用户名: 密码: 验证码:
熔石英光学元件表面损伤修复的理论和实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
提升熔石英光学元件的抗激光损伤能力是保障高功率固体激光装置负载能力的重要因素。然而,目前元件表面的激光诱导损伤仍然是限制装置通量的“瓶颈”。抑制元件表面损伤以及损伤增长是保证通量水平和延长元件使用寿命的有效手段。本文正是基于提升熔石英光学元件抗激光损伤能力这一目的,通过充分调研,从理论模拟和实验上研究抑制熔石英光学元件表面损伤及损伤增长的方法。同时获得修复区域残余应力及退火去应力的物理规律,并通过损伤阈值、损伤寿命、损伤增长和光调制等方式考核修复效果,确定最终的优化方案及参数。论文主要研究内容和结论如下:
     1.研究了熔石英表面/亚表面划痕的特点、类型,以及损伤的特点和类型。结果表明:可以从划痕形貌上将其划分为横向、径向、赫兹锥形和“拖尾”划痕;从形成属性上可分为塑性、脆性和混合型划痕。损伤点的形貌与辐照激光光斑形貌有直接关系,如果光斑是空间高斯型分布,则形成的损伤点的形貌一般可分为麻点状、“贝壳”状和“紫罗兰”型损伤三类;如果光斑是空间平顶分布的光斑,除形成上述三种形貌的损伤外,还会形成一种类平顶型的损伤。
     2.从理论上研究了CO_2激光与熔石英材料相互作用后产生的熔融、气化及热应力等物理效应,得到CO_2激光单点和扫描作用熔石英表面后温度场和应力场分布的计算公式;分析CO_2激光作用熔石英表面时产生熔融、气化和烧蚀现象的原因,并得到相应的计算公式。
     3.研究了修复熔石英光学元件表面划痕的方法。采用理论模拟与实验结合的方法,获得修复参数。结果表明:对于元件表面上密集的划痕,为保证较好的修复效果,采用CO_2激光功率从低到高逐渐增加多次扫描形式修复最为合适。
     4.研究了修复熔石英光学元件表面各类尺寸损伤点的方法。结果表明:对于横向尺寸小于400μm,深度小于200μm的损伤点可以直接采用CO_2激光进行修复;对于横向尺寸为400μm~600μm,深度200μm~300μm的损伤点则采用HF刻蚀与CO_2激光相结合的方式进行修复。其中对横向尺寸小于400μm,深度小于200μm的损伤点的修复是本论文的研究重点。实验研究了蒸发式和非蒸发式两种修复方式,即高功率单次短时间辐照(方案Ⅰ)修复和低功率长时间多次辐照(方案Ⅱ)修复。并采用Ansys模拟这两种修复方式下温度随时间变化的规律与特点。
     5.研究了修复过程中影响修复点损伤阈值的烧蚀碎片和气泡的产生机制和控制方法。根据烧蚀程度可将其分为轻度烧蚀和重度烧蚀两种类型,并采用大光斑钝化和HF刻蚀去除这两类烧蚀;根据气泡的形貌可将其分为球形气泡和椭球形气泡两种类型,并得到气泡数量和尺寸与损伤阈值的关系。
     6.从理论和实验上研究了CO_2激光修复损伤点后形成残余应力的特点及消除方法。研究了等温退火和等时退火两种退火方式。结果表明,退火温度对残余应力的影响更为明显。对于同一元件上采用相同修复方式作用后得到的残余应力,只要退火参数能将最大光斑尺寸CO_2激光得到的残余应力消除即可。
     7.研究了残余应力及退火处理对修复点损伤阈值的影响。结果表明:未经退火处理的修复点的中心位置处的损伤阈值最高,而残余应力最大位置处的损伤阈值最低。当修复点中的残余应力被完全消除后,修复点整个区域的损伤阈值会回复或超过基底损伤阈值。
     8.从损伤阈值、损伤寿命和损伤增长三个方面研究了CO_2激光修复损伤的效果及规律。阈值结果表明:无论考核的激光光斑尺寸和形貌如何,修复点的损伤阈值都呈正态分布规律。对于相同形貌光斑而言,考核光斑的尺寸越大,得到的损伤阈值则越小。寿命考核结果表明:如果考核激光能量从低到高逐渐增加,则修复点的抗激光寿命明显延长;损伤增长考核结果表明:未经退火处理的修复点的损伤增长最快,当修复点周围残余应力小于5nm时,其损伤增长系数与熔石英基底损伤增长无差异。
     9.研究了采用不同尺寸CO_2激光光斑、不同修复方式得到的修复点对光的调制情况。结果表明:对于特定尺寸的CO_2激光光斑,方案Ⅰ得到的修复点对光产生的调制大于方案Ⅱ。修复点周围存在的凸起形状会加剧修复点对光的调制,必须控制或消除这些凸起形状以减小由此产生的光调制对下游元件的影响。
     采用理论模拟与实验验证相结合的方法,成功获得修复熔石英表面横向尺寸小于600μm,深度小于300μm损伤点的方法及关键参数。但仍有诸如更大尺寸损伤点的修复、面形控制、在小口径元件上获得的修复参数是否适合大口径元件等工作需进一步补充完善与验证,同时理论研究也需要进一步完善。
Improvement of the damage resistance capability of fused silica opticalcomponents is very important to achieve the high fluence output of high power solidlaser facilities. However, laser induced surface damage is still a ‘bottleneck’ to limit thefluence of facilities. Mitigating the surface damage and its growth is an effective way toensure the fluence level and prolong the life-time of components. Based on thismotivation, after sufficient document research, the dissertation focuses on the mitigationof damage and growth from theoretical simulation and experimental investigations. Atthe same time, the properties of residual stress and annealing parameters to eliminatestress are obtained. In addition, the optimized mitigation protocol and parameters areacquired according to the test results of damage threshold, life-time, damage growth andlight modulation. The important investigation contents and results are summarized asfollows:
     1. The characters and types of scratches and damage sites in the surface/subsurfaceof fused silica are investigated. The scratches can be classified as lateral scratch, radialscratch, Hertizan cone scratch and trailing indent scratch according to the morphologyand can be classified as plastic scratch, brittle scratch and mixed scratch according tothe forming properties. The morphology of damage sites is directly related to the profileof laser beam. The damage morphology can be divided into gray haze,‘mussel’ typeand ‘pansy’ type if the beam is spatial Gaussian distribution. There will be anotherflat-top type damage if the beam is spatial flat-top distribution.
