用户名: 密码: 验证码:
新型铝掺杂二氧化钛介孔纳米材料的固相合成及其性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着全球性环境污染的日趋严重,采用光催化技术治理环境污染已引起世界各国的广泛关注。能充分利用太阳光能的高效光催化剂的制备与应用,已成为材料科学、化学、环境和能源科学等领域的研究热点。TiO2光催化剂价廉易得、无毒,化学稳定性和光催化活性较高,在环境净化领域有很好的应用前景。但TiO2禁带宽度大,光响应范围窄;光生电子和空穴复合几率高,量子效率低。多年来的研究表明,通过改性可以提高TiO2的光催化效率,不同的制备方法所得材料的性能不同。因此,采用恰当的TiO2光催化材料的改性方法,研究材料性能的实际应用,具有十分重要的科学意义和应用价值。
     本文采用固相反应法合成了Al掺杂TiO2介孔纳米材料,考察了乙醇、模板剂、非金属S、N对固相合成Al掺杂TiO2介孔纳米材料的结构与性能的影响。同时研究了材料晶格缺陷浓度、晶格畸变应力、微观形貌、微晶尺寸、表观酸度、掺杂元素含量对光催化活性的影响,探讨了固相合成Al掺杂TiO2材料的反应动力学与热力学,以及固相反应介孔形成机理;同时研究了温度变化对材料微结构的影响,以及光诱导对材料光催化活性的影响。通过大量的实验工作,取得了一系列创新性成果:
     1.首次采用固相反应法合成了新型Al掺杂TiO2微介孔纳米材料。以CTAB为模板,通过Al2(SO4)3·18H20与TBOT的低温固相反应法制得了锐钛矿型Al-TiO2微介孔纳米材料。其反应模型符合杨德尔固相反应动力学方程。其晶粒尺寸约7.0nm,比表面积为155.7m2/g,孔容为0.3579mL/g,孔径分布中心为4.6nm。Al是以+3价进入TiO2晶格并产生较多的晶体结构缺陷,同时伴有骨架外痕量铝氧化物的产生。A13+进入TiO2晶格所形成Ti-O-Al键的弯曲振动为1134cm-1。其紫外-可见吸收光谱相应地受Ti/Al投料比的调控和铝氧化物含量的制约。金属氧化物的紫外-可见漫反射光谱吸收峰均出现在210-370nm范围内。
     2.首次考察了固相反应体系中乙醇的作用。研究表明,乙醇可改变材料的微观形貌,并相应地使Al的掺杂量由3.47%提高到3.82%。乙醇使微晶生长的活化能提高,使Al-TiO2相转变温度由500提高到550℃,材料的阻抗由2.5×106Ω增大到4.5×106Ω。乙醇可使Al-TiO2微纳粉体的紫外-可见漫反射光吸收强度降低。乙醇的添加量越多,微晶尺寸越大,孔径分布范围相对增宽,介孔孔径变小,表观酸度(pH值)增大。
     3.在确定模板剂、不同投料比或不同模板剂、固定投料比下,所得Al-TiO2材料的物相均为锐钛矿相。Al3+进入锐钛矿TiO6八面体晶格以同晶取代方式侧重从晶胞a-轴(平面)进入,并阻碍TiO2晶粒的生长。不同性质的模板剂对材料的微晶尺寸晶格畸变应力所产生的影响程度各不相同,但晶粒尺寸与畸变应力呈明显的负相关性。Al-TiO2材料的紫外-可见吸收光谱均使TiO2的吸收带边产生一些红移,但紫外区的光吸收强度均有所降低。光催化降解性能与可见光响应范围并不呈正相关性,与能带间隙也并不呈负相关性。
     4.正电子的平均寿命与光催化活性呈正相关,而正电子的第一组分寿命强度(I1)与第二组分寿命强度(I2)的比值I1/I2与催化活性呈明显的负相关。金属Al掺杂所产生的缺陷主要以自由体积缺陷为主,微孔洞缺陷为辅。自由体积缺陷不利于吡啶的光催化降解,而微孔洞缺陷有利于该降解反应活性的提高。微孔洞缺陷浓度越大,催化活性越强。水溶液中,温度越高,Al-TiO2材料Al3+的流失越严重;并随pH值增大,Al3+离子的流失率呈抛物线型。中性时流失率相对较小,酸性或碱性则相对增大。Al-TiO2材料对吡啶的可见光降解遵循一级反应动力学规律,反应活性比未掺杂TiO2高7~18倍。
     5.S掺杂对Al-TiO2材料的结构和性能产生很大影响。在S、Al共掺杂体中,S是以+6价阳离子形式进入TiO2晶格,Al是以同晶取代方式占据Ti的位置,其晶型为锐钛矿型。S、Al共掺杂能有效抑制TiO2晶粒的生长,晶胞最小值出现在S:Al=4:6。以吡啶为模板剂所得S-Al-TiO2-pyridine微纳材料比以CTAB为模板剂所得S-Al-TiO2-TAB纳米材料的结晶度大,晶粒尺寸、晶胞参数a与c值、及晶胞体积均相应地增大;当S/Al<5/5时,S-Al-TiO2-pyridine紫外-可见漫反射吸收光谱在紫外区的吸收光谱值随S/Al的增大相应增强;当S/Al≥5/5时,则逐渐降低,且发生蓝移,且在可见光区的吸收能力则相应地有所减弱。对S-Al-TiO2-CTAB纳米材料来说,其紫外-可见吸收光谱涵盖了可见光区并延伸到近红外区。材料的光催化活性决定于掺杂元素S、Al的掺杂量及其所导致的光催化剂表面酸性的变化。S-Al-TiO2材料的表观酸度(pH值)与催化降解多效唑的活性呈正相关,并通过S/A1比的变化调控晶格畸变应力使催化剂的催化活性获得最大值。当S/Al=4:6时,S-Al-TiO2(4S-6Al)-pyridine材料的催化活性(0.00414mmin-1)是S-Al-TiO2(4S-6Al)-CTAB材料(0.00111mmin’)的近4倍。
     6.处于热力学亚稳状态的锐钛矿相S、Al共掺杂TiO2催化剂,当其微晶尺寸D≤8nm时,D与反应速率常数k呈正相关性;当D≥8nm时,D与k呈负相关性。不同的研磨温度、不同的固相反应温度以及不同的焙烧温度对S-Al-TiO2-pyridine材料的成相及表面酸度的影响十分显著。在确定的S/Al下,焙烧温度越高,材料表面的pH值越大。
     7.以CTAB或吡啶为模板所得N-Al-TiO2(3Al-7N)光催化剂均为介孔材料,其微观形貌分别为短棒形纳米粒子和不规则形貌的纳米粒子,比表面积分别为124.9和138.4m2/g。以吡啶为模板所得催化剂的微晶尺寸相应较小。但比表面积与微晶尺寸、以及晶格畸变应力对葛根素的降解并不产生明显的影响。N以阴离子N3-形式占据O的位置而进入了TiO2晶格。Al同晶取代Ti使TiO2的紫外-可见光吸光强度降低,吸光范围红移;Al与N共掺杂使TiO2的紫外吸光强度显著增大,但可见光吸收较弱;材料表面存在Ti-O、Ti-O-Al、N-Ti-O、Ti-O-N、Ti-N-O键。Al与N的掺杂量对材料的光催化活性则起决定性作用。材料的吸附性能与葛根素的可见光降解性能呈正相关性。在20℃、2h内,N-Al-TiO2(3Al-7N)-pyridine光催化剂的催化活性最高,对葛根素的降解率达97.7%,比N-Al-TiO2(3Al-7N)-CTAB材料高5%,是未加模板剂Al-N-TiO2-no材料的8.5倍。紫外光辐照,可诱使N-Al-TiO2(3N-7A1)-CTAB光催化剂的UV-Vis光响应增强,光催化活性随辐照时间的增长呈先降后增趋势。
With the development of the serious globality environmental pollution, the application of photocatalytic technology for pollution treatment has been attracted a great attention in all countries. The preparation and application of the photocatalysts with high activity and effective under the sunlight have become hot topics in the fields of materials science, chemistry, environmental science and energy science. TiO2photocatalyst is widely regarded as a promising material for photocatalytic application due to its low cost, non-toxicity, chemical stability, and high photocatalytic activity. However, TiO2displays its wide band-gap which responds to narrow range of the light absorbed and high recombination of photogenerated electrons and holes, which decreases its photocatalytic efficiency. Many studies indicate that the modification of TiO2can improve the photocatalytic efficiency, and the different preparation methods result in various properties for the same materials. Therefore, it is of scientific meaning and economic value to adopt the right methods to synthesize the modification of TiO2materials with high photocatalytic efficiency, and to investigate the performances of these materials.
     In the present dissertation, Al-doped mesoporous TiO2nanomaterials were prepared by a solid-phase synthesis method. The effects of ethanol, template agent, sulfur, nitrogen etc. on the structures and properties of Al-doped mesoporous TiO2 nanomaterials were discussed. The influences of defect concentration, lattice distortion, morphology, particle size, apparent acidity, doping content, and the photocatalytic property were also investigated. The reaction kinetics and thermodynamics of Al-doped TiO2with solid-phase synthesis were researched. The growth mechanism of mesoporous TiO2nanocrystals was not only proposed, the effect of temperature on the structure, and the photoinduction on the photocatalytic activity were also studied. Hence, some new and interesting results were obtained and listed as follows.
