there is a complex reaction of as-grown dislocations and irradiated dislocations with the impurities and point defects, which exerts great effects on the D1luminescence center. The heat treatment will make the impurities and point defects form atmosphere bubbles around the dislocation stress field; when the temperature increases, the bubbles move, resulting in the abnormal peak movement of D1line. It reveals the fact that the dislocations luminescence centers is very susceptible to the influence of point defects.
引文
[1]M. A. Green, J. Zhao, A. Wang, P. J. Reece and M. Gal. Efficient silicon light-emitting diodes. Nature,2001,412:805-808.
    [2]J. R. Chelikowsky and M L. Cohen. Electronic structure of silicon. Phys Rev B,1974,10: 5095-5107.
    [3]A. M. Fox. Optical properties of solidsOxford university press,2001.
    [4]W. Shockley and W. Read Jr. Statistics of the recombinations of holes and electrons. Physical Review,1952,87:835.
    [5]D. K. Schroder. Carrier lifetimes in silicon. Electron Devices, IEEE Transactions on,1997,44: 160-170.
    [6]L. T. Canham. Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers. Appl Phys Lett,1990,57:1046.
    [7]A. Cullis and L. Canham. Visible light emission due to quantum size effects in highly porous crystalline silicon.1991
    [8]K. Hirschman, L. Tsybeskov, S. Duttagupta and P. Fauchet. Silicon-based visible light-emitting devices integrated into microelectronic circuits.1996
    [9]W. L. Wilson, P. Szajowski and L. Brus. Quantum confinement in size-selected, surface-oxidized silicon nanocrystals. SCIENCE-NEW YORK THEN WASHINGTON,1993, 262:1242-1242.
    [10]Z. Lu, D. Lockwood and J.M. Baribeau. Quantum confinement and light emission in SiO2/Si superlattices.1995
    [11]L. Pavesi, L. Dal Negro, C. Mazzoleni, G. Franzo and F. Priolo. Optical gain in silicon nanocrystals. Nature,2000,408:440-444.
    [12]R. J. Walters, G. I. Bourianoff and H. A. Atwater. Field-effect electroluminescence in silicon nanocrystals. Nature Materials,2005,4:143-146.
    [13]K.H. Kim, J.H. Shin, N.M. Park, C. Huh, T.Y. Kim, K.S. Cho, J. C. Hong and G. Y. Sung. Enhancement of light extraction from a silicon quantum dot light-emitting diode containing a rugged surface pattern. Appl Phys Lett,2006,89:191120.
    [14]A. Marconi, A. Anopchenko, M. Wang, G. Pucker, P. Bellutti and L. Pavesi. High power efficiency in Si-nc/SiO multilayer light emitting devices by bipolar direct tunneling. Appl Phys Lett,2009,94:221110.
    [15]T. Creazzo, B. Redding, E. Marchena, J. Murakowski and D. W. Prather. Tunable photoluminescence and electroluminescence of size-controlled silicon nanocrystals in nanocrystalline-Si/SiO2 superlattices. Journal of Luminescence,2010,130:631-636.
    [16]B.H. Lai, C.H. Cheng and G.R. Lin. Multicolor ITO/SiO,/p-Si/AI Light Emitting Diodes With Improved Emission Efficiency by Small Si Quantum Dots. Quantum Electronics, IEEE Journal of,2011,47:698-704.
    [17]R. J. Walters, R. V. A. van Loon, I. Brunets, J. Schmitz and A. Polman. A silicon-based electrical source of surface plasmon polaritons. Nature Materials,2010,9:21-25.
    [18]D. Y. Chen, Y. Liu, J. Xu, D. Y. Wei, H. C. Sun, L. Xu, T. Wang, W. Li and K. J. Chen. Improved emission efficiency of electroluminescent device containing nc-Si/SiO2 multilayers by using nano-patterned substrate. Optics Express,2010,18:917-922.
    [19]W. L. Ng, M. A. Lourenco, R. M. Gwilliam, S. Ledain, G. Shao and K. P. Homewood. An efficient room-temperature silicon-based light-emitting diode. Nature,2001,410:192-194.
    [20]M. A. Lourenco, M. Milosavljevic, G. Shao, R. M. Gwilliam and K. P. Homewood. Dislocation engineered silicon light emitting devices. Thin Solid Films,2007,515:8113-8117.
    [21]M. A. Lourenco, M. Milosavljevic, G. Shao, R. M. Gwilliam and K. P. Homewood. Boron engineered dislocation loops for efficient room temperature silicon light emitting diodes. Thin Solid Films,2006,504:36-40.
    [22]M. A. Lourenco, M. Milosavljevic, R. M. Gwilliam, K. P. Homewood and G. Shao. On the role of dislocation loops in silicon light emitting diodes. Appl Phys Lett,2005,87.