     2. The physical effect such as melting, evaporation and thermal stresss betweenCO_2laser and fused silica material are discussed from theoretical analysis. Thetemperature and stress field distribution expressions are obtained for the damage repaireby CO_2laser in point-to-point and scanning modes. The physical mechanism of melting,evaporation and ablation are discussed theoretically and the corresponding formulas andalso obtained.
     3. The mitigation methods for surface scratches in the surface of fused silica areinvestigated. The repair parameters are obtained via theoretical simulation together with experiments. In order to ensure good mitigation, the CO_2laser power should beincreased step by step and the surface should be scanned for many times.
     4. The mitigation protocol for various sizes of damage sites in the surface of fusedsilica is systemically investigated. The results show that it can be repaired by CO_2laserdirectly when the lateral size of damage site less than400μm and depth less than200μm. If the lateral size of damage site is ranging from400μm to600μm, and the depthranging from200μm to300μm, it should be mitigated with HF etching combined withCO_2laser. How to repair the damage site less than400μm and the depth less than200μm is the principal investigation content in this dissertation. Two mitigation methods,high-power, short-time, single-shot (Method Ⅰ) irradiation and low-power, long-time,multi-shot (Method Ⅱ) irradiation, are presented. Meanwhile, the temperature fielddistribution for the corresponding method is also obtained by Ansys simulation.
     5. The formation mechanisms and elimination methods of the ablation debris andbubbles are studied since they seriously influence the damage threshold of mitigatedsites. The ablation can be classified as heavy ablation and light ablation and the debriscan be eliminated by large-beam passivation or HF etching. The bubbles can be alsoclassified as two types: sphere and ellipsoid. Meanwhile, the relationships between thenumber and size of bubbles and damage threshold are obtained.
     6. The property and elimination method of residual stress are investigated bytheoretical simulation and experiments. Isothermal annealing and isochronous annealingare investigated. It is shown that the influence of temperature on annealing effect ismore obvious. For the residual stress obtained with same mitigation technique on samecomponents, it can be completely eliminated as long as the residual stress resulting fromthe maximum size of CO_2laser beam can be eliminated with the annealing parameters.
     7. The effects of annealing and residual stress on the damage threshold of mitigatedsites are investigated. It is shown that the mitigated site has the highest damagethreshold at the center of site and the lowest damage threshold at the location ofmaximum residual stress for the mitigated sites before annealing. The damage thresholdof mitigated sites can recover to or exceed the original substrate threshold aftereliminating the residual stress completely.
     8. The mitigation effect is studied from three aspects: damage threshold, life-timeand damage growth. It is shown that the damage threshold obeys the normal distribution, which is independent of the size or profile of the test laser beam. A lower damagethreshold will be obtained with a larger test laser beam for the same profile of laserbeam. The life-time test results show that the life-time will be enhanced if increasing theirradiation fluence gradually. The damage growth test results show the growthcoefficient is the largest for the unannealing mitigated site. There is no evidentdifference on growth coefficient for the mitigated site with retardance of residual stressless than5nm comparing with that of fused silica substrate.
     9. The modulation effects of mitigated site obtained by different sizes of CO_2laserbeams and methods are investigated. It is shown that the modulation obtained byMethod Ⅰ is larger than that of Method Ⅱ for any sizes of CO_2laser beam. Meanwhile,it should control or eliminate the raised rim around the mitigated site to prevent itproducing a higher modulation. Otherwise, it potentially endangers the downstreamoptical components.
     Based on the theoretical simulation together with experimental investigations, inthis the dissertation the method and parameters are successfully obtained to mitigate thedamage site with lateral size less than600μm and depth less than300μm. However,further investigation is need to validate the mitigation technique on large damage site,wave-front quality control and the mitigation parameters transfer from small optics tolarge-scale optics. Meanwhile, theoretical simulation also needs further investigation.