     1. A novel Al-doped mesoporous TiO2nanocrystal with anatase structure was synthesized via a low temperature solid-phase reaction route using CATB as template, A12(SO4)3·18H2O and TBOT as starting reagents for the first time. The reaction mechanism was in accordance with Yangder kinetic equation. The Al-doped TiO2mesoporous material with crystals size about7.0nm, specific surface area of155.7m2/g, pore volume of0.3579mL/g and pore size of4.6nm could be easily gained. The results reveal that the Al3+doped in TiO2crystal structure which can lead to large microdefects and slightly aluminum-oxide produce, and the bending vibration of Ti-O-Al bond on the Al-TiO2materials is found at1134cm-1, their UV-Vis spectra depend on the ratio of Ti/Al and the aluminum-oxide content. The absorption peaks at210-370nm in those UV-Vis diffuse reflection spectra can be assigned to metallic oxide band.
     2. The effect of ethanol in solid-phase reaction system was researched. The results reveal that the ethanol has significant effects on the morphology of defects, and secondly as microvoid defects. The photodegradation of pyridine is beneficial from the microvoid defects but decreased by the free volume defects, and the increase of the density of microvoid defects enhances the photocatalytic activity. Moreover, higher temperature leads to larger loss of Al3+in the Al-TiO2materials. The loss of Al3+first decreases with the increase of pH and reaches to a minimum value when pH approach to7, then increases as pH value is further increased. The visible light photodegradation of pyridine on the Al-TiO2material's surfaces follows the first-order reaction kinetics rule, and the phtocatalytic acitivity is7-18times higher than the undoped TiO2.
     5. The doping of sulfur has the very tremendous influence to the Al-TiO2material's structure and the performance. In S and Al co-doped TiO2materials, S enters into the crystal lattice of anatase TiO2as the form of S6+, while Al3occupies the position of Ti4+. The growth of TiO2crystalites is effectively depressed due to the codope of S and Al. The unit cell minimum value appears when S:Al=4:6. The crystallinity of S-Al-TiO2-pyridine prepared using pyridine as template is higher than that of S-Al-TiO2-CTAB prepared using CTAB, as well as the crystal size, the cell parameters of a-and c-axis, and the cell volume. The absorbance of S-Al-TiO2-pyridine in ultraviolet range enhances when the ratio of S/Al≤5/5. However, the decrease of absorbance in UV and visible light range is observed when S/Al>5/5, and absorption band tend to blue shift. The uv-visible diffuse reflection absorption spectrum of S-Al-TiO2-CTAB covers the UV and visible light ranges and extends to the near infrared area. It was found that the doping quantity of S and Al and the resulting change of surface acidity of S-Al-TiO2-CTAB play the key roles in the photocatalytic activity of the samples. The apparent acidity (pH value) of S-Al-TiO2shows shows a positive correlation to the photodegradation of paclobutrazol. The photocatalytic of S-Al-TiO2can be enhanced by tailoring the ratio of S/Al. When S/Al=4:6, S-Al-TiO2shows the highest photocatalytic activity, and the photocatalytic activity of S-Al-TiO2(4S-6Al)-pyridine (0.00414mm-1) material is nearly4times higher than that of S-Al-TiO2(4S-6A1)-CTAB material (0.00111min-1).
     6. As for the thermodynamics metastable anatase S and Al codoped TiO2catalysts, the crystal size D shows a positive correlation to the reaction rate constant k when D<8nm, while a negative correlation is observed when D≥8nm. Grinding temperature, solid-phase reaction temperature, and calcining temperature have significant effects on the phase and surface acidity of S-Al-TiO2-pyridine materials. Higher calcining temperature may result in larger pH value on the material surface when S/Al is fixed.
     7. Mesoporous N-Al-TiO2(3A1-7N) photocatalysts were obtained when CTAB and pyridine were applied as templates. It was found that the samples from CTAB and pyridine as templates present short rod-like morphology and irregular shape and possess surface area of124.9and138.4m2/g, respectively. The crystal size of catalyst prepared with pyridine as a template is samller than that prepared with CTAB as a template. But the specific surface area, the crystal size and crystal lattice distortion stress don't significant affect on the degradation of puerarin. N exists in the form of N3-. N and Al enter into the crystal lattice of TiO2and occupy the positions of O and Ti, respectively. It results in the decrease of absorbence of TiO2in the UV and visible light area and the red-shift due to the doping of Al. However, the codope of Al and N gives rise to the enhancement of UV absorbance and the reduce of visible absorbance of TiO2, and there exists Ti-O、Ti-O-Al、 N-Ti-O、Ti-O-N、Ti-N-O bonds in the surface of N and Al codoped TiO2catalyst. Moreover, the results show that the doping quantities of N and Al play a key role in the photocatalytic activity, and the adsorption performance of the materials shows a positive correlation to visible light degradation of puerarin. The N-Al-TiO2(3A1-7N)-Pyridine catalyst presents the highest photocatalytic activity at20℃, which is8.5times higher than Al-N-TiO2-no prepared without template,97.7%of puerarin was degraded within2h when N-Al-TiO2(3Al-7N)-pyridine was applied, which is5%higher than the N-Al-TiO2(3A1-7N)-CTAB catalyst. The response of N-Al-TiO2(3N-7A1)-CTAB to UV and visible light is enhanced under the irradiation of UV, and its photocatalytic activity first decreases then increases.
引文
[1]Fujishima A, Honda K. Electrochemical photolysis of water at a semiconductor electrode [J]. Nature,1972,238:37-8.
    [2]John H C, John L, Helle M T. Photodechlorination of PCB's in the presence of titanium dioxide in aqueous suspensions [J]. Bulletin of Environmental Contamination & Toxlcology,1976,16(6):697-701.
    [3]Yokota T, Iwano T, Tadaki T. Preparation of propylene oxide by photooxidation of propene [J]. Kagaku Kogaku Rombunshu,1977,3(1):248-254.
    [4]Frank A J, Schlichthorl G. Proceedings of the twenty-first DOE solar photochemistry research conference,7-11 June 1997, Copper Mountain, Colorado. NREL/CP-520-22968: 12-14.
    [5]邢丽贞,冯雷,陈华东.光催化氧化技术在水处理中的研究进展[J].水科学与工程技术,2008,4(1):7-10.
    [6]Kazuhiko M, Kazunari D. Photocatalytic water splitting:Recent progress and future challenges [J]. J. Physical Chemistry Letters,2010,1 (18):2655-2661.
    [7]Chen X B, Shen S H, Guo L J, et al. Semiconductor-based photocatalytic hydrogen generation [J]. Chem. Rev.,2010,110 (11):6503-6570.
    [8]李晓平,徐宝混,刘国范,等.纳米TiO2光催化降解水中有机污染物的研究与发展[J].功能材料,1999,30(3):242-245.
    [9]苏碧桃孙佳星,胡常林,等.Fe3+掺杂TiO2光催化纤维材料的制备及表征[J].物理化学学报,2009,25(8):1561-1566
    [10]Fujishima A, Rao T N, Tryk D A. Titanium dioxide photocatalysis [J]. J. Photochemistry and Photobiology C:Photochemistry Reviews,2000,1 (1):1-21.
    [11]Hoffinann M R, Martin S T, Choi W, et al. Environmental application semiconductor photocatalysis [J]. Chem. Rev.,1995,95 (3):69-95.
    [12]Chen X B, Mao S S. Titanium dioxide nanomaterials:synthesis, properties, modifications, and applications [J]. Chemical Reviews,2007,107(7):2891-2959.
    [13]Linsebigler A L, Lu G Q, Yates J T, et al. Photocatalysis on TiO2 surfaces:principles, mechanisms, and selected results[J]. Chemical Reviews,1995,95(3):735-758.
    [14]范崇政,肖建平,丁延伟.纳米TiO2的制备与光催化反应研究进展[J].科学通报,2001,46(4):265-273.
    [15]Marta I L. Heterogeneous photocatalysis:transition metal ions in photocatalytic systems [J]. Appl. Catal. B:Environ,1999,23(2/3):89-114.
    [16]邓南圣,吴峰.环境光化学[M].北京:化学工业出版社,2003.
    [17]Singleton J. Band Theory and Electronic Properties of solid [M]. Beijing:Science in press,2009.
    [18]Mathiowitz E, Jacob J S, Jong Y S, et al. Biologically erodable microspheres as potential oral drug delivery systems [J]. Nature,1997,386 (6623):410-414.
    [19]Huang Q, Gao L. A simple route for the synthesis of rutile TiO2 nanorods [J]. Chem. Lett. 2003,32(7):638-639.
    [20]Huang H Y, Remsen E E, Kowalewski T, et al. Nanocages derived from shell cross-linked micelle templates [J]. J. Am. Chem. Soc.,1999,121(15):3805-3506.
    [21]Yang Z Z, Niu Z W, Lu Y F, et al. Templated synthesis of inorganic hollow spheres with tunable cavity size onto core/shell gel particles [J]. Angew. Chem. Int. Ed.,2003,42: 1943-1945.
    [22]Okazaki M, Shiga T, Sakata S, et al. Isotope enrichment by electron spin resonance transition of the intermedediate radical pair [J]. J. Phys. Chem.,1988,92(96):1402-1404.
    [23]丁士文,张阳.纳米TiO2介孔材料研究进展[J].河北大学学报(自然科学版),2011,31(1):107-112.
    [24]李宏宇,李强,孟波.大孔及中空二氧化钛结构材料研究进展[J].高分子通报,2006,(6):45-51.
    [25]刘少友,吴林冬,冯庆革,等Ni-TiO2介孔材料的低热固相合成及其光降解甲基橙的动力学[J].无机材料学报,2009,24(5):902-908.
    [26]刘少友,王翔,冯庆革,等.磷酸铝镍介孔催化材料的低热固相合成及形成机理[J].无机化学学报,2009,25(5):799-804.