    [23]K. P. Homewood and M. A. Lourenco. Light from Si via dislocation loops. Materials Today, 2005,8:34-39.
    [24]M. Lourenco, M. Milosavljevic, R. Gwilliam, K. Homewood and G. Shao. On the role of dislocation loops in silicon light emitting diodes. Appl Phys Lett,2005,87:201105.
    [25]M. Milosavljevic, G. Shao, M. Lourenco, R. Gwilliam and K. Homewood. Engineering of boron-induced dislocation loops for efficient room-temperature silicon light-emitting diodes. J Appl Phys,2005,97:073512.
    [26]M. Milosavljevic, M. Lourenco, R. Gwilliam and K. Homewood. Role of heavy ion co-implantation and thermal spikes on the development of dislocation loops in nanoengineered silicon light emitting diodes. J Appl Phys,2011,110:033508.
    [27]K. Homewood, M. Lourenc o and R. Gwilliam, presented at the Group IV Photonics (GFP), 2010 7th IEEE International Conference on,2010.
    [28]M. Lourenco and K. Homewood. Crystalline-silicon-based infra-red LEDs and routes to laser diodes. Thin Solid Films,2011,519:8441-8445.
    [29]N. A. Drozdov, A. A. Patrin and V. D. Tkachev. Recombination Radiation on Dislocations in Silicon. Jetp Lett+,1976,23:597-599.
    [30]R. Sauer, J. Weber, J. Stolz, E. R. Weber, K. H. Kusters and H. Alexander. Dislocation-Related Photoluminescence in Silicon. Appl Phys a-Mater,1985,36:1-13.
    [31]V. V. Kveder, E. A. Steinman, S. A. Shevchenko and H. G. Grimmeiss. Dislocation-Related Electroluminescence at Room-Temperature in Plastically Deformed Silicon. Phys Rev B,1995, 51:10520-10526.
    [32]E. O. Sveinbjomsson and J. Weber. Room temperature electroluminescence from dislocation-rich silicon. Appl Phys Lett,1996,69:2686-2688.
    [33]M. Kittler, W. Seifert, T. Arguirov, I. Tarasov and S. Ostapenko. Room-temperature luminescence and electron-beam-induced current (EBIC) recombination behaviour of crystal defects in multicrystalline silicon. Sol Energ Mat Sol C,2002,72:465-472.
    [34]V. Kveder, M. Badylevich, E. Steinman, A. Izotov, M. Seibt and W. Schroter. Room-temperature silicon light-emitting diodes based on dislocation luminescence. Appl Phys Lett,2004,84: 2106-2108.
    [35]X. Yu, W. Seifert, O. F. Vyvenko, M. Kittler, T. Wilhelm and M. Reiche. A pure 1.5 μm electroluminescence from metal-oxide-silicon tunneling diode using dislocation network. Appl Phys Lett,2008,93:041108.
    [36]X. G. Yu, L. H. Song, D. R. Yang, M. Kittler and G. A. Rozgonyi. Modulation of 1.5 μm dislocation-related luminescence emitted from a direct silicon bonded interface by external bias. Appl Phys Lett,2010,96:211120.
    [37]X. Duan, Y. Huang, R. Agarwal and C. M. Lieber. Single-nanowire electrically driven lasers. Nature,2003,421:241-245.
    [38]A. W. Fang, H. Park, O. Cohen, R. Jones, M. J. Paniccia and J. E. Bowers. Electrically pumped hybrid AlGalnAs-silicon evanescent laser. Opt. Express,2006,14:9203-9210.
    [39]H. Ennen, J. Schneider, G. Pomrenke and A. Axmann.1.54 μm luminescence of erbium implanted Ⅲ-Ⅴ semiconductors and silicon. Appl Phys Lett,1983,43:943-945.
    [40]D. Pacifici, G. Franzo, F. lacona, S. Boninelli, A. Irrera, M. Miritello and F. Priolo. Er doped Si nanostructures. Materials Science and Engineering:B,2003,105:197-204.
    [41]J. Sun, W. Skorupa, T. Dekorsy, M. Helm, L. Rebohle and T. Gebel. Efficient ultraviolet electroluminescence from a Gd-implanted silicon metal-oxide-semiconductor device. Appl Phys Lett,2004,85:3387-3389.
    [42]J. Michel, J. Benton, R. Ferrante, D. Jacobson, D. Eaglesham, E. Fitzgerald, Y. H. Xie, J. Poate and L. Kimerling. Impurity enhancement of the 1.54 μm Er3+ luminescence in silicon. J Appl Phys,1991,70:2672-2678.
    [43]A. Polman. Erbium implanted thin film photonic materials. J Appl Phys,1997,82:1-39.