引文
[1]黄晚晴.大口径熔石英元件表面激光损伤特性研究[D].绵阳:中国工程物理研究院,2009,1-16
    [2] J. H. Campbell, R. A. Hawley-Fedder, C. J. Stolz, et al. NIF optical materials and fabricationtechnologies: an overview[J]. Proc. of SPIE,2004,5341:84-101
    [3] M. A. Norton, E. E. Donohue, M. D. Feit, et al. Growth of laser damage on the input surface ofSiO2at351nm[J]. Proc. of SPIE,2007,6403:64030L
    [4] M. A. Norton, E. E. Donohue, W. G. Hollingsworth, et al. Growth of laser initiated damage infused silica at1053nm[J]. Proc. of SPIE,2004,5647:197-205
    [5] F. Y. Genin, A. Salleo, T. V. Pistor, et al. Role of light intensification by cracks in opticalbreakdown on surfaces[J]. J. Opt. Soc. Am. A,2001,18(10):2607-2616
    [6] N. Bloembergen. Role of cracks, pores, and absorbing inclusions on laser induced damagethreshold at surfaces of transparent dielectrics[J]. Applied Optics,1973,12(4):661-664
    [7] T. I. Suratwala, P. E. Miller, J. D. Bude, et al. HF‐Based Etching Processes for Improving LaserDamage Resistance of Fused Silica Optical Surfaces[J]. Journal of the American CeramicSociety,2011,94(2):416-428
    [8] J. S. Hunt. National ignition facility performance review1999[R]. Livermore, CA: LawrenceLivermore National Laboratory (LLNL),2000
    [9] A. K. Burnham, L. Hackel, P. Wegner, et al. Improving351-nm damage performance oflarge-aperture fused silica and DKDP optics[J]. Proc. of SPIE,2002,4679:173-185
    [10] A. Conder, T. Alger, S. Azevedo, et al. Final optics damage inspection (FODI) for the NationalIgnition Facility[J]. Proc. of SPIE,2007,6720:672010
    [11] J. J. Adams, J. A. Jarboe, M. D. Feit, et al. Comparison between S/1and R/1tests and damagedensity vs. fluence (ρ(φ)) results for unconditioned and sub-nanosecond laser-conditionedKD2PO4crystals[J]. Proc. of SPIE,2007,6720:672014
    [12] J. Heebner, M. Borden, P. Miller, et al. A programmable beam shaping system for tailoring theprofile of high fluence laser beams[J]. Proc. of SPIE,2010,7842:78421C
    [13] T. Suratwala, L. Wong, P. Miller, et al. Sub-surface mechanical damage distributions duringgrinding of fused silica[J]. Journal of non-crystalline solids,2006,352(52):5601-5617
    [14] P. E. Miller, T. I. Suratwala, L. L. Wong, et al. The distribution of subsurface damage in fusedsilica[J]. Proc. of SPIE,2005,5991:1-25
    [15] T. Hoshino, Y. Kurata, Y. Terasaki, et al. Mechanism of polishing of SiO2films by CeO2particles[J]. Journal of non-crystalline solids,2001,283(1):129-136
    [16] T. Kamimura, S. Akamatsu, H. Horibe, et al. Enhancement of surface-damage resistance byremoving subsurface damage in fused silica and its dependence on wavelength[J]. Japanesejournal of applied physics,2004,43:1229-1231
    [17] J. A. Menapace, P. J. Davis, W. A. Steele, et al. Utilization of magnetorheological finishing as adiagnostic tool for investigating the three-dimensional structure of fractures in fused silica[J].Proc. of SPIE,2005,5991:599102
    [18] J. A. Menapace, P. J. Davis, W. A. Steele, et al. MRF applications: measurement ofprocess-dependent subsurface damage in optical materials using the MRF wedge technique[J].Proc. of SPIE,2005,5991:39-49
    [19] J. A. Menapace, P. J. Davis, W. A. Steele, et al. MRF applications: on the road to makinglarge-aperture ultraviolet laser resistant continuous phase plates for high-power lasers[J]. Proc.of SPIE,2006,6403:64030N
    [20]张立锋,贺新升.磁流变抛光技术发展趋势及抛光工具研究[J].科协论坛,2010,9:71-72
    [21]张峰,张学军.磁流变抛光材料去除的研究[J].光学技术,2001,27(006):522-523
    [22] C. L. Battersby, L. M. Sheehan, M. R. Kozlowski. Effects of wet etch processing onlaser-induced damage of fused silica surfaces[J]. Laser-Induced Damage in Optical Materials,1998,446-455
    [23] J. Neauport, L. Lamaignere, H. Bercegol, et al. Polishing-induced contamination of fused silicaoptics and laser induced damage density at351nm[J]. Optics Express,2005,13(25):10163-10171
    [24] G. H. Hu, Y. A. Zhao, D. W. Li, et al. Studies of laser damage morphology reveal subsurfacefeature in fused silica[J]. Surface and Interface Analysis,2010,42(9):1465-1468
    [25] M. D. Feit, L. W. Hrubesh, A. M. Rubenchik, et al. Scaling relations for laser damage initiationcraters[J]. Proc. of SPIE,2001,4347:316-323
    [26] H. Bercegol, R. Courchinoux, M. A. Josse, et al. Observation of laser-induced damage on fusedsilica initiated by scratches[J]. Proc. of SPIE,2005,5647:78-85
    [27] M. D. Feit, T. I. Suratwala, L. L. Wong, et al. Modeling wet chemical etching of surface flawson fused silica[J]. Proc. of SPIE,2009,7504:75040L
    [28] G. A. C. M. Spierings. Wet chemical etching of silicate glasses in hydrofluoric acid basedsolutions[J]. Journal of materials science,1993,28:6261-6273
    [29]徐世珍,吕海兵,田东斌,等.酸蚀深度对熔石英三倍频激光损伤阈值的影响[J].强激光与粒子束,2008,20(005):760-764
    [30] L. Wong, T. Suratwala, M. D. Feit, et al. The effect of HF/NH4F etching on the morphology ofsurface fractures on fused silica[J]. Journal of non-crystalline solids,2009,355(13):797-810