    [27]Liu S Y, Feng Q G. Synthesis of uranium doped TiO2 nanomaterial and its visible light degradation property [J]. Advanced Materials Research,2011,148/149:1208-1211.
    [28]Liu S Y, Tang Q L, Feng Q G. Synthesis of S/Cr doped mesoporous TiO2 with high-active visible light degradation property via solid state reaction route [J]. Applied Surface Science,2011,257(13):5544-5551.
    [29]Kluson P, Kacer P, Cajthaml T, et al. Preparation of titania mesoporous materials using a surfactant mediated sol-gel method [J]. J. Mater. Chem.,2001,11:644-651
    [30]Yoo K S, Lee T G, Kim. J. Preparation and characterization of mesoporous TiO2 particles by modified sol-gel method using ionic liquids [J]. Micropor. Mesopor.Mater, 2005,84(1-3):211-217.
    [31]Wang Y Q, Chen S G, Tang X H, et al. Mesoporous titanium dioxide:sonochemical synthesis and application in dye-sensitized solar cells[J]. J. Mater. Chem.,2001:11(2): 521-526.
    [32]Zhang L Z, Yu J C. A sonochemical approach to hierarchical porous titania spheres with enhanced photocatalytic activity [J]. Chem. Commun.,2003,16:2078-2079.
    [33]石海信.声化学反应机理研究[J].化学世界,2006,47(10):635-638.
    [34]Tan R Q, He Y, Yu Y F, et al. Hydrothermal preparation of mesoporous TiO2 powder from Ti(SO4)2 with poly (ethylene glycol) as template[J]. J. Mater. Sci.,2008,38(19): 3973-3978.
    [35]Wang Y W, Xu H, Wang X B, et al. A general approach to porous crystalline TiO2, SrTiO3, and BaTiO3 spheres [J]. J. Phys. Chem. B,2006,110:13835-13840.
    [36]Tian C X, Zhang Z, Hou J, et al. Surfactant/co-polymer template hydrothermal synthesis of thermally stable, mesoporous TiO2 from TiOSO4 [J]. Materials Letters,2008,62(1): 77-80.
    [37]张克立,孙聚堂,袁良杰,等.无机合成化学[M].武汉:武汉大学出版社,2008:140-142.
    [38]贾殿赠,俞建群,忻新泉.一种固相反应制备纳米材料的方法[P].中国发明专利,ZL98111231.
    [39]邹志刚.光催化材料与太阳能转换和环境净化[J].功能材料,2008,5(4):17-19.
    [40]Byme J A, Eggins B R, Brown N M.D, et al. Immobilisation of TiO2 powder for treatment of polluted water [J]. Appl. Catal. B:Environ.,1998,17(1/2):25-36.
    [41]Zhang L Z, Yu J C. A sonochemical approach to hierarchical porous titania spheres with enhanced photocatalytic activity [J]. Chem. Commun.2003,16:2078-2079.
    [42]Jang J, Oh J H. Facile fabrication of photochromic dye-conducting polymer core-shell nanomaterials and their photoluminescence [J]. Adv. Mater.2003,15(12):977-980
    [43]Zhu J, Bian Z F, Ren J, et al. An integrated low temperature approach to highly photo-active nanocrystalline mesostructured titania [J]. Catal. Commun,2007,8(7):971-976.
    [44]Huo Y N, Zhang X Y, Jin Y, et al. Highly active La2O3/Ti1-xBxO2 visible light photo-catalysts prepared under supercritical conditions [J]. Appl. Catal. B:Environ.2008, 83(1/2):78-84.
    [45]Yu J C, Li G S, Wang X C, et al. An ordered cubic Im3m mesoporous Cr-TiO2 visible light photocatalyst [J]. Chem Commun,2006:2717-2719.
    [46]Zhang D Q, Li G S, Wang F, Yu J C. Green synthesis of a self-assembled rutile mesocry-stalline photocatalyst [J]. CrystEngComm,2010,12:1759-1763.
    [47]Li G S, Zhang D Q, Yu J C. Thermally stable ordered mesoporous CeO2/TiO2 visible-light photocatalysts [J]. Phys Chem Chem Phys,2009,11:3775-3782
    [48]张其土.无机材料科学基础[M].上海:华东理工大学出版社,2007,76-79.
    [49]Nowotny J, Sheppard L R, Bak T. et al. Titanium dioxide for solar-hydrogen Ⅰ. Functional properties [J]. J. Hydrogen Energy,2007,32(14):2609-2629.
    [50]Nowotny J, Sheppard L R, Bak T, et al. Titanium dioxide for solar-hydrogen Ⅱ. Defect chemistry [J]. J. Hydrogen Energy.2007,32(14):2630-2643.
    [51]Nowotny M K, Sheppard L R, Bak T, et al. Defect chemistry of titanium dioxide: Application of defect engineering in processing of TiO2-based photocatalysts [J]. J. Phys. Chem. C,2008,112(14):5275-5300.
    [52]Wagner C D, Davis L E, Moudler J F, et al. Handbook of X-Ray Photoelectron Spectroscopy [M]. Perkin-Elmer,1992:73.
    [53]Pouilleau J, Devilliers D, Groult H, et al. Surface of a titanium-based ceramic electrode material by X-ray photoelectron spectroscopy [J]. J. Mater. Sci.,1997,32 (21):5645-5651.
    [54]刘少友,冯庆革,唐文华,等.S、Al掺杂TiO2纳米材料的固相合成及其可见光降解性能[J].无机化学学报,2011,27(4):673-681.
    [55]刘少友,冯庆革,李举志.N,Al共掺杂TiO2纳米材料的制备及其可见光降解葛根素[J].精细化工,2011.28(6):553-559.
    [56]胡春,王怡中,汤鸿宵.多相光催化氧化的理论与实践发展[J].环境科学进展,1995,3(1):55-64.
    [57]蒋伟川,王琪全,余传明,半导体光催化降解分散染料溶液的研究[J].上海环境科学,1995,14(5):8-10
    [58]孙尚梅,康振晋,魏志仿,Ti02膜太阳光催化氧化法处理毛纺染整废水[J].化工环保,2000,20(1):11-13.
    [59]邹志刚,赵进才,付贤智,等.光催化材料在太阳能转换与环境净化方面的研究现状和发展趋势[J].功能材料信息,2005,2(6):15-20.
    [60]Bahnamann D, Bockelmann D, Goslich R. Mechanistic studies of water detoxification in illuminated TiO2 suspensions [J]. Solar Energy Mater.1991,24 (1-4):564-583
    [61]薛永强.粒度对纳米体系相变和反应速度的影响[D].太原:太原理工大学博士论文,2005.
    [62]谢先法,吴平霄,党志,等.过渡金属离子掺杂改性Ti02研究进展[J].化工进展,2005,24(12):1358-1362.
    [63]唐玉朝,黄显怀,俞汉青,等.非金属掺杂改性Ti02光催化剂的机理化学进展[J].化学进展,2007,1 9(2/3):225-233.
    [64]Xie Y B. Rare earth ion modified TiO2 sols for photocatalysis application under visible light excitation [J]. Rare Metals,2004,23 (1):20-25
    [65]Gratzel M, Howe R F. Electron paramagnetic resonance studies of doped TiO2 colloids [J]. J. Phys. Chem.,1990,94:2566
    [66]Choi W, Termin A, Hoffmann M R. The role of metal ion dopants in quantum-sized TiO2:correlation between photoreactivity and charge carrier recombination dynamics [J]. J. Phys. Chem,1994,98:13669-13679.
    [67]Liu S Y, Feng Q G. Solid-phase synthesis and photocatalytic property of cobalt-doped TiO2 mesoporous materials [J]. Adv. Mater. Res.2011,217-218:1462-1469.
    [68]刘秀华,何小波,傅依备.Co掺杂对TiO2光催化剂结构与性能的影响[J].化学学报,2008,6(14):1725-1730.
    [69]Zhou M H, Yu J G, Cheng B. Effects of Fe-doping on the photocatalytic activity of mesoporous TiO2 powders prepared by an ultrasonic method [J]. J. Hazardous Materials, 2006,137(3):1838-1847.
    [70]李海斌.新型光催化及抗菌材料的湿化学法制备与性能研究[D].长沙:中南大学博士学位论文,2009.
    [71]赵宗彦,柳清菊,张瑾,等.3d过渡金属掺杂锐钛矿相TiO2的第一性原理研究[J].物理学报,2007,56(11):6592-6599.
    [72]Yuan S, Sheng Q R, Zhang J L, et al. Synthesis of thermally stable mesoporous TiO2 and investigation of its photocatalytic activity. Micropor. Mesopor. Mater.,2008,110 (2-3): 501-507.
    [73]蔡莉,吴昊,廖学品,等.胶原纤维为模板制备Ti02及La/TiO2纳米纤维及光催化活性研究[J].无机化学学报,2011,27(4):611-618.
    [74]Xu A W, Gao Y, Liu H Q. The preparation, characterization, and their photocatalytic activities of rare-earth-doped TiO2 nanoparticles [J]. J. Catal.,2002,207:151-157.
    [75]Swetha S, Balakrishna R G. Preparation and characterization of high activity zirconium-doped anatase titania for solar photocatalytic degradation of ethidium bromide [J]. Chinses Journal of Catalysis,2011,32 (5):789-794.
    [76]Asahi R, Morikawa T. Nitrogen complex species and its chemical nature in TiO2 for visible-light sensitized photocatalysis [J]. Chem. Phys.,2007,339(1-3):57-63.
    [77]Irie H, Washizuka S, Watanabe Y, et al. Photoinduced hydrophilic and electrochemical properties of nitrogen-doped TiO2 films [J]. Journal of the Electrochemical Society,2005, 152(11):351-356.