    [44]S. Schmitt-Rink, C. M. Varma and A. F. Levi. Excitation mechanisms and optical properties of rare-earth ions in semiconductors. Phys Rev Lett,1991,66:2782-2785.
    [45]N. Sobolev, O. Gusev. E. Shek, V. Vdovin, T. Yugova and A. Emel'yanov. Photoluminescence and structural defects in erbium-implanted silicon annealed at high temperature. Appl Phys Lett, 1998,72:3326.
    [46]H. Isshiki, M. De Dood, A. Polman and T. Kimura. Self-assembled infrared-luminescent Er-Si-O crystallites on silicon. Appl Phys Lett,2004,85:4343-4345.
    [47]M. Miritello, R. L. Savio, P. Cardile and F. Priolo. Enhanced down conversion of photons emitted by photoexcited ErxY2-xSi2O7 films grown on silicon. Physical Review B Condensed Matter And Materials Physics,2010,81:041411R.
    [48]K. Suh, M. Lee, J. S. Chang, H. Lee, N. Park, G. Y. Sung and J. H. Shin. Cooperative upconversion and optical gain in ion-beam sputter-deposited ErxY2-xSiO5 waveguides. Opt. Express 18 (8),2010:7724-7731.
    [49]X. Wang, B. Wang, L. Wang, R. Guo, H. Isshiki, T. Kimura and Z. Zhou. Extraordinary infrared photoluminescence efficiency of Er0.1Yb1.9SiO5 films on SiO2/Si substrates. Appl Phys Lett, 2011,98:071903.
    [50]R. Guo, X. Wang, K. Zang, B. Wang, L. Wang, L. Gao and Z. Zhou. Optical amplification in Er/Yb silicate strip loaded waveguide. Appl Phys Lett,2011,99:161115.
    [51]G, Franzo, F. Priolo, S. Coffa, A. Polman and A. Camera. Room-temperature electroluminescence from Er-doped crystalline Si. Appl Phys Lett,1994,64:2235-2237.
    [52]M. Ishimaru, K. Omae, I. T. Bae, M. Naito, Y. Hirotsu, J. A. Valdez and K. E. Sickafus. Formation process of β-FeSi2/Si heterostructure in high-dose Fe ion implanted Si. J Appl Phys, 2006,99:113527.
    [53]Y. Nakamura, R. Suzuki, M. Umeno, S.-P. Cho, N. Tanaka and M. Ichikawa. Observation of the quantum-confinement effect in individual β-FeSi2 nanoislands epitaxially grown on Si (111) surfaces using scanning tunneling spectroscopy. Appl Phys Lett,2006,89:123104.
    [54]D. Leong, M. Harry, K. Reeson and K. Homewood. A silicon/iron-disilicide light-emitting diode operating at a wavelength of 1.5 μm. Nature,1997,387:686-688.
    [55]Y. Gao, S. Wong, W. Cheung, G. Shao and K. Homewood. Effect of implantation temperature on dislocation loop formation and origin of 1.55-μm photoluminescence from ion-beam-synthesized FeSi2 precipitates in silicon. Appl Phys Lett,2003,83:42-44.
    [56]M. Lourenco, R. Gwilliam, G. Shao and K. Homewood. Dislocation engineered β-FeSi2 light emitting diodes. Nuclear Instruments and Methods in Physics Research Section B:Beam Interactions with Materials and Atoms,2003,206:436-439.
    [57]T. Yin, R. Cohen, M. M. Morse, G. Sarid, Y. Chetrit, D. Rubin and M. J. Paniccia.31 GHz Ge nip waveguide photodetectors on Silicon-on-Insulator substrate. Opt. Express,2007,15: 13965-13971.
    [58]D. Ahn, C.. Hong, J. Liu, W. Giziewicz, M. Beals, L. C. Kimerling, J. Michel, J. Chen and F. X. Knrtner. High performance, waveguide integrated Ge photodetectors. Optics Express,2007,15: 3916-3921.
    [59]E. G. Barbagiovanni, D. J. Lockwood, P. J. Simpson and L. V. Goncharova. Quantum confinement in Si and Ge nanostructures. J Appl Phys,2012,111:034307.
    [60]E. M. Purcell. Spontaneous emission probabilities at radio frequencies. Physical Review,1946, 69:681.
    [61]J. Xia, Y. Ikegami, Y. Shiraki, N. Usami and Y. Nakata. Strong resonant luminescence from Ge quantum dots in photonic crystal microcavity at room temperature. Appl Phys Lett,2006,89: 201102.
    [62]J. Xia, Y. Takeda, N. Usami, T. Maruizumi and Y. Shiraki. Room-temperature electroluminescence from Si microdisks with Ge quantum dots. Optics Express,2010,18: 13945-13950.