    [31] J. M. Yoshiyama, F. Y. Genin, A. Salleo, et al. Effects of polishing, etching, cleaving, and waterleaching on the UV laser damage of fused silica[J].1998,3244:331-340
    [32] P. Bouchut, P. Garrec, C. Pelle. Wet etching for the mitigation of laser damage growth in fusedsilica[J]. Proc. of SPIE,2003,4932:103-111
    [33] P. Sigmund. Theory of sputtering. I. Sputtering yield of amorphous and polycrystallinetargets[J]. Physical Review,1969,184(2):383-416
    [34] P. Sigmund. A mechanism of surface micro-roughening by ion bombardment[J]. Journal ofmaterials science,1973,8(11):1545-1553
    [35] P. G. Gloersen. Ion-beam etching[J]. Journal of Vacuum Science and Technology,1975,12(1):28-35
    [36] S. C. Fawcett, T. W. Drueding, T. G. Bifano. Development of an ion figuring system forcentimeter scale optical components[J]. Proc. of SPIE,1994,2263:164-167
    [37] G. Carter. The physics and applications of ion beam erosion[J]. Journal of Physics D: AppliedPhysics,2001,34(3): R1-R22
    [38] F. Frost, R. Fechner, D. Flamm, et al. Ion beam assisted smoothing of optical surfaces[J].Applied Physics A: Materials Science&Processing,2004,78(5):651-654
    [39] F. Frost, R. Fechner, B. Ziberi, et al. Large area smoothing of optical surfaces by low-energy ionbeams[J]. Thin Solid Films,2004,459(1):100-105
    [40] B. G. Bovard. Ion-assisted processing of optical coatings[J]. Thin Solid Films,1991,206(1-2):224-229
    [41] T. Kamimura, S. Akamatsu, M. Yamamoto, et al. Enhancement of surface-damage resistance byremoving subsurface damage in fused silica[J]. Proc. of SPIE,2004,5273:244-249
    [42] D. Flamm, A. Schindler, M. Berger. Ion beam milling of optically polished CaF2surfaces[J].Proc. of SPIE,2004,5180:81-88
    [43] D. B. Fenner, V. DiFilippo, J. Bennett, et al. Ion beam nanosmoothing of sapphire and siliconcarbide surfaces[J]. Proc. of SPIE,2001,4468:17-24
    [44] T. Kamimura, S. Fukumoto, R. Ono, et al. Enhancement of CsLiB6O10surface-damageresistance by improved crystallinity and ion-beam etching[J]. Optics letters,2002,27(8):616-618
    [45] C. Youtsey, R. Grundbacher, R. Panepucci, et al. Characterization of chemically assisted ionbeam etching of InP[J]. Journal of Vacuum Science&Technology B: Microelectronics andNanometer Structures,1994,12(6):3317-3321
    [46] T. Kamimura, K. Nakai, Y. Mori, et al. Improvement of laser-induced surface damage in UVoptics by ion beam etching (CsLiB6O10and fused silica)[J]. Proc. of SPIE,1999,3578:695-701
    [47] T. Kamimura, K. Nakai, M. Yoshimura, et al. High damage resistivity of optical surface for UVlasers by ion beam etching[J]. Review of Laser Engineering-Laser Society of Japan,1999,27(9):623-627
    [48] T. Kamimura, Y. Mori, T. Sasaki, et al. Ion etching of fused silica glasses for high-powerlasers[J]. Japanese journal of applied physics,1998,37:4840-4841
    [49]洪义麟,黄文浩.用氩离子束抛光制作石英超光滑表面[J].科学通报,1995,40(5):476-477
    [50]黄文浩,章海军,诸家如,等.超光滑表面的离子束抛光与微观形貌检测[J].仪器仪表学报,1995,16(1):201-205
    [51]王旭迪,刘颖,徐向东,等.石英和BK7玻璃的离子束刻蚀特性研究[J].真空科学与技术学报,2005,24(5):397-400
    [52]周洪军,洪义麟,徐向东,等.离子束刻蚀机工作台的改造[J].真空,2000,5:39-40
    [53]刘颖,徐德权,徐向东,等.几种常用光学材料的离子束刻蚀特性研究[J].中国科学技术大学学报,2008,5:536-538
    [54]焦长君,李圣怡,王登峰,等.离子束加工光学镜面的材料去除特性[J].光学精密工程,2007,15(10):1520-1526
    [55] R. M. Brusasco, B. M. Penetrante, J. E. Peterson, et al. UV laser conditioning for reduction of351-nm damage initiation in fused silica[J]. Proc. of SPIE,2002,4679:48-55
    [56] J. Menapace, B. Penetrante, P. Miller, et al. Combined advanced finishing and UV-laserconditioning for producing UV-damage-resistant fused silica optics[J]. Proc. of SPIE,2002,4679:56-68
    [57] D. R. Sempolinski, T. P. Seward, C. Smith, et al. Effects of glass forming conditions on theKrF-excimer-laser-induced optical damage in synthetic fused silica[J]. Journal ofnon-crystalline solids,1996,203:69-77
    [58] H. Piombini, D. Damiani, G. Damamme, et al. Highlighting of local inhomogeneity in excimerconditioning of KDP[J]. Proc. of SPIE,2005,5647:279-289
    [59] N. Kuzuu and M. Murahara. Effects of synthesis conditions on existence and nonexistence ofthe ArF excimer laser and x-ray induced2band in type-III fused silicas[J]. Physical Review B,1995,52(5):3241-3247
    [60] D. Damiani, H. Piombini, D. Plessis, et al. Excimer laser conditionning of KDP: influence ofthe laser parameters and crystal orientation on the laser damage threshold[J]. Proc. of SPIE,2005,5647:290-297
    [61] C. J. Stolz, L. M. Sheehan, S. M. Maricle, et al. A study of laser conditioning methods of hafniasilica multilayer mirrors[J]. Proc. of SPIE,1999,3578:144-152
    [62] J. Hue, S. M. Maricle, S. Schwartz, et al. Laser conditioning methods of Hafnia Silicamultilayer mirrors[J]. Proc. of SPIE,1999,3264:105-112
    [63] C. Wei, H. He, J. Shao, et al. Effects of CO2laser conditioning of the antireflection Y2O3/SiO2coatings at351nm[J]. Optics communications,2005,252(4):336-343