    [78]成晓玲.N和Al共掺杂TiO2薄膜的制备及性能研究[D].广州:广东工业大学博士学位论文,2008.
    [79]Hamadanian M, Reisi-Vanani A, Majedi A. Preparation and characterization of S-doped TiO2 nanoparticles, effect of calcination temperature and evaluation of photocatalytic activity [J]. Mater. Chem. Phys.,2009,116 (2-3):376-382.
    [80]Bai A Y, Liang W, Zheng G, Xue J B. Preparation and enhanced daylight-induced photo-catalytic activity of transparent C-doped TiO2 thin films [J]. Journal of Wuhan University of Technology Materials Science,2010,25(5):738-742.
    [81]Yu J C, Yu J G, Ho W K, et al. Effects of F-doping on the photocatalytic activity and micro-structures of nanocrystalline TiO2 powders [J]. Chemistry of Materials,2009, 14(9):3808-3816.
    [82]Yu H F. Phase development and photocatalytic ability of gel-derived P-doped TiO2 [J]. J. Mater. Res.,2007,22 (9):2565-2572.
    [83]邹志刚.光催化材料与太阳能转换和环境净化[J].功能材料,2008,5(4):17-19.
    [84]TachiKawa T, Tojo S, Majima T, et al. Photocatalytic oxidation reactivity of holes in the sulfur- and carbon- doped TiO2 powders studied by time-resolved diffuse reflectance spectroscopy [J]. J. Phys. Chem. B,2004,108 (50):19299-19306.
    [85]Lee J Y, Park J, Cho J H. Electronic properties of N-and C-doped TiO2 [J]. Appl. Phys. Lett.,2005,87(1):11904-11906.
    [86]Luo H M, Takata T, Yan Y S, et al. Photocatalytic activity enhancing for titanium dioxide by co-doping with bromine and chlorine [J]. Chem. Mater.,2004,16(5):846-849.
    [87]Nukumizu K, Nunoshige J, Domen H, et al. TiNxOyFz as a stable photocatalyst for water oxidation in visible light(<570nm) [J]. Chem. Lett.,2003,32(3):196-197.
    [88]Li X, Xiong R C, Wei G T. S-N co-doped TiO2 photocatalysts with visible-light activity prepared by sol-gel method [J]. Catal. Lett.,2004,25(6):104-109.
    [89]Suil I, Alexander O, Regina B, et al. Effective visiblelight-activated B-doped and B, N-codoped TiO2 photocatalysts [J]. J. Am. Chem. Soc.2007,129,13790-13791
    [90]王剑波.张景来.卢寿慈.金属共掺杂对TiO2光催化性能的影响[J].安徽理工大学学报,2004,24(3):61-64.
    [91]Li X J, Si D J, Fang J, et al. Co-doping of iron and cerium in titanium dioxide:observa-tion of a cooperative effect [J]. Chinese Journal of Chemical Physics,2006,19(6):539-543.
    [92]Yuan Z H, Jia J H, Zhang L D. Influence of co-doping of Zn (Ⅱ)+Fe (Ⅲ) on the photo-catalytic activity of TiO2 for phenol degradation [J]. Mater. Chem. Phys.,2002,73:323-326.
    [93]Hideki K, Akihiko K. Visible-light-response and photocatalytic activities of TiO2 and SrTiO3 photocatalysts codoped with antimony and chromium [J]. J. Phys. Chem. B,2002, 106 (19):5029-5034.
    [94]刘崎,陈晓青,杨娟玉,等.双元素掺杂对纳米二氧化钛光催化降解甲基橙的影响[J].河南化工,2004,21(2):8-10.
    [95]黄东升,曾人杰,陈朝凤,等.铁、氮共掺杂二氧化钛薄膜的亲水性能[J].物理化学学报,2007,23(7):1037-1041.
    [96]Luca D, Mardare D, Iacomi F, et al. Increased surface hydrophilicity of titania thin films by doping [J]. Appl. Surf. Sci.,2006,252 (18):6122-6126
    [97]李越湘,王添辉,彭绍琴,等.Eu3+,Si4+共掺杂TiO2光催化剂的协同效应[J].物理化学学报,2004,20(12):1434-1439.
    [98]华南平,吴遵义,杜玉扣,等.Pt,N共掺杂TiO2在可见光下对三氯乙酸的催化降解 作用[J].物理化学学报,2005,21(10):1081-1085.
    [99]陈其凤,史卫梅,姜东,等.可见光响应的镍硅共掺杂二氧化钛及其光催化性能[J].化学学报,2010,68(4):301-308.
    [100]刘少友,唐文华,冯庆革,等.N,Fe共掺杂TiO2纳米材料的固相合成及其对喹啉的可见光降解[J].无机材料学报,2010,25(9):921-927.
    [101]金华峰,李文戈,向纪明,等.Fe3+/TiO2/SiO2复合纳米微粒的合成及光催化降解NO2-[J].应用化学,2001,18(8):636-639.
    [102]Hou L R, Yuan C Z, Peng Y S. Synthesis and photocatalytic property of SnO2/TiO2 nano-tubes composites [J]. J. Hazard. Mater.,2007,139(2):310-315.
    [103]Nicole J R, Pierre P, Alain F, et al. Study of the effect of deposited platinum particles on the surface charge of titania aqueous suspensions by potentiometry, electrophoresis, and labeled-ion adsorption [J]. J. Phys. Chem.,1986,90 (12):2733-2738.
    [104]Senevirathna M K I, Pitigala P K D D P, Tennakone K. High quantum efficiency Pt/ TiO2 catalyst for sacrificial water reduction [J]. Solar Energy Mater. Sol. Cell,2006,90: 2918-2923.
    [105]Belver C, Lopezmuoz M J, Coronado J M, et al. Palladium enhanced resistance to deactivation of titanium dioxide during the photocatalytic oxidation of toluene vapors [J]. Appl. Catal. B:Environ,2003,46:497-509.
    [106]Stir M, Nicula R, Burkel E. Pressure-temperature phase diagrams of pure and Ag-doped nanocrystalline TiO2 photocatalysts [J]. J. Eur. Ceram. Soc.,2006,26:1547-1553.
    [107]Arabatzis I M, Stergiopoulos T, Andreeva D, et al. Characterization and photocatalytic ativity of Au/TiO2 thin films for azo-dye degradation [J]. J. Catal.2003,220:127-135.
    [108]Macak J M, Tsuchiya H, Ghicov A, et al. Dye-sensitized anodic TiO2 nanotubes[J]. Electrochem Commun,2005,7 (11):1133-1137.
    [109]Desilvestro J, Graetzel M, Kaven L, et al. Hightly effieieney sensitization of titanium dioxide [J]. J. Am. Chem. Soc.1985,107(10):2988-2990.
    [110]Vlachopoulos N, Liska P, Augustynski J, et al. Very effieient visible light energy harvesting and conversion by spectral sensitization of high surface area polycrystalline TiO2 films [J]. J. Am. Chem. Soc.,1988,110 (4):1216-1220.
    [111]Rominder P S, Liu J B, John C C, et al. Removal and destruction of organic contaminants in water using adsorption, steam regeneration and photocatalytic oxidation:A pilotsvale study [J]. Journal of the Air & Waste Management Association, 1999,49(5):1246-1249.
    [112]Fujishima A, Rao T N, Tryk D A. Titanium dioxide photocatalysis[J].J. Photochemistry and Photobiology C:Photochemistry Reviews,2000,1 (1):1-21.
    [113]黄艳娥,据行松.黄艳娥.纳米二氧化钛催化降解水中有机污染物的研究进展[J]. 化工环保,2002,22(1):200-203.
    [114]Turchi C, Mehos M, Pacheco J. Photocatalytic purifioation and treatment of water and air [M]. (eds. Ollis D E, Al-Ekabi H), Elsevier, Amsterdam,1993,789.
    [115]Khalil L B, Mourad W E, Rophael M W. Photocatalytic reduction of environmental pollutant Cr (VI) over some semiconductors under UV-visible light illumination [J]. Appl. Catal. B,1998,17 (3):267-273.
    [116]Augugliaro V, Loddo V, Marci G. et al. Photocatalytic oxidation of cyanides in aqueous titanium dioxide suspension [J]. J. Catal.,1997,166(2):272-283.
    [1]Mills A, Hunte S L, An overview of semiconductor photocatalysis[J]. J. Photochem. Photobiol. A:Chem.1997,108:1-35.
    [2]Hoffmann M R, Martin S T, Choi W, et al. Environomental applications of semiconductor photocatalysis [J].Chem.Rev.1995,95 (1):69-96.
    [3]钱丽萍,刘奎仁,魏绪钧.半导体光解水制氢的研究[J].材料与冶金学报,2003,2(1):10-15.
    [4]Liu S Y, Feng Q G. Synthesis of uranium doped TiO2 nanomaterial and its visible light degradation property [J]. Adv. Mater. Res.2011,148-149:1208-1211.
    [5]岳林海,水淼,徐铸德,等.稀土掺杂二氧化钛的相变和光催化活性[J].浙江大学学报(理学版),2000,27(1):69-74
    [6]Paola A D, Lopez E G, Ikeda S, et al. Photocatalytic degradation of organic compounds in aqueous systems by transition metal doped polycrystalline TiO2 [J]. Catal. Today,2002,75: 87-93.
    [7]Chen X B, Mao S S. Titanium dioxide nanomaterials:synthesis, properties, modifications, and applications [J]. Chem. Rev.,2007,107:2891-3041.
    [8]Grzybowska B, Sloczynski J, Grabowski R, et al. Effect of doping of TiO2 support with altervalent ions on physicochemical and catalytic properties in oxidative dehydrogenation of propane of vanadia-titania catalysts[J]. Appl. Catal. A:General,2002,230:1-10.