    [63]J. Liu, X. Sun, R. Camacho-Aguilera, L. C. Kimerling and J. Michel. Ge-on-Si laser operating at room temperature. Opt. Lett,2010,35:679-681.
    [64]O. Boyraz and B. Jalali. Demonstration of a silicon Raman laser. Opt. Express,2004,12: 5269-5273.
    [65]H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang and M. Paniccia. A continuous-wave Raman silicon laser. Nature,2005,433:725-728.
    [66]H. Rong, A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang and M. Paniccia. An all-silicon Raman laser. Nature,2005,433:292-294.
    [67]N. A. Drozdov, A. A. Patrin and V. D. Tkachev. Nature of Dislocation Luminescence in Silicon. Phys Status Solidi B,1977,83:K137-K139.
    [68]N. Drozdov, A. Patrin and V. Tkachev. Modification of the dislocation luminescence spectrum by oxygen atmospheres in silicon. Phys Status Solidi A,1981,64:K63-K65.
    [69]M. Suezawa, Y. Sasaki and K. Sumino. Dependence of Photo-Luminescence on Temperature in Dislocated Silicon-Crystals. Phys Status Solidi A,1983,79:173-181.
    [70]M. Suezawa and K. Sumino. The nature of photoluminescence from plastically deformed silicon. Phys Status Solidi A,1983,78:639-645.
    [71]H. Ono and K. Sumino. Defect states in p-type silicon crystals induced by plastic deformation. J Appl Phys,1985,57:287-292.
    [72]L. Kimerling. Recombination enhanced defect reactions. Solid State Electron,1978,21: 1391-1401.
    [73]I. Yonenaga and K. Sumino. Dislocation dynamics in the plastic deformation of silicon crystals ⅰ. experiments. physica status solidi (a),1978,50:685-693.
    [74]P. Omling, E. Weber, L. Montelius, H. Alexander and J. Michel. Electrical properties of dislocations and point defects in plastically deformed silicon. Phys Rev B,1985,32:6571.
    [75]E. A. Steinman, V. I. Vdovin, T. G. Yugova, V. S. Avrutin and N. F. Izyumskaya. Dislocation structure and photoluminescence of partially relaxed SiGe layers on Si (001) substrates. Semicond Sci Tech,1999,14:582-588.
    [76]E. O. Sveinbjornsson and J. Weber. Room temperature electroluminescence from dislocation-rich silicon. Appl Phys Lett,1996,69:2686-2688.
    [77]V. Kveder, M. Badylevich, W. Schroter, M. Seibt, E. Steinman and A. Izotov. Silicon light-emitting diodes based on dislocation-related luminescence. Phys Status Solidi A,2005,202: 901-910.
    [78]J. Haynes and W. Westphal. Radiation resulting from recombination of holes and electrons in silicon. Physical Review,1956,101:1676.
    [79]J. Haynes. Analysis of intrinsic recombination radiation from silicon and germanium. Journal of Physics and Chemistry of Solids,1959,8:392-396.
    [80]R. Newman. Visible light from a silicon pn junction. Physical Review,1955,100:700.
    [81]M. du Plessis, H. Aharoni and L. W. Snyman. Silicon LEDs fabricated in standard VLSI technology as components for all silicon monolithic integrated optoelectronic systems. Selected Topics in Quantum Electronics, IEEE Journal of,2002,8:1412-1419.
    [82]T. Hoang, J. Holleman, P. LeMinh, J. Schmitz, T. Mchedlidze, T. Arguirov and M. Kittler. Influence of dislocation loops on the near-infrared light emission from silicon diodes. Ieee T Electron Dev,2007,54:1860-1866.
    [83]N. A. Sobolev. Defect engineering in implantation technology of silicon light-emitting structures with dislocation-related luminescence. Semiconductors,2010,44:1-23.
    [84]J. M. Sun, T. Dekorsy, W. Skorupa, B. Schmidt, A. Mucklich and M. Helm. Below-band-gap electroluminescence related to doping spikes in boron-implanted silicon pn diodes. Phys Rev B, 2004,70.
    [85]R. Gwilliam, M. Lourenco, M. Milosavljevic, K. Homewood and G. Shao. Dislocation engineering for Si-based light emitting diodes. Materials Science and Engineering:B,2005,124: 86-92.
    [86]N. Sobolev, A. Emel'yanov, E. Shek and V. Vdovin. Effect of the postimplantation-annealing temperature on the properties of silicon light-emitting diodes fabricated through boron ion implantation into n-Si. Physics of the Solid State,2004,46:35-39.
    [87]N. Sobolev, A. Emel'yanov, E. I. Shek and V. Vdovin. Influence of extended structural defects on the characteristics of electroluminescence in efficient silicon light-emitting diodes. Solid State Phenom,2003,95:283-288.