    [64] P. A. Temple, W. H. Lowdermilk, D. Milam. Carbon dioxide laser polishing of fused silicasurfaces for increased laser-damage resistance at1064nm[J]. Applied Optics,1982,21(18):3249-3255
    [65] M. A. Stevens-Kalceff and J. Wong. Distribution of defects induced in fused silica by ultravioletlaser pulses before and after treatment with a CO2laser[J]. Journal of applied physics,2005,97(11):113519
    [66] L. Lamaignere, H. Bercegol, P. Bouchut, et al. Enhanced optical damage resistance of fusedsilica surfaces using UV laser conditioning and CO2laser treatment[J]. Proc. of SPIE,2004,5448:952-960
    [67]黄进,吕海兵,叶琳,等.利用CO2激光预处理提高熔石英基片的损伤阈值[J].中国激光,2007,34(5):723-727
    [68] R. M. Brusasco, B. M. Penetrante, J. E. Peterson, et al. CO2-Laser polishing for reduction of351-nm surface damage initiation in fused silica[J]. Proc. of SPIE,2001,4679:34-39
    [69] A. During, L. Lamaignere, P. R. Bouchut, et al. Integrated facility of UV and IR laser process toenhance laser damage resistance of large scale3w optics[J]. Proc. of SPIE,2005,5647:177-186
    [70] L. Gallais, H. Krol, J. Y. Natoli, et al. Laser damage resistance of silica thin films deposited byelectron beam deposition, ion assisted deposition, reactive low voltage ion plating and dual ionbeam sputtering[J]. Thin Solid Films,2007,515(7):3830-3836
    [71] L. Gallais, J. Capoulade, J. Y. Natoli, et al. Laser damage resistance of hafnia thin filmsdeposited by electron beam deposition, reactive low voltage ion plating, and dual ion beamsputtering[J]. Applied Optics,2008,47(13): C107-C113
    [72] R. R. Prasad, J. R. Bruere, J. Peterson, et al. Enhanced performance of large3ω optics using UVand IR lasers[J]. Proc. of SPIE,2004,5273:288-295
    [73] P. DeMange, R. A. Negres, C. W. Carr, et al. A multi-dimensional investigation of laserconditioning in KDP and DKDP crystals[J]. Proc. of SPIE,2005,5991:599107
    [74] M. Kozlowski, S. Demos, Z. L. Wu, et al.3ω Damage: Growth Mitigation[R]. Livermore, CA:Lawrence Livermore National Laboratory (LLNL),2001
    [75] L. W. Hrubesh, M. A. Norton, W. A. Molander, et al. Chemical Etch Effects on Laser-InducedSurface Damage Growth in Fused Silica[J]. Proc. of SPIE,2001,4347:553-559
    [76] I. L. Bass, G. M. Guss, M. J. Nostrand, et al. An improved method of mitigating laser inducedsurface damage growth in fused silica using a rastered, pulsed CO2laser[J]. Proc. of SPIE,2010,7842:784220
    [77] J. J. Adams, J. D. Bude, M. Bolourchi, et al. Results of applying a non-evaporative mitigationtechnique to laser-initiated surface damage on fused-silica[J]. Proc. of SPIE,2010,7842:784223
    [78] S. T. Yang, M. J. Matthews, S. Elhadj, et al. Comparing the use of4.6μm lasers versus10.6μmlasers for mitigating damage site growth on fused silica surfaces[J]. Proc. of SPIE,2010,7842:784219
    [79] R. M. Brusasco, B. M. Penetrante, J. A. Butler, et al. Localized CO2laser treatment formitigation of351nm damage growth on fused silica[J]. Proc. of SPIE,2002,4679:40-47
    [80] L. W. Hrubesh, M. A. Norton, W. A. Molander, et al. Methods for mitigating surface damagegrowth in NIF final optics[J]. Proc. of SPIE,2002,4679:23-33
    [81] P. Bouchut, L. Delrive, D. Decruppe, et al. Local re-fusion of silica, by a continuous CO2laser,for the mitigation of laser damage growth[J]. Proc. of SPIE,2004,5252:122-130
    [82] I. L. Bass, G. M. Guss, R. P. Hackel. Mitigation of laser damage growth in fused silica with agalvanometer scanned CO2laser[J]. Proc. of SPIE,2005,5991:59910C
    [83] G. Guss, I. Bass, V. Draggoo, et al. Mitigation of growth of laser initiated surface damage infused silica using a4.6-micron wavelength laser[J]. Proc. of SPIE,2006,6403:64030M
    [84] A. During, P. Bouchut, J. G. Coutard, et al. Mitigation of laser damage on fused silica surfaceswith a variable profile CO2laser beam[J]. Proc. of SPIE,2007,6403:640323
    [85] R. R. Prasad, J. R. Bruere, J. Halpin, et al. Design of a production process to enhance opticalperformance of3ω optics[J]. Proc. of SPIE,2004,5273:296-302
    [86] I. L. Bass, V. G. Draggoo, G. M. Guss, et al. Mitigation of laser damage growth in fused silicaNIF optics with a galvanometer scanned CO2laser [J]. Proc. of SPIE,2006,6261:62612A
    [87] M. D. Feit and A. M. Rubenchik. Mechanisms of CO2laser mitigation of laser damage growthin fused silica[J]. Proc. of SPIE,2003,4932:91-102
    [88] M. D. Feit and A. M. Rubenchik. Modeling of laser induced damage in NIF UV optics[R]. CA(US): Lawrence Livermore National Lab.,2001
    [89] M. D. Feit, A. M. Rubenchik, C. D. Boley, et al. Development of a process model for CO2lasermitigation of damage growth in fused silica[J]. Proc. of SPIE,2004,5273:145-154
    [90] L. Gallais, P. Cormont, J. L. Rullier. Birefringence and residual stress induced by CO2lasermitigation of damage growth in fused silica[J]. Proc. of SPIE,2009,7504:75040Z