    [9]Antonelli D M, Ying Y J. Synthesis of hexagonally packed mesoporous TiO2 by a modified sol-gel method [J]. Angew. Chem., Int. Ed. Engl.,1995,34:2014-2017.
    [10]Peng T Y, Zhao D, Dai K, et al. Synthesis of titanium dioxide nanoparticles with mesoporous anatase wall and high photocatalytic activity[J]. J. Phys. Chem. B,2005, 109:4947-4952.
    [11]Yu J G, Yu J C, Ho W, et al. Effects of alcohol content and calcination temperature on the textural properties of bimodally mesoporous titania [J]. Appl. Catal. A:General,2003, 255:309-320.
    [12]Zhang W Z, Pauly T R, Pinnavaia T J. Tailoring the framework and textural mesopores of HMS molecular sieves through an electrically neutral (SoIo) assembly pathway [J]. Chem. Mater.,1997,9:2491-2498.
    [13]Li W, Zhang M, Zhang J L, et al. Self-assembly of cetyltrimethylammonium bromide in ethanol-water mixtures[J]. Front. Chem. China,2006,4:438-442.
    [14]Li B C, Zhai Y C, Liu K R, et al. A study on the photocatalytic activity of Al doped anatase TiO2 [J]. J. Mol. Sci. (in Chinese),2008,24(1):46-50.
    [15]Gracia F, Holgado J P, Caballero A, et al. Structural, optical, and photoelectrochemical properties of Mn+-Ti02 model thin film photocatalyst [J]. J. Phys.Chem. B,2004,108: 17466-17476.
    [16]Wang Y, Jiang Z H, Yang F J. Effect of Fe-doping on the pore structure of mesoporous titania [J]. Mater. Sci. Eng. B,2006,134:76-79.
    [17]Toda F. Solid state organic chemistry:Efficient reactions, remarkable yields, and stereoselectivity [J]. Acc. Chem. Res.,1995,12:480-486.
    [18]张克立,孙聚堂,袁良杰,等.无机合成化学[M].武汉:武汉大学出版社,2004.
    [19]刘少友,唐文华,冯庆革.磷酸铝镍介孔催化材料的低热固相合成及形成机理[J].无机化学学报,2009,25(5):799-804
    [20]Wells A F. Structural Inorganic Chemistry.5th Ed [M]. Clarendon Press, Oxford,1984.
    [21]Stone V F, Davis R J. Synthesis, characterization, and photocatalytic activity of titania and niobia mesoporous molecular sieves[J]. Chem. Mater.,1998,10:1468-1474.
    [22]Soler-Illia G J A A, Sanchez C, Lebean B, et al. Chemical strategies to design textured materials from microporous and mesoporous oxides to nanonetworks and hierarchical structures [J]. Chem. Rev.,2002,102 (11):4093-4138.
    [23]Pavasupree S, Jitputti J, Namsinlapasathian S, et al. Hydrothermal synthesis, characterization, photocatalytic activity and dye-sensitized solar cell performance of mesoporous anatase TiO2 nanopowders [J]. Mater. Res. Bull.2008,43 (1):149-154.
    [24]Li C Z, Shi L Y, Xie D M, et al. Morphology and crystal structure of Al-doped TiO2 nanoparticles synthesized by vapor phase oxidation of titanium tetrachloride [J]. J. Non-Crystal. Solid,2006,352:4128-4135.
    [25]Yin J B, Zhao X P. Enhanced electrorheological activity of mesoporous Cr-Doped TiO2 from activated pore wall and high surface area [J]. J. Phys. Chem. B,2006,110:12916-12925.
    [26]Blanchard J, Schuth F, Trens P, et al. Synthesis of hexagonally packed porous titanium oxo-phosphate [J]. Micropor. Mesopor. Mater.2000,39:163-170.
    [27]Yu J G, Yu J C, Ho W, et al. Effects of alcohol content and calcination temperature on the textural properties of bimodally mesoporous titania[J]. Appl. Catal. A:General,2003, 255:309-320.
    [28]Nagaveni K, Hegde M S, Madras G. Structure and photocatalytic activity of Tii.xMxO2 (M= W, V, Ce, Zr, Fe, and Cu) synthesized by solution combustion method [J]. J. Phys. Chem. B,2004,108:20204-20212.
    [29]宋晓艳,张久兴,杨克勇.金属纳米晶粉体材料中的不连续晶粒长大[J].中国有色金属学报,2005,15(11):1733-1737.
    [30]Barnard A S, Zapol P, Curtiss L A, Anatase and rutile surfaces with adsorbates representative of acidic and basic conditions [J]. Surf. Sci.,2005,582:173-188.
    [31]Yu J C, Zhang L Z, Zheng Z, et al. Synthesis and characterization of phosphated mesoporous titanium dioxide with high photocatalytic activity [J]. Chem. Mater.2003, 15:2280-2286.
    [32]Shan F K, Liu G. X., Lee W J, et al. Stokes shift, blue shift and red shift of ZnO-based thin films deposited by pulsed-laser deposition [J]. J. Crystal Growth,2006,291(2):328-333.
    [33]Tarafdar A, Biswas S, Pramanik N K, et al. Synthesis of mesoporous chromium phosphate through an unconventional sol-gel route [J]. Micropor. Mesopor. Mater.2006, 89:204-208.
    [34]近藤精一,石川达雄,安部郁夫,等.吸附科学[M].北京:化学工业出版社,2006:12-91.
    [35]W. Rudzinski, D.H. Everett, Adsorption on Gases on Heterogeneous Surfaces [M], Harcourt Brace Jovanovich, London,1992.
    [36]Nagaveni K, Hegde M S, Ravishankar N, et al. Synthesis and structure of nanocrystalline TiO2 with lower band gap showing high photocatalytic activity [J]. Langmuir,2004,20: 2900-2907.
    [37]Li H X, Li J X, Huo Y N. Highly active TiO2N photocatalysts prepared by treating TiO2 precursors in NH3/ethanol fluid under supercritical conditions [J]. J. Phys. Chem. B,2006, 110:1559-1565.
    [38]Yu J C, Zhang J Z, Zhao J C. Synthesis and characterization of phosphated mesoporous titanium dioxide with high photocatalytic activity [J]. Chem. Mater.,2003,15(11):2280-2286.
    [39]Crepaldi E L, Soler-IIIia G J de A A, Grosso D, et al. Controlled formation of highly organized mesoporous titania thin films:From microstructure hybrids to mesoporous nanoanatase TiO2 [J]. J. Am. Chem. Soc,2003,125(32):9770-9786.
    [40]Hubert J I, Vasudevan A K, Aruldhas G, et al. FTIR as a tool to study high-temperature phase formation in sol-gel aluminium titanate [J]. J. Solid State Chem.1997,131(1): 181-184.
    [41]Choi W, Termin A, Hoffmann M R. The Role of metal ion dopants in quantum-sized TiO2:Correlation between photoreactivity and charge-carrier recombination dynamics [J]. J. Phys. Chem.1994,98(51):13669-13679.
    [42]Suda Y, Morimoto T. Molecularly adsorbed water on the bare surface of titania (rutile)[J]. Langmuir,1987,3:786-788.
    [43]Rajh T, Nedeljkovic J M, Chen L X, et al. Improving optical and charge separation properties of nanocrystalline TiO2 by surface modification with vitamin C [J]. J. Phys. Chem. B 1999,103(18):3515-3519.
    [44]Oliver P M, Watson G W, Kelsey E T, et al. Atomistic simulation of the surface structure of the TiO2 polymorphs rutile and anatase [J]. J. Mater. Chem.,1997,7:563-568.
    [45]Balachandran U, Eror N G. Raman spectrum of titanium dioxide [J]. J. Solid State Chem. 1982,42(2):276-282.
    [46]Reddy B M, Sreekanth P M, Reddy E P, et al. Surface characterization of La2O3-TiO2 and V2O5/La2O3-TiO2 catalysts [J]. J. Phys. Chem.B,2002,106(22):5695-5700.
    [47]Wachs I E. In situ Raman spectroscopy studies of catalysts [J]. Top. Catal.1999,8 (1): 57-63.
    [48]Swamy V, Kuznetsov A, Dubrovinsky L S, et al. Finite-size and pressure effects on the Raman spectrum of nano-crystalline anatase TiO2 [J]. Phys. Rev. B,2005,71(18): 184302-184311.
    [49]王志义,崔作林.A1203异质复合对TiO2纳米晶晶型转变和晶粒生长的影响[J].无机材料学报,2006,21(1):46-52.
    [50]Wu Y H, Yao Y D, Cheng N F, et al.X-ray absorption of nanocrystal TiO2 [J]. Nanostruct. Mater.1997,9:355-358
    [51]李辉,王金淑,李洪义,等.氮硫掺杂介孔TiO2薄膜结构及其光催化性能[J].无机材料学报,2009,24:909-914.
    [52]Khan R, Kim T J. Preparation and application of visible-light-responsive Ni-doped and SnO2-coupled TiO2 nanocomposite photocatalysts[J]. J. Hazardous Mater.,2009,163: 1179-1184.
    [53]Zhang Y H, Reller A. Nanocrystalline iron-doped mesoporous titania and its phase transition [J]. J. Mater. Chem.2001,11 (10):2537-2541.
    [54]Wang C, Li Q, Wang R D. Synthesis and characterization of mesoporous iron-doped [J]. J. Mater. Sci.2004,39 (5):1899-1901
    [55]李斌川,翟玉春,刘奎仁,等.Al掺杂对锐钛矿型TiO2光催化性能影响的研究[J].分子科学学报,2008,24(1):46-50.