    [88]T. Trupke, J. Zhao, A. Wang, R. Corkish and M. A. Green. Very efficient light emission from bulk crystalline silicon. Appl Phys Lett,2003,82:2996-2998.
    [89]M. Kittler and M. Reiche. Dislocations as Active Components in Novel Silicon Devices. Adv Eng Mater,2009,11:249-258.
    [90]T. Arguirov, M. Kittler, W. Seifert, X. Yu and M. Reiche. Towards silicon based light emitter utilising the radiation from dislocation networks. Mat Sci Eng B-Solid,2006,134:109-113.
    [91]M. Kittler, M. Reiche, T. Arguirov, W. Seifert and X. Yu. Silicon-based light emitters. physica status solidi (a),2006,203:802-809.
    [92]A. Misiuk, H. B. Surma, J. Jun, J. Ba.k-Misiuk, J. Domagala, I. V. Antonova, V. P. Popov, A. Romano-Rodriguez and M. Lopez. Dependence of photoluminescence of silicon on conditions of pressure-annealing. J Alloy Compd,1999,286:258-264.
    [93]A. Misiuk, H. B. Surma, J. Bak-Misiuk, M. Lopez, A. Romano-Rodriguez and J. Hartwig. Microstructure of Czochralski silicon annealed at enhanced stress conditions. J Alloy Compd, 2001,328:90-96.
    [94]N. Sobolev. Defects and their influence on the luminescence of rare-earth ions implanted in single crystal Si. Physica B:Condensed Matter,2001,308:333-336.
    [95]N. Sobolev, A. Emel'yanov, E. Shek, V. Vdovin, T. Yugova and S. Pizzini. Correlation between defect structure and luminescence spectra in monocrystalline erbium-implanted silicon. Journal of Physics:Condensed Matter,2002,14:13241.
    [96]N. Sobolev, O. Gusev, E. Shek, V. Vdovin, T. Yugova and A. Emel'yanov. Dislocation-related luminescence in Er-implanted silicon. Journal of Luminescence,1998,80:357-361.
    [97]N. Sobolev, A. Emel'yanov, E. Shek and V. Vdovin. Extended structural defects and their influence on the electroluminescence in efficient Si light-emitting diodes. Physica B:Condensed Matter,2003,340:1031-1035.
    [98]N. Sobolev, A. Emel'yanov, V. Sakharov, I. Serenkov, E. Shek and D. Tetel'baum. Dislocation-related luminescence in single-crystal silicon subjected to silicon ion implantation and subsequent annealing. Semiconductors,2007,41:537-539.
    [99]N. Sobolev, B. Y. Ber, A. Emel'yanov, A. Kovarskil and E. Shek. Dislocation-related luminescence in silicon, caused by implantation of oxygen ions and subsequent annealing. Semiconductors,2007,41:285-287.
    [100]V. Emtsev, V. Emtsev Jr, V. Kozlovskii, A. Misiuk, G. Oganesyan, D. Poloskin, N. Sobolev and E. Tropp. Electrically active defects in erbium-implanted silicon:Effects of annealing under high hydrostatic pressures and electron irradiation. Materials Science and Engineering:B,2009, 159:157-159.
    [101]N. Sobolev. Point and extended defects engineering as a key to advancing the technology of light-emitting diodes based on single-crystal Si and SiGe layers. Physica B:Condensed Matter, 2007,401:10-15.
    [102]X. Yu, T. Arguirov, M. Kittler, W. Seifert, M. Ratzke and M. Reiche. Properties of dislocation networks formed by Si wafer direct bonding. Mat Sci Semicon Proc,2006,9:96-101.
    [103]M. Kittler, X. Yu, T. Mchedlidze, T. Arguirov, O. F. Vyvenko, W. Seifert, M. Reiche, T. Wilhelm, M. Seibt, O. Voss, A. Wolff and W. Fritzsche. Regular dislocation networks in silicon as a tool for nanostructure devices used in optics, biology, and electronics. Small,2007,3:964-973.
    [104]M. Kittler, T. Arguirov, W. Seifert, X. Yu and M. Reiche. Silicon based light emitters for on-chip optical interconnects. Gettering and Defect Engineering in Semiconductor Technology Xi,2005,108-109:749-754.
    [105]T. Arguirov, M. Kittler, W. Seifert, X. Yu and M. Reiche. Towards silicon based light emitter utilising the radiation from dislocation networks. Materials Science and Engineering:B,2006, 134:109-113.
    [106]G. Jia, M. Kittler, Z. Su, D. Yang and J. Sha.1.5μm luminescence of silicon nanowires fabricated by thermal evaporation of SiO. Physica Status Solidi a-Applications and Materials Science,2006,203:R55-R57.