    [91] L. Gallais, P. Cormont, J. L. Rullier. Investigation of stress induced by CO2laser processing offused silica optics for laser damage growth mitigation[J]. Optics Express,2009,17(26):23488-23501
    [92] P. Cormont, L. Gallais, L. Lamaignère, et al. Effect of CO2laser annealing on residual stressand on laser damage resistance for fused silica optics[J]. Proc. of SPIE,2010,7842:78422C
    [93] M. D. Feit, A. M. Rubenchik, J. B. Trenholme. Simple model of laser damage initiation andconditioning in frequency conversion crystals[J]. Proc. of SPIE,2005,5991:59910W
    [94] M. A. Norton, J. J. Adams, C. W. Carr, et al. Growth of laser damage in fused silica: diameter todepth ratio[J]. Proc. of SPIE,2007,6720:67200H
    [95] C. Y. Wei, H. B. He, J. D. Shao, et al. Calculation of temperature field of CO2laser conditioningof fused silica[J]. Proc. of SPIE,2004,5774:111-115
    [96] Y. M. Xiao and M. Bass. Thermal stress limitations to laser fire polishing of glasses[J]. AppliedOptics,1983,22(18):2933-2936
    [97] S. T. Yang, M. J. Matthews, S. Elhadj, et al. Thermal transport in CO2laser irradiated fusedsilica: in situ measurements and analysis[J]. Journal of applied physics,2009,106(10):103106
    [98] M. J. Matthews, J. S. Stolken, R. M. Vignes, et al. Residual stress and damage-induced criticalfracture on CO2laser treated fused silica[J]. Proc. of SPIE,2009,7504:750410
    [99] A. M. Rubenchik and M. D. Feit. Initiation, growth and mitigation of UV laser induced damagein fused silica[J]. Proc. of SPIE,2002,4679:79-95
    [100]赵建君,宋春荣,牛燕雄.强激光辐照光学材料的热力效应研究[J].激光杂志,2005,26(1):31-32
    [101]段晓峰,汪岳峰,牛燕雄,等.激光辐照光学材料热力效应的解析计算和损伤评估[J].中国激光,2004,31(12):1455-1459
    [102]王伟平,谭福利,吕百达.强激光束辐照下窗口材料热力效应数值模拟[J].激光技术,2006,29(5):452-454
    [103]黄峰,牛燕雄,汪岳峰,等.光学窗口材料激光辐照热力效应的解析计算研究[J].光学学报,2006,26(4):576-580
    [104]王玺,李化,聂劲松. ANSYS在脉冲CO2激光对K9玻璃损伤过程模拟中的应用研究[J].应用激光,2008,28(001):53-56
    [105] Guignard F., Autric M., Baudinaud V. Temperature and residual stress evolution in CO2laserirradiated glass[J]. Proc. of SPIE,1998,3343:534-545
    [106] C. Wei, H. He, Z. Deng, et al. Study of thermal behaviors in CO2laser irradiated glass[J].Optical Engineering,2005,44:044202
    [107] J. L. Oca a, A. García-Beltrán, F. Laguarta, et al. Laser heat treatments driven by integratedbeams: role of irradiation nonuniformities[J]. Applied Optics,1999,38(21):4570-4576
    [108] P. Bouchut, D. Decruppe, L. Delrive. Fused silica thermal conductivity dispersion at hightemperature[J]. Journal of applied physics,2004,96(6):3221-3227
    [109] K. M. Nowak, H. J. Baker, D. R. Hall. Efficient laser polishing of silica micro-opticcomponents[J]. Applied Optics,2006,45(1):162-171
    [110] P. P. Hed, D. F. Edwards, J. B. Davis. Subsurface damage in optical materials: origin,measurement and removal[C]. ASPE spring conference on subsurface damage is glass, Tucson,AZ,1988,1-34
    [111] D. W. Camp, M. R. Kozlowski, L. M. Sheehan, et al. Subsurface damage and polishingcompound affect the355-nm laser damage threshold of fused silica surfaces[J].1998,3244:356
    [112] T. Suratwala, P. Miller, M. Feit, et al. Scratch forensics[J]. Opt.&Photo. News,2008,20(9):12-15
    [113] A. Kar and J. Mazumder. Two-dimensional model for material damage due to melting andvaporization during laser irradiation[J]. J. Appl. Phys.,1990,68(8):3884-3891
    [114] S. Demos, M. Staggs, K. Minoshima, et al. Characterization of laser induced damage sites inoptical components[J]. Optics Express,2002,10(25):1444-1450
    [115] M. D. Feit, A. M. Rubenchik, D. R. Faux, et al. Modeling of laser damage initiated by surfacecontamination[J]. Laser-Induced Damage in Optical Materials,1996,417-424
    [116] M. R. Kozlowski and S. G. Demos. Properties of modified silica detected within laser-induceddamage sites[J]. Proc. of SPIE,2000,4102:106-111
    [117] J. Wong, JL Ferriera, EF Lindsey, et al. Morphology and microstructure in fused silica inducedby high fluence ultraviolet3ω (355nm) laser pulses[J]. Journal of non-crystalline solids,2006,352(3):255-272
    [118] M. A. Stevens-Kalceff, A. Stesmans, J. Wong. Defects induced in fused silica by high fluenceultraviolet laser pulses at355nm[J]. Applied physics letters,2002,80(5):758-760
    [119] L. Skuja. Optically active oxygen-deficiency-related centers in amorphous silicon dioxide[J].Journal of non-crystalline solids,1998,239(1):16-48
    [120] G. W. Arnold, G. Battaglin, G. Mattei, et al. Implantation-induced structural changes andhydration in silicate glasses[J]. Nuclear Instruments and Methods in Physics Research SectionB: Beam Interactions with Materials and Atoms,2000,166:440-444
    [121] M. Mosbacher, H.J. Münzer, J. Zimmermann, et al. Optical field enhancement effects inlaser-assisted particle removal[J]. Applied Physics A: Materials Science&Processing,2001,72(1):41-44