    [56]Bouvy C, Marine W, Su B L. ZnO/mesoporous silica nanocomposites prepared by the reverse micelle and the colloidal methods:Photoluminescent properties and quantum size effect [J]. Chem. Phys. Lett.2007,438 (1/3):67-71.
    [57]Duprey E, Beaunier P, Springuel-Huet M A, Characterization of Catalysts Based on Titanium Silicalite, TS-1, by Physicochemical Techniques [J]. J. Catal.1997,165(1): 22-32.
    [58]Notari B. Microporous crystalline titanium silicates [J]. Adv. Catal.1996,41 (C):253-334.
    [59]Brik Y, Kacimi M, Francois B V, et al. Characterization and comparison of the activity of boron-modified Co/TiO2 catalysts in Butan-2-ol conversion and oxidative dehydro- genation of Ethane [J]. J. Catal.2002,211 (2):470-481.
    [60]Dvoranova D, Brezova V, Mazur M, et al. Investigations of metal-doped titanium dioxide photocatalysts [J]. Appl. Catal. B:Environ.2002,37:91-105
    [61]Zecchina A, Spoto G, Bordiga S, et al. Framework and extraframework Ti in titanium-silicalite:Investigation by means of physical methods [J]. Stud. Surf. Sci. Catal.1991,69 (C):251-258.
    [62]钱逸泰.结晶化学导论[M].合肥:中国科学技术大学出版社,1999,360-361.
    [63]Liu S Y, Liu G C, Feng Q G. Al-doped TiO2 mesoporous materials:synthesis and photocatalytic properties [J]. J. porous mater,2010,17(2):196-204.
    [64]刘少友,吴林冬,冯庆革,等.Ni-TiO2介孔材料的低热固相合成及其光降解甲基橙的动力学[J].无机材料学报,2009,25(5):902-908.
    [65]Yu J C, Lin J, Kwok R W M. TiO2, ZrO2 solid solutions for the photocatalytic degradation of acetone in air [J]. J. Phys. Chem. B,1998,102 (26):5094-5098.
    [66]Liu S, Tao W, Li J, Yang Z, et al. Study on the formation process of Al2O3-TiO2 composite powders [J]. Powder Technology,2005,155:187-192
    [67]Oliver S, Kuperman A, Coombs N, et al. Lamellar aluminophosphates with surface patterns that mimic diatom and radiolarian microskeletons [J]. Nature.1995,378:47-50
    [68]Bu X, Feng P, Stucky G D. Large-cage zeolite structures with multidimensional 12-ring channels [J]. Science.1997,278(5346):2080-2085.
    [69]戴亚堂,潘宝风,涂铭旌.锐钛型介孔粉体TiO2的制备与机理研究[J].武汉理工大学学报.2006,28(4):1-4.
    [70]张其土.无机材料科学基础[M].上海:华东理工大学出版社,2006:244.
    [1]Kresge C T, Leonowicz M E, Roth W J. Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism [J]. Nature,1992,359:710-712.
    [2]Beck J S, Vartuli J C,Roth W J, et al. A new family of mesoporous molecular sieves prepared with liquid crystal template [J]. J. Am. Chem. Soc.1992,114(27):10834-10843.
    [3]Tanev P T, Pinnavaia T J. A neutral templating route to mesoporous molecular sieves [J]. Science,1995,267(5199):865-867.
    [4]Cheng G, Liu C. Preparation of lamellar mesoporous silica microspheres via SDS template [J]. Mater. Chem.& Phys.,2002,77(2):359-364.
    [5]韩永才.乙醇/水混合溶液中表面活性剂CTAB自组装特性的研究[D].天津大学硕士论文,2004.
    [6]刘超,成国样,赵孔银.模板剂、磷源和乙醇对模板法层状磷酸钙盐的影响[J].天津大学学报,2006,39(s):190-192.
    [7]余勇,刘士军,李洁,等.氧化钨介孔材料的制备与表征[J].物理化学学报,2009,25(9):1890-1894
    [8]王继芹,李鑫,李淑萍,等.醇水介质中共沉淀法制备甲氨蝶呤/层状双氢氧化物纳米材料的研究[J].化学学报,2011,69(2):137-144
    [9]吕燕飞,吴希俊,吴大雄.乙醇/水混合溶剂沉淀制备纳米BaF2及粒径控制[J].无机化学学报,2007,23(7):1174-1178.
    [10]Park H K, Moon Y T, Kim D K, et al. Formation of monodisperse spherical TiO2 powders by thermal hydrolysis of Ti(SO4)2 [J]. J. Am. Ceram. Soc.,1996,79(10):2727-2732.
    [11]Fang C S, Chen Y W. Preparation of titania particles by thermal hydrolysis of TiCl4 in n-propanol solution [J]. Materials Chemistry and Physics,2003,78(3):739-745.
    [12]陈志刚,李霞章,陈杨,等.纳米CeO2的醇水法制备及其对GaAs晶片的抛光性能[J].中国有色金属学报,2006,16(6):1065-1069.
    [13]王秀宇,杨桂琴,严乐美,等.醇-水溶液共沉淀法制备纳米尖晶石型ZnFexCr(2-x)O4[J].硅酸盐通报,2004,23(1):91-95.
    [14]Pavasupree S, Jitputti J, Namsinlapasathian S, Yoshikawa S. Preparation and characteri-zation of high surface area nanosheet titania with mesoporous structure[J]. Mater. Res. Bull.,2008,43:149-155.
    [15]Li C Z, Shi L Y, Xie D M, Du H L, Morphology and crystal structure of Al-doped TiO2 nanoparticles synthesized by vapor phase oxidation of titanium tetrachloride [J]. J. Non-Cryst. Solids,2006,352:4128-4135.
    [16]Soler-Illia G J D, Sanchez C, Lebean B, Patarin J, Chemical Strategies to Design Textured Materials:From Microporous and Mesoporous Oxides to Nanonetworks and Hierarchical Structures [J]. Chem. Rev.2002,102 (11):4093-4138
    [17]Li W, Zhang M, Zhang J L, Han Y C, Self-assembly of cetyl trimethylammonium bromide in ethanol-water mixtures [J]. Front. Chem. China,2006,4:438-442.
    [18]Grzybowska B, Sloczynski J, Grabowski R, et al. Effect of doping of TiO2 support with altervalent ions on physicochemical and catalytic properties in oxidative dehydrogenation of propane of vanadia-titania catalysts [J]. Appl. Catal. A:General, 2002,230:1-10.
    [19]Blanchard J, Schuth F, Trens P, Hudson M. Synthesis of hexagonally packed porous titanium oxo-phosphate [J]. Micropor. Mesopor. Mater.,2000,39:163-170.
    [20]Yu J G, Yu J C, Ho W, et al. Effects of alcohol content and calcination temperature on the textural properties of bimodally mesoporous titania[J]. Appl. Catal. A:General,2003, 255(2):309-320.
    [21]宋晓艳,张久兴,杨克勇.金属纳米晶粉体材料中的不连续晶粒长大[J].中国有色金属学报,2005,15(11):1733-1737.
    [22]Nagaveni K, Hegde M S, Madras G. Structure and photocatalytic activity of Ti1-xMxO2 (M= W, V, Ce, Zr, Fe, and Cu) synthesized by solution combustion method[J]. J. Phys. Chem. B,2004,108(52):20204-20212.
    [23]Barnard A S, Zapol P, Curtiss L A, Anatase and rutile surfaces with adsorbates representative of acidic and basic conditions[J]. Surf. Sci.,2005,582(1/3):173-188.
    [24]Tayade R J, Kulkarni R G, Jasra R V. Transition metal ion impregnated mesoporous TiO2 for photocatalytic degradation of organic contaminants in water[J]. Ind. Eng. Chem. Res., 2006,45(15):5231-5238.
    [25]近藤精一(日),石川达雄,安部郁夫.吸附科学[M].北京:化学工业出版社,2005
    [26]Chen X B, Mao S S. Titanium dioxide nanomaterials:synthesis, properties, modify-cations, and applications [J]. Chem. Rev.,2007,107(7):2891-3041.
    [27]Oliver P M, Watson G W, Kelsey E T, Parker S C. Atomistic simulation of the surface structure of the TiO2 polymorphs rutileand anatase[J]. J. Mater. Chem.,1997,7:563-568.
    [28]Amy L. Linsebigler, Guangquan Lu, John T. Yates, Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results [J]. Chem. Rev.1995,95(3):735-758.
    [29]Brus L, Electronic wave functions in semiconductor clusters:experiment and theory [J]. J. Phys. Chem.1986,90(12):2555-2560.
    [30]Kormann C, Bahnemann D W, Hoffmann M R, Preparation and characterization of quantum-size titanium dioxide [J]. J. Phys. Chem.1988,92(18):5196-5201.
    [31]Zhang, H.Z., Banfield, J. F., Kinetics of crystallization and crystal growth of nanocrystalline anatase in nanometer-sized amorphous titania, Chem. Mater.,14,4145-4154(2002).
    [32]Askeland, D. R., Phule, P. P., The Science and Engineering of Materials (fourth edition.), Thomson Learning Asia Pte Ltd.2004.
    [33]冯良荣,谢卫国,吕绍洁,等.纳米TiO2催化剂微晶结构对光催化反应的影响[J].中国科学(B辑),2001,31(6):536-541
    [34]魏君,宋晓艳,韩清超,等.金属纳米晶热稳定性和晶粒长大行为的研究[J].稀有金属材料与工程,2010,39(4):603-607.
    [35]宋晓艳,高金萍,张久兴.纳米多晶体的热力学函数及其在相变热力学中的应用[J].物理学报,2005,54(3):1313-1319.