    [107]T. Arguirov, T. Mchedlidze, V. D. Akhmetov, S. K. Arguirova, M. Kittler, R. Rolver, B. Berghoff, M. Forst, D. L. Batzner and B. Spangenberg. Effect of laser annealing on crystallinity of the Si layers in Si/SiO2 multiple quantum wells. Appl Surf Sci,2007,254:1083-1086.
    [108]M. Kittler, M. Reiche, T. Mehedlidze, T. Arguirov, G. B. Jia, W. Seifert, S. Suckow and T. Wilhelm. Stark effect at dislocations in silicon for modulation of a 1.5μm light emitter. Silicon Photonics III,2008,6898:G8980-G8980.
    [109]I. Yonenaga and K. Sumino. Influence of oxygen precipitation along dislocations on the strength of silicon crystals. J Appl Phys,1996,80:734-738.
    [110]S. Pizzini, M. Acciarri, E. Leoni and A. Le Donne. About the D1 and D2 dislocation luminescence and its correlation with oxygen segregation. Phys Status Solidi B,2000,222: 141-150.
    [111]S. Pizzini, S. Binetti, M. Acciarri and M. Casati. Study of the radiative and non-radiative recombination processes at dislocations in silicon by photoluminescence and LBIC measurements. Optical Microstructural Characterization of Semiconductors,2000,588: 117-122.
    [112]S. Pizzini, S. Binetti, D. Calcina, N. Morgante and A. Cavallini. Local structure of erbium-oxygen complexes in erbium-doped silicon and its correlation with the optical activity of erbium. Mat Sci Eng B-Solid,2000,72:173-176.
    [113]M. Acciarri, C. Cirelli, S. Pizzini, S. Binetti, A. Castaldini and A. Cavallini. Study of the correlation between radiative and non-radiative recombination channels in silicon. Journal of Physics:Condensed Matter,2002,14:13223.
    [114]S. Binetti, S. Pizzini, E. Leoni, R. Somaschini, A. Castaldini and A. Cavallini. Optical properties of oxygen precipitates and dislocations in silicon. J Appl Phys,2002,92:2437-2445.
    [115]S. Binetti, S. Pizzini, E. Leoni, R. Somaschini, A. Castaldini and A. Cavallini. Optical properties of oxygen agglomerates in silicon. Gettering and Defect Engineering in Semiconductor Technology,2002,75-80.
    [116]S. Binetti, R. Somaschini, A. Le Donne, E. Leoni, S. Pizzini, D. Li and D. Yang. Dislocation luminescence in nitrogen-doped Czochralski and float zone silicon. Journal of Physics: Condensed Matter,2002,14:13247.
    [117]S. Pizzini, S. Binetti, E. Lconi, A. Le Donne, M. Acciarri and A. Castaldini. Radiative recombination processes of thermal donors in silicon. Progress in Semiconductor Materials for Optoelectronic Applications,2002,692:275-281.
    [118]E. Leoni, L. Martinelli, S. Binetti, G. Borionetti and S. Pizzini. The origin of photoluminescence from oxygen precipitates nucleated at low temperature in semiconductor silicon. J Electrochem Soc,2004,151:G866-G869.
    [119]A. Castaldini, D. Cavalcoli, A. Cavallini, S. Binetti and S. Pizzini. Electronic transitions at defect states in Czp-type silicon. Appl Phys Lett,2005,86:162109.
    [120]A. Castaldini, D. Cavalcoli, A. Cavallini and S. Pizzini. Experimental evidence of dislocation related shallow states in p-type Si. Phys Rev Lett,2005,95:076401.
    [121]A. Castaldini, D. Cavalcoli, A. Cavallini and S. Pizzini. Defect states in Czochalski p-type silicon:the role of oxygen and dislocations. Phys Status Solidi A,2005,202:889-895.
    [122]T. Mchedlidze, S. Binetti, A. Le Donne, M. Suezawa and S. Pizzini. Rod-like defects in CZ-Si investigated by spin resonance and photoluminescence spectroscopies. physica status solidi (c),2005,2:1807-1811.
    [123]E. A. Steinman, A. N. Tereshchenko and V. Y. Reznik. Structure and Radiation Properties of Dislocations Arising during Oxygen Precipitate Growth in Silicon. J Surf Investig-X-Ra,2007, 1:318-322.
    [124]S. A. Shevchenko, Y. A. Ossipyan, T. R. Mchedlidze, E. A. Steinman and R. A. Batto. Defect States in Si Containing Dislocation Nets. Phys Status Solidi A,1994,146:745-755.
    [125]E. A. Steinman and H. G. Grimmeiss. Dislocation-related luminescence properties of silicon. Semicond Sci Tech,1998,13:124-129.