    [122] C. W. Carr, M. J. Matthews, J. D. Bude, et al. The effect of laser pulse duration onlaser-induced damage in KDP and SiO2[J]. Proc. of SPIE,2007,6403:64030K
    [123]百度百科.无损检测[OL]. http://baike.baidu.com/view/187964.htm:百度,5月,2012
    [124] J. C. Lambropoulos, S. D. Jacobs, J. Ruckman. Material removal mechanisms from grinding topolishing[J]. Ceram. Trans,1999,102:113-128
    [125]张银霞.单晶硅片超精密磨削加工表面层损伤的研究[D].大连:大连理工大学,2006,32-34
    [126] F. W. Preston. The structure of abraded glass surfaces[J]. Transactions of the Optical Society,1922,23:141
    [127] J. W. Carr, E. Fearon, J. Haack, et al. Subsurface structure in polished fused silica and diamondturned single crystal silicon[R]. United States: Lawrence Livermore National Laboratory,1999
    [128]王卓.光学材料加工亚表面损伤检测及控制关键技术研究[D].长沙:国防科学技术大学,2008,24-25
    [129] J. W. Carr, E. Fearon, L. J. Summers, et al. Subsurface damage assessment with atomic forcemicroscopy[R]. United States: Lawrence Livermore National Laboratory,1999
    [130]蒋勇,袁晓东,向霞,等.熔石英亚表面微缺陷原位表征及损伤阈值研究[J].光电子.激光,2010,21(10):1519-1523
    [131] L. M. Sheehan, M. R. Kozlowski, D. W. Camp. Application of total internal reflectionmicroscopy for laser damage studies on fused silica[J]. Proc. of SPIE,1998,3244:282-295
    [132] P. A. Temple. Total internal reflection microscopy: a surface inspection technique[J]. AppliedOptics,1981,20(15):2656-2664
    [133] J. Neauport, P. Cormont, P. Legros, et al. Imaging subsurface damage of grinded fused silicaoptics by confocal fluorescence microscopy[J]. Optics Express,2009,17(5):3543-3554
    [134]张际.强激光系统光学元件损伤暗场成像检测可行性研究[D].成都:四川大学,2007,12-28
    [135] P. H. Tomlins and R. K. Wang. Theory, developments and applications of optical coherencetomography[J]. Journal of Physics D: Applied Physics,2005,38(15):2519-2535
    [136] J. G tze, M. Pl tze, D. Habermann. Origin, spectral characteristics and practical applicationsof the cathodoluminescence (CL) of quartz–a review[J]. Mineralogy and Petrology,2001,71(3):225-250
    [137] Z. Wu, L. Sheehan, M. Kozlowski. Laser modulated scattering as a nondestructive evaluationtool for defect inspection in optical materials for high power laser applications[J]. OpticsExpress,1998,3(10):376-383
    [138] A. During, M. Commandre, C. Fossati, et al. Integrated photothermal microscope and laserdamage test facility for in-situ investigation of nanodefect induced damage[J]. Optics Express,2003,11(20):2497-2501
    [139] L. W. Hobbs and M. R. Pascucci. Radiolysis and defect structure in electron-irradiatedα-quartz[J]. Le Journal de Physique Colloques,1980,41(C6):237-243
    [140] J. Becker and A. Bernhardt. ISO-11254: an international standard for the determination of thelaser-induced damage threshold[J]. Proc. of SPIE,1994,2114:703-713
    [141]陆建,倪晓武,贺安之.激光与材料相互作用物理学[M].北京:机械工业出版社,1996,18-50
    [142] E. Mendez, H. J. Baker, K. M. Nowak, et al. Highly localised CO2laser cleaning and damagerepair of silica optical surfaces[J]. Proc. of SPIE,2005,5647:165-176
    [143]孙承纬,范正修,陆启生.激光辐照效应[M].北京:国防工业出版社,2002,1-293
    [144] A. D. McLachlan and F. P. Meyer. Temperature dependence of the extinction coefficient offused silica for CO2laser wavelengths[J]. Applied Optics,1987,26(9):1728-1731
    [145]张朝晖. Ansys热分析教程与实例分析[M].北京:中国铁道出版社,2007,21
    [146] L. P. Welsh, J. A. Tuchman, I. P. Herman. The importance of thermal stresses and strainsinduced in laser processing with focused Gaussian beams[J]. Journal of applied physics,1988,64(11):6274-6286
    [147]李俊昌.激光的衍射及热作用计算[M].北京:科学出版社,2002,341-432
    [148]龚曙光,黄云清.有限元分析与ANSYS APDL编程及高级应用[M].北京:机械工业出版社,2009,236-241
    [149]曹丁象.高功率固体激光系统的热效应及热管理研究[D].长沙:国防科学技术大学,2008,49-52
    [150] R. H. Doremus. Viscosity of silica[J]. Journal of applied physics,2002,92:7619
    [151] N. M. Parikh. Effect of atmosphere on surface tension of glass[J]. Journal of the AmericanCeramic Society,1958,41(1):18-22
    [152] S. I. Anisimov and V. A Khokhlov. Instabilites in Laser-matter interaction[M]. Florida: CRCPress,1995,5-18
    [153]黄晨光,段祝平.透明光学材料中缺陷吸收激光能量引起的热应力与断裂[J].强激光与粒子束,2002,14(2):213-217
    [154]焦俊科,王新兵,卢宏.石英玻璃在激光作用下的温度与应力场分析[J].激光技术,2007,31(4):427-430
    [155]刘红婕,黄进,王凤蕊,等.熔石英表面热致应力对激光损伤行为影响的研究[J].物理学报,2010,59(2):1308-1313
    [156]陈发良.强激光辐照下窗口材料靶传热及热应力破裂的解析分析[J].强激光与粒子束,1996,8(4):595-601
    [157]强希文,张建泉,刘峰,等.强激光辐照半导体材料的温升及热应力损伤的理论研究[J].中国激光,2000,27(8):709-713
    [158]焦俊科,王新兵,王小华.钠钙玻璃在CO2激光作用下的热应力分析[J].华中科技大学学报(自然科学版),2007,53(z1):115-117
    [159]杜少军,陆启生,舒柏宏.激光窗口热效应和应力双折射的分析[J].强激光与粒子束,2004,16(5):575-581
    [160]罗福,孙承纬,杜祥琬.1.06μm连续激光照射下K9玻璃板的应力松驰破坏[J].强激光与粒子束,2004,13(1):19-23
    [161]吴非.强激光辐照下结构热力效应分析[D].长沙:国防科学技术大学,2006,33-69
    [162]牛燕雄.光电系统的强激光破坏及防护技术研究[D].天津:天津大学,2005,27-31
    [163] C. K. Youngdahl. On the completeness of a set of stress functions appropriate to the solution ofelasticity problems in general cylindrical coordinates[J]. International Journal of EngineeringScience,1969,7(1):61-79
    [164]任学平,高耀东.弹性力学基础及有限元单元法[M].武汉:华中科技大学出版社,2007,44-47