    [36]刘少友,冯庆革,唐文华,等.S、Al掺杂TiO2纳米材料的固相合成及其可见光降解性能[J].无机化学学报,2011,27(4):673-681.
    [37]Rusu C N, Yates Jr J T. Defect sites on TiO2(110):detection by O2 photodesorption [J]. Langmuir,1997,13(16):4311-4316.
    [38]Karakitsou K E, Verykios X E. Effects of altervalent cation doping of titania on its performance as a photocatalyst for water cleavage [J]. J. Phys. Chem.1993,97(6):1184-1189
    [39]林华香,王绪绪,付贤智.Ti02表面羟基及其性质[J].化学进展,2007,19(5):665-670.
    [1]Choi W, Termin A, Hoffmann M. The Role of Metal Ion Dopants in Quantum-Sized TiO2: Correlation between Photoreactivity and Charge-carrier Recombination Dynamics [J]. J. Phys. Chem.,1994,98(51):13669-13679.
    [2]De Keijser T H, Mettemeijer E J, Rozendall H C F, et al. Determination of crystallite-size and lattice-strain parameters in conjunction with the profile-refinement method of the determination of crystal structures [J]. J. Appl. Crystallogr.1983,16(2):309-316.
    [3]Kirkegaard P, Eldrup M. Positronfit extend:a new version of a program for analysing positron life-time spectra [J]. Comput. Phys. Commun,1974,7(7):401-409.
    [4]陈建华,邓文.纳米TiO2光催化材料离子掺杂的正电子湮没研究[J].工业催化,2008,16(12):7-13.
    [5]Brandt W, Reinheimer J. Theory of semiconductor response to changed particle [J]. Phys Rev B,1970,2:3104-3112.
    [6]Jun Y W, Choi J S, Cheon J. Shape control of semiconductor and metal oxide nanocrystal through nonhydrolytic colloidal routes [J]. Angewandte Chemie International Edition, 2006,45:3414-3439.
    [7]施尔畏,陈之战,元如林,等.水热结晶学[M].北京:科学出版社,2004.
    [8]殷平,刘军深,王艳杰.特殊形貌磷酸镉铵的室温固相合成[J].化学工程,2007,35(7):53-55.
    [9]曹亚丽,贾殿赠,刘浪.室温固相化学反应法合成Cd(OH)2纳米棒[J].高等学校化学学报,2004,25(9):1601-1603.
    [10]刘少友,王翔,唐文华,等.磷酸铝镍介孔催化材料的低热固相合成及形成机理[J].无机化学学报,2009,25(5):799-804.
    [11]刘少友,唐文华,龙步明,等.磷酸铝铁的低热固相合成及其形貌[J].过程工程学报,2010,10(2):348-354.
    [12]Liu S Y, Liu G C, Feng Q G. Al-doped TiO2 mesoporous materials:synthesis and photo-degradation properties [J]. J. Porous Mater,2010,17(2):197-206.
    [13]井立强,王德军,辛柏福,等.掺Sn的纳米TiO2表面光生束缚激子的验证及其特性[J].化学学报,2005,63(11):1008-1012.
    [14]李灿,李美俊.拉曼光谱在催化研究中应用的进展[J].分子催化,2002,17(3):213-240.
    [15]李颖,段玉然,李维华.采用拉艾光谱技术研究纳米锐钦矿到金红石的相转变[J].光谱学与光谱分析,2002,22(5):783-786
    [16]任洁,霍宇凝,卞振锋,等.拉曼光谱应用于TiO2光催化反应的研究进展[J].上海师范大学学报(自然科学版),2007,36(1):83-89.
    [17]Chen X B, Mao S S. Titanium dioxide nanomaterials:synthesis, properties, modify-cations, and applications [J]. Chem. Rev.2007,107 (7):2891-3041.
    [18]Swamy V, Kuznetsov A, Dubrovinsky L S, et al. Finite-size and pressure effects on the Raman spectrum of nanocrystalline anatase TiO2 [J]. Phys. Rev. B,2005,71 (18): 184302-184312.
    [19]Damir A, Wang S F, Chen X D, et al. Excited state localization and delocalization of internal charge transfer in branched push-pull chromophores studied by single-molecule spectroscopy [J]. J. Am. Chem. Soc.,2009,131 (16):5742-5743.
    [20]钟俊波,沈昱,兰仁杰,等.Ti02光催化降解吡啶的研究[J].工业用水与废水,2003,34(5):22-24.
    [21]肖万能,赵霁,王维江,等.周期多层量子阱结构的光吸收特性与电场分布[J].物理学报,2003,52(9):2293-2297.
    [22]Brus L. Electronic wave function in semiconductor clusters:Experiment and theory [J]. J. Phys. Chem.,1986,90(12):2555-2560.
    [23]李子亨,王德军,王平,等.纳米Ti02的光生电荷迁移特性研究[J].物理化学学报,2005,21(3):310-314.
    [24]尹荔松,危韧勇,周歧发,等.纳米Ti02粉品的正电子湮没寿命谱研究[J].功能材料,2000,31(3):299-305.
    [25]豪托贾维.正电子湮没技术[M].北京:科学出版社,1983:255.
    [26]Low G K C, Mc. Evoy S R, Matthews R W. Formation of nitrate and ammonium ions in titanium dioxide mediated photocatalytic degradation of organic compounds containing nitrogen atoms [J]. Envoron. Sci. Technol.,1991,25(3):460-467.
    [27]刘少友,冯庆革,唐文华,等.S、Al掺杂TiO2纳米材料的固相合成及其可见光降解性能[J].无机化学学报,2011,2(4):673-681.
    [1]陈其,史卫梅,姜东,等.可见光响应的镍硅共掺杂二氧化钛及其光催化性能[J].化学学报,2010,68(4):301-308.
    [2]Zhao W, Ma W, Chen C, et al. Efficient degradation of toxic organic pollutants with Ni2O3/TiO2-xBx under visible irradiation [J]. J. Am. Chem. Soc,2004,126 (15):4782-4783.
    [3]Peng T, Zhao D, Dai K. Synthesis of titanium dioxide nanoparticles with mesoporous anatase wall and high photocatalytic activity [J]. J. Phys. Chem. B,2005,109(11): 4947-4952.
    [4]Gracia F, Holgado J P, Caballero A,et al, Structure, optical and photoelectron chemical properties of Mn+-Ti02 model thin film photocatalysts [J]. J. Phys. Chem.B,2004,108 (45):17466-17476.
    [5]李斌川,翟玉春,刘奎仁,等.Al掺杂对锐钛矿型TiO2光催化性能影响的研究[J].分子科学学报,2008,24(1):46-50.
    [6]魏凤玉,祝童.S,Fe共掺杂纳米TiO2的制备及其光催化性能[J].应用化工,2007,36(5):421-425.
    [7]吕媛,倪伶俐,杨平,等.铬和硫共掺杂二氧化钛催化剂的制备及其可见光催化性能[J].催化学报,2007,28(11):987-992.
    [8]袁芳.多效唑在水体中光化学降解研究[D].长沙:湖南农业大学博士论文,2007.
    [9]Liu S Y, Feng Q G. Synthesis of uranium doped TiO2 nanomaterial and its visible light degradation property [J]. Adv. Mater. Res.,2011,148-149:1208-1211.
    [10]Benest H. A. Acidity of catalyst surfaces. Ⅱ. Amine titration using hammett indicators [J]. J. Phys. Chem.1957,61:970-973
    [11]Liu S Y, Tang Q L, Feng Q G. Synthesis of S/Cr doped mesoporous TiO2 with high-active visible light degradation property via solid state reaction route [J]. Applied Surface Science,2011,257(13):5544-5551.
    [12]Warren L. M, Julian C. S, Peter H. Unit operations of chemical engineering (sixth edition)[M].北京:化学工业出版社,2003:912-921.
    [13]Randeniya L K, Murphy A B, Plumb I C. A study of S-doped TiO2 for photoelectron-chemical hydrogen generation from water [J]. J. Mater. Sci.,2008,43(4):1389-1399.
    [14]Ohno T, Akiyoshi M, Umebayashi T, et al. Preparation of S-doped TiO2 photocatalysts and their photocatalytic activities under visible light [J]. Appl. Catal. A:General,2004, 265(1):115-121.
    [15]Rodriguez J A, Jirsak T, Chaturvedi S. Reaction of SO2 with ZnO (0001)-O and ZnO powders:photo-emission and XANES studies on the formation of SO3 and SO4 [J]. Surf. Sci.,1999,442(3):400-412.
    [16]Bedri E, Robert A. H, Gary W. S, et al. XPS and FTIR surface characterization of TiO2 particlesused in polymer encapsulation [J]. Langmuir,2001,17(9):2664-2669
    [17]Khan R, Kim T J. Preparation and application of visible-light-responsive Ni-doped and SnO2- coupled TiO2 nanocomposite photocatalysts [J]. J. Hazardous Mater.,2009,163 (2/3):1179-1184.
    [18]Fan H J, Knez M, Scholz R, et al. Monocrystalline spinel nanotube fabrication based on the Kirkendall effect [J]. Nature Mater.2006,5(8):627-631.
    [19]袁渭康,袁权.催化剂表征[M].上海:华东理工大学出版社,2008:117.
    [20]Dana D, Vlasta B, Milan M, et al. Investigations of metal-doped titanium dioxide photocatalysts [J]. J. Appl. Catal. B:Environmental,2002,37(2):91-105.
    [21]刘昭麟,崔作林,张志.Cr3+掺杂纳米TiO2结构相变及光谱特征[J].功能材料,2005,36(9):1404-1408
    [22]许珂敬,尚超峰,李芳.S掺杂纳米TiO2的可见光响应机制[J].中国有色金属学报,2008,18(5):884-889.