    [126]A. J. Kenyon, E. A. Steinman, C. W. Pitt, D. E. Hole and V. I. Vdovin. The origin of the 0.78 eV luminescence band in dislocated silicon. J Phys-Condens Mat,2003,15:S2843-S2850.
    [127]A. Misiuk, K. S. Zhuravlev, W. Jung, M. Prujszczyk and E. A. Steinman. Dislocation-related photoluminescence from processed Si. J Mater Sci-Mater El,2008,19:S243-S247.
    [128]E. A. Steinman, A. J. Kenyon and A. N. Tereshchenko. Time-resolved measurements of dislocation-related photoluminescence bands in silicon. Semicond Sci Tech,2008,23:-
    [129]A. A. Shklyaev, Y. Nakamura, F. N. Dultsev and M. Ichikawa. Defect-related light emission in the 1.4-1.7 μm range from Si layers at room temperature. J Appl Phys,2009,105:063513.
    [130]A. A. Shklyaev, M. Shibata and M. Ichikawa. High-density ultrasmall epitaxial Ge islands on Si (111) surfaces with a SiO2 coverage. Phys Rev B,2000,62:1540.
    [131]O. Shklyaev, M. Beck, M. Asta, M. Miksis and P. Voorhees. Role of strain-dependent surface energies in Ge/Si (100) island formation. Phys Rev Lett,2005,94:176102.
    [132]A. A. Shklyaev, S. P. Cho, Y. Nakamura, N. Tanaka and M. Ichikawa. Influence of growth and annealing conditions on photoluminescence of Ge/Si layers grown on oxidized Si surfaces. J Phys-Condens Mat,2007,19.
    [133]A. A. Shklyaev, Y. Nakamura and M. Ichikawa. Photoluminescence of Si layers grown on oxidized Si surfaces. J Appl Phys,2007,101.
    [134]A. A. Shklyaev, F. N. Dultsev, K. P. Mogilnikov, A. V. Latyshev and M. Ichikawa. Electroluminescence of dislocation-rich Si layers grown using oxidized Si surfaces. J Phys D Appl Phys,2011,44:025402.
    [135]I. Kurkina, I. Antonova, A. Shklyaev, S. Smagulova and M. Ichikawa. Luminescence and deep-level transient spectroscopy of grown dislocation-rich Si layers. AIP Advances,2012,2: 032152.
    [136]A. Shklyaev, D. Gulyaev, K. Zhuravlev, A. Latyshev, V. Armbrister and A. Dvurechenskii. Resonant photoluminescence of Si layers grown on SiO2. Opt Commun,2012
    [137]A. Shklyaev, A. Latyshev and M. Ichikawa. Excitation Dependence of Photoluminescence in the 1.5-1.6 μm Wavelength Region from Grown Dislocation-Rich Si Layers. Physics Procedia, 2012,32:117-126.
    [138]T. S. S. L. I. Fedina, S. A. Song, A. K. Gutakoskii, A. L. Chuvilin, A. G. Cherkov, K. S. Zhuravlev, M. S. Seksenbuev, V. Yu. Yakovlev, A.V. Latyshev, presented at the The 10th International Conference on Modification of Materials with Particle Beams and Plasma Flows, Tomsk,2010 (unpublished).
    [139]A. T. Blumenau, R. Jones, S. Oberg, T. Frauenheim and P. R. Briddon. Optical bands related to dislocations in Si. J Phys-Condens Mat,2000,12:10123-10129.
    [140]E. A. Steinman, A. J. Kenyon and A. N. Tereshchenko. Time-resolved measurements of dislocation-related photoluminescence bands in silicon. Physica Status Solidi C-Current Topics in Solid State Physics, Vol 6, No 8,2009,6:1811-1816.
    [141]V. Kveder, M. Kittler and W. Schroter. Recombination activity of contaminated dislocations in silicon:A model describing electron-beam-induced current contrast behavior. Phys Rev B,2001, 63:115208.
    [142]何杰,夏建白.半导体科学与技术科学出版社,2007.
    [143]H. Yoshida, K. Inaba and N. Sato. X-ray diffraction reciprocal space mapping study of the thin film phase of pentacene. Appl Phys Lett,2007,90:181930-181930-181933.
    [144]C. Londos, I. Antonova, M. Potsidou, A. Misiuk, J. Bak-Misiuk and A. Gutacovskii. Study of the conversion of the VO to the VO2 defect in silicon heat-treated under uniform stress conditions. J Appl Phys,2002,91:1198-1203.
    [145]Z. Hu, B. Thomas and A. Chernov. Laboratory multiple-crystal X-ray topography and reciprocal-space mapping of protein crystals:influence of impurities on crystal perfection. Acta Crystallographica Section D:Biological Crystallography,2001,57:840-846.