    [165] S. T. Yang, M. J. Matthews, S. Elhadj, et al. Comparing the use of mid-infrared versusfar-infrared lasers for mitigating damage growth on fused silica[J]. Applied Optics,2010,49(14):2606-2616
    [166] J. Zhao, J. Sullivan, J. Zayac, et al. Structural modification of silica glass by laser scanning[J].Journal of applied physics,2004,95(10):5475-5482
    [167] J. Zhao, J. Sullivan, T. D. Bennett. Wet etching study of silica glass after CW CO2lasertreatment[J]. Applied Surface Science,2004,225(1):250-255
    [168] C. M. Liu, Y. Jiang, C. S. Luo, et al. The Structure Evolution of Fused Silica Induced by CO2Laser Irradiation[J]. Chinese Physics Letters,2012,29(4):044211
    [169] M. J. Matthews, I. L. Bass, G. M. Guss, et al. Downstream intensification effects associatedwith CO2laser mitigation of fused silica[J]. Proc. of SPIE,2007,6720:67200A
    [170] E. Mendez, K. M. Nowak, H. J. Baker, et al. Localized CO2laser damage repair of fused silicaoptics[J]. Applied Optics,2006,45(21):5358-5367
    [171] M. Prokopowicz-Prigogine. Reactivity of a silica network of glass: molecular mechanism ofthe dissolution of a silica network in aqueous HF-HCl solutions[J]. Glastechnische Berichte,1989,62(7):249-255
    [172] M. D. Feit, M. J. Matthews, T. F. Soules, et al. Densification and residual stress induced byCO2laser-based mitigation of SiO2surfaces[J]. Proc. of SPIE,2010,7842:78420O
    [173] C. Z. Tan and Arndt J. Temperature dependence of refractive index of glassy SiO2in theinfrared wavelength range[J]. Journal of Physics and Chemistry of Solids,2000,61:1315-1320
    [174] J. Sullivan, J. Zhao, T. D. Bennett. Measurement of thermally induced changes in therefractive index of glass caused by laser processing[J]. Applied Optics,2005,44(33):7173-7180
    [175]孔敏,隋梅,王慧,等.高性能石英玻璃精密退火工艺研究[J].武汉理工大学学报,2010,32(22):149-152
    [176]干福熹.光学玻璃[M].北京:科学出版社,1964,353-388
    [177] L. H. Adams and E. D. Williamson. A note on the annealing of optical glass[J]. Journal of theOptical Society of America,1920,4(4):213-223
    [178]郭培基,余景池,丁泽钊,等.光学玻璃光学均匀性的绝对测量技术[J].激光杂志,2004,24(3):26-27
    [179]郭培基,余景池.光学玻璃光学均匀性高精度测量技术[J].光学技术,2001,27(6):528-529
    [180]赵文兴.退火光学玻璃的光学均匀性[J].光学机械,1991,121(4):1-6
    [181]张丽莎,张蓉竹.光束波前畸变的模拟及其相位梯度分析[J].激光杂志,2007,28(5):51-52
    [182] M. L. Spaeth, K. R. Manes, C. C. Widmayer, et al. National Ignition Facility wavefrontrequirements and optical architecture[J]. Optical Engineering,2004,43(12):2854-2865
    [183] K. Mann, A. Bayer, J. Gloger, et al. Photothermal measurement of absorption and wavefrontdeformations in fused silica[J]. Proc. of SPIE,2008,7132:71321F
    [184] F. Dahmani, A. W. Schmid, J. C. Lambropoulos, et al. Dependence of birefringence andresidual stress near laser-induced cracks in fused silica on laser fluence and on laser-pulsenumber[J]. Applied Optics,1998,37(33):7772-7784
    [185] F. Dahmani, J. C. Lambropoulos, S. J. Burns, et al. How small stresses affect351-nm damageonset in fused silica[J]. Proc. of SPIE,1999,3578:431-435
    [186] L. M. Sheehan, M. R. Kozlowski, C. J. Stolz, et al. Large-area damage testing of optics[J].Proc. of SPIE,1996,2775:357-369
    [187] S. Palmier, L. Gallais, M. Commandré, et al. Optimization of a laser mitigation process indamaged fused silica[J]. Applied Surface Science,2009,255(10):5532-5536
    [188] A. Melninkaitis, G. Bataviciute, V. Sirutkaitis. Numerical analysis of laser-induced damagethreshold search algorithms and their uncertainty[J].2009,7504:75041D
    [189] J. W. Arenberg. Accuracy and repeatability of laser damage threshold measurements made viaorder statistics[J]. Proc. of SPIE,2003,4932:218-223
    [190] L. Lamaignère, S. Bouillet, R. Courchinoux, et al. An accurate, repeatable, and wellcharacterized measurement of laser damage density of optical materials[J]. Review ofscientific instruments,2007,78:1-9
    [191] J. Hue, F. Y. Genin, S. M. Maricle, et al. Toward predicting the laser damage threshold oflarge-area optics[J]. Proc. of SPIE,1997,2966:451-457
    [192] H. Krol, L. Gallais, B. Bertussi, et al. Threshold distribution determination of laser-induceddamage precursors in optical coatings and substrates[J]. Proc. of SPIE,2005,5647:373-378
    [193] L. Gallais and J. Y. Natoli. Optimized metrology for laser-damage measurement: application tomultiparameter study[J]. Applied Optics,2003,42(6):960-971
    [194] J. Dijon, M. D. Feit, P. Garrec, et al. Statistical description of laser damage initiation in NIFand LMJ optics at355nm[J].1998,3492:1-6
    [195] S. R. Foltyn. Spotsize effects in laser damage testing[C]. Laser induced damage in opticalmaterials, Unite States,1982,368-398
    [196]陈猛,向霞,蒋勇,等.酸蚀与紫外激光预处理结合提高熔石英损伤阈值[J].强激光与粒子束,2010,22(6):1383-1387
    [197] M. A. Norton, E. E. Donohue, W. G. Hollingsworth, et al. Growth of laser initiated damage infused silica at527nm[J]. Proc. of SPIE,2003,5273:236-243

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700