    [146]M. Golshan, P. Fewster, N. Andrew, P. Kidd, M. Moore and J. Butler. Three-dimensional reciprocal-space mapping of chemical vapour deposited diamond. Journal of Physics D: Applied Physics,2001,34:A44.
    [147]P. F. Fewster and N. L. Andrew. Strain analysis by X-ray diffraction. Thin Solid Films,1998, 319:1-8.
    [148]G. Bauer, J. Li and E. Koppensteiner. X-ray reciprocal space mapping of Si1-xGex heterostructures. J Cryst Growth,1995,157:61-67.
    [149]阚端麟,陈修治.硅材料科学与技术淅江大学出版社,2000.
    [150]P. F. Fewster. Reciprocal space mapping. Critical Reviews in Solid State and Material Sciences, 1997,22:69-110.
    [151]S. Fukatsu, Y. Mera, M. Inoue, K. Maeda, H. Akiyama and H. Sakaki. Time-resolved D-band luminescence in strain-relieved SiGe/Si. Appl Phys Lett,1996,68:1889-1891.
    [152]S. Binetti, R. Somaschini, A. Le Donne, E. Leoni, S. Pizzi, D. Li and D. Yang. Dislocation luminescence in nitrogen-doped Czochralski and float zone silicon. J Phys-Condens Mat,2002, 14:13247-13254.
    [153]S. Hu and W. Patrick. Effect of oxygen on dislocation movement in silicon. J Appl Phys,1975, 46:1869-1874.
    [154]M. Inoue, H. Sugimoto, M. Tajima, Y. Ohshita and A. Ogura. Microscopic and spectroscopic mapping of dislocation-related photoluminescence in multicrystalline silicon wafers. J Mater Sci-Mater El,2008,19:S132-S134.
    [155]M. Tajima, M. Ikebe, Y. Ohshita and A. Ogura. Photoluminescence Analysis of Iron Contamination Effect in Multicrystalline Silicon Wafers for Solar Cells. J Electron Mater,2010, 39:747-750.
    [156]H. F. Matare.Defect electronics in semiconductorsWiley-Interscience New York,1971.
    [157]E. Bowen and G. Garlick. Luminescence:International Science and Technology, no.56.1966.
    [158]A. Chynoweth and K. McKay. Photon emission from avalanche breakdown in silicon. Physical Review,1956,102:369.
    [159]J. Reiss, R. King and K. Mitchell. Characterization of diffusion length degradation in Czochralski silicon solar cells. Appl Phys Lett,1996,68:3302-3304.
    [160]J. D. Zook. Effects of grain boundaries in polycrystalline solar cells. Appl Phys Lett,1980,37: 223-226.
    [161]J. L. Maurice and C. Colliex. Fast diffusers Cu and Ni as the origin of electrical activity in a silicon grain boundary. Appl Phys Lett,1989,55:241-243.
    [162]O. Schultz, S. Glunz, S. Riepe and G. Willeke. High-efficiency solar cells on phosphorus gettered multicrystalline silicon substrates. Progress in Photovoltaics:Research and Applications,2006,14:711-719.
    [163]N. Stoddard, B. Wu, I. Witting, M. C. Wagener, Y. Park, G. A. Rozgonyi and R. Clark. Casting Single Crystal Silicon:Novel Defect Profiles from BP Solar's Mono2 TM Wafers. Solid State Phenom,2008,131:1-8.
    [164]X. Gu, X. Yu, K. Guo, L. Chen, D. Wang and D. Yang. Seed-assisted cast quasi-single crystalline silicon for photovoltaic application:Towards high efficiency and low cost silicon solar cells. Sol Energ Mat Sol C,2012,101:95-101.
    [165]I. Tarasov, S. Ostapenko, C. Haessler and E.-U. Reisner. Spatially resolved defect diagnostics in multicrystalline silicon for solar cells. Materials Science and Engineering:B,2000,71:51-55.
    [166]I. Tarasov, S. Ostapenko, V. Feifer, S. McHugo, S. Koveshnikov, J. Weber, C. Haessler and E.U. Reisner. Defect diagnostics using scanning photoluminescence in multicrystalline silicon. Physica B:Condensed Matter,1999,273:549-552.
    [167]T. Mchedlidze, W. Seifert, M. Kittler, A. Blumenau, B. Birkmann, T. Mono and M. Muller. Capability of photoluminescence for characterization of multi-crystalline silicon. J Appl Phys, 2012,111:073504.
    [168]M. Kittler, W. Seifert, T. Arguirov, I. Tarasov and S. Ostapenko. Room-temperature luminescence and electron-beam-induced current (EBIC) recombination behaviour of crystal defects in multicrystalline silicon. Sol Energ Mat Sol C,2002,72:465-472.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700