    [23]Chen X B, Mao S S. Titanium Dioxide Nanomaterials:Synthesis, Properties, Modifications, and Applications [J]. Chem. Rev.,2007,107 (7):2891-2959.
    [24]Balachandran U, Eror N G. Raman spectra of titanium dioxide [J]. J. Solid State Chem. 1982,42 (3):276-282.
    [25]Swamy V, Kuznetsov A, Dubrovinsky L S, et al. Finite-size and pressure effects on the Raman spectrum of nanocrystalline anatase TiO2 [J]. Phys. Rev. B,2005,71 (18): 184302-184312.
    [26]Chen C C, Liu L G, Lin C C, et al. High pressure phase transformation in CaSO4 [J]. J. Phys. Chem. Solids,2001,62(7):1293-1298.
    [27]Sayago D I, Serrano P, Bohme O, et al. A photoemission study of the SO2 adsorption on TiO2 (110) surfaces [J]. Surf. Sci.,2001,482/485:9-14.
    [28]冯良荣,谢卫国,吕绍洁,等.纳米TiO2催化剂微晶结构对光催化反应的影响[J].中国科学(B辑),2001,31(6):536-541
    [29]施尔畏,陈之战,元如林,等.水热结晶学[M].北京:科学出版社,2004.
    [30]邓晓燕,崔作林,杜芳林,等.纳米二氧化钛的热分析表征[J].无机材料学报,2001,16(6):1090-1094
    [31]Kong X Y, Wang Z L. Spontaneous polarization-induced nanohelixes, nanosprings, and nanorings of piezoelectric nanobelts [J]. Nano Lett.,2003,3(12):1625-1631.
    [32]Antonelli D M, Ying Y J. Synthesis of hexagonally packed mesoporous TiO2 by a modified sol-gel method [J]. Angew. Chem. Int. Ed. Engl.,1995,34(18):2014-2017.
    [33]张克立,孙聚堂,袁良杰,等.无机合成化学[M].武汉:武汉大学出版社,2008,287-295.
    [34]谷亨杰,吴泳,丁金昌.有机化学[M].北京:高等教育出版社,2008,385.
    [35]Hoffmann M R, Martin S T, Choi W, et al. Environmental applications of semiconductor photocatalysis [J]. Chem. Rev.,1995,95(1):69-96.
    [36]黄溢淳,张兆春,姜惠轶.可见光响应型Pt/GaP纳米粉体的光催化性质[J].无机材料学报,2011,26(6):579-584.
    [37]宋晓艳,高金萍,张久兴.纳米多晶体的热力学函数及其在相变热力学中的应用[J].物理学报,2005,54(3):1313-1319.
    [38]于庆河,周春根.等离子喷涂纳米Ti02涂层及其光催化性能[J].北京航空航天大学学报,2007,33(5):608-612.
    [1]傅敏,王建伟,高堕,等.掺铁纳米TiO2光催化降解乐果的实验研究[J].过程工程学报,2009,9(6):1150-1120.
    [2]桑丽霞,马重芳,孙继红,等.掺杂TiO2介孔材料的合成与表征[J].高等学校化学学报,2006,27(9):1608-1611.
    [3]Zhou M H, Yu J G, Cheng B, et al. Preparation and photocatalytic activity of Fe-doped mesoporous titanium dioxide nanocrystalline photocatalysts [J].Materials Chemistry and Physics,2005,93 (1):159-163.
    [4]郑金玉,丘坤元,危岩.有机小分子模板法合成二氧化钛中孔材料[J].高等学校化学学报,2000,21(4):64-649.
    [5]Wang Y D, Ma C L, Sun X D, et al. Synthesis and characterization of mesoporous TiO2 with wormhole-like framework structure [J]. Appl. Catal. A:General,2003,246(1):161-170.
    [6]杨 儒,李敏,李友芬,等.锐钛矿型纳米TiO2介孔粉体表面织构的研究[J].高等学校化学学报,2003,24(1):146-150.
    [7]Sakatani Y, Nunoshuge J, Ando H, et al. Photocatalytic decomposition of acetaldehyde under visible light irradiation over La3+ and N co-doped TiO2 [J]. Chem. Lett.,2003,32 (12):1156-1157.
    [8]Zhao W, Ma W, Chen C, et al. Efficient degradation of toxic organic pollutants with Ni2O3/TiO2-xBx under visible irradiation[J]. J. Am. Chem. Soc,2004,126 (15):4782-4783.
    [9]龙绘锦,王恩君,董江舟,等.In离子掺杂二氧化钛纳米管可见光催化活性的研究[J].化学学报,2009,67(14):1533-1538.
    [10]常琳,刘晶冰,王金淑,等.可见光响应的铁掺杂TiO2中空微球的制备及其光催化性能[J].无机化学学报,2010,26(5):744-748
    [11]张建臣,郭坤敏,马兰,等.TiO2/AC复合光催化剂对苯和丁醛的气相光催化降解机理[J].催化学报,2006,27(10):853-856.
    [12]Liu S Y, Tang Q L, Feng Q G. Synthesis of S/Cr doped mesoporous TiC2 with high-active visible light degradation property via solid state reaction route [J]. Appl. Surface Sci., 2011,257(13):5544-5551.
    [13]刘少友,唐文华,冯庆革,等.N,Fe共掺杂TiO2纳米材料的固相合成及其对喹啉的可见光降解[J].无机材料学报,2010,25(9):921-927.
    [14]毛声俊,侯世祥,李超英,等.不同指标预测葛根注射液稳定性的研究[J].中草药,2001,32(7):595-597.
    [15]Xu H N, He C H. Separation and purification of puerarin with solvent extraction [J]. Separation and Purification Technology,2007,56(3):397-400.
    [16]Liu S Y, Feng Q G. Synthesis of uranium doped TiO2 nanomaterial and its visible light degradation property [J]. Advanced Materials Research,2011,148-149:1208-1211.
    [17]戴亚堂,潘宝风,涂铭旌.锐钛型介孔纳米TiO2粉体制备与机理研究[J].武汉理工大学学报,2006,28(4):1-4.
    [18]Kuroda Y, Mori T, Yagi K, et al. Preparation of visible-light-responsive TiO2-xNx photo-catalyst by a sol-gel method:analysis of the active center on TiO2 that reacts with NH3 [J]. Langmuir,2005,21(17):8026-8034.
    [19]Masahiro M, Ayako I, Hiroki T, et al. Zeta potential and photocatalytic activity of nitrogen doped TiO2 thin films [J]. Phys. Chem. Chem. Phys.,2004,6(4):865-870.
    [20]李卫华,乔学斌,高恩勤,等.3d过渡金属掺杂TiO2纳米晶膜电极的光电化学研究[J].高等学校化学学报,2001,21(10):1534-1538.
    [21]张克立,孙聚堂,袁良杰,等.无机合成化学[M].武汉:武汉大学出版社,2008:287-295.
    [22]刘少友,唐文华,龙步明,等.磷酸铝铁的低热固相合成及其形貌[J].过程工程学报,2010,10(2):348-354.
    [23]Tian G, Pan K, Fu H, et al. Enhanced photocatalytic activity of S-doped TiO2-ZrO2 nano-particles under visible-light irradiation [J]. J. Hazard. Mater,2009,166:939-944.
    [24]刘守新,陈孝云,陈曦.酸催化水解法制备可见光响应N掺杂纳米TiO2催化剂[J].催化学报,2006,27(8):697-702.
    [25]Saha M C, Tompkins H G, Titanium nitride oxidation chemistry:An X-ray photoelectron spectroscopy study [J]. J. Appl. Phys.,1992,72(7):3072-3079.
    [26]Li D, Ohashi N, Hishita S, et al.Origin of visible-light-driven photocatalysis:A comparative study on N/F-doped and N-F-codoped TiO2 powders by means of experimental characterizations and theoretical calculations [J]. J. Solid State Chem,2005, 178 (11):3293-3302.
    [27]曾昱嘉,叶志镇,吕建国,等.衬底温度对Al+N共掺P-ZnO薄膜性能的影响[J].无机材料学报,2005,20(3):750-754.
    [28]Manova D, Dimitrova V, Fukarek W, et al. Invesigation of d.c.-reactive magnetron-sputtered A1N thin film by electron microprobe analysis, X-ray photoelectron spectro-scopy and polarized infrared reflection [J]. Surface and Coatings Technology,1998, 106(2):205-208
    [29]鞠剑峰,李澄俊,徐铭,等.多孔纳米Fe3+/TiO2的制备及其光催化性能[J].精细化工,2006,23(5):417-421.
    [30]高小奇,郭志友,张宇飞,等.Al-N共掺杂ZnO电子结构和光学性质[J].发光学报,2010,31(4):509-514.
    [31]夏启斌,李忠,奚红霞.Fe3+和Ce3+掺杂对TiO2光催化剂性能的影响[J].化工学报,2005,56(9):1666-1672
    [32]Liu S Y, Liu G C, Feng Q G. Al-doped TiO2 mesoporous materials:synthesis and photo-degradation properties [J]. J. Porous Mater.2010,17(2):197-204.
    [33]刘守新,陈孝云,李晓辉.N掺杂对TiO2形态结构及光催化活性的影响[J].无机化学学报,2008,24(2):253-259.
    [34]Livraghi S, Czoska A M, Paganini M C, et al. Preparation and spectroscopic characterzation of visible light sensitized N doped TiO2 (rulite) [J]. J. Solid State Chem., 2009,182:160-164.
    [35]Valentin C D, Pacchioni G, Selloni A, et al. Characterization of paramagnetic species in N-doped TiO2 powders by EPR spectroscopy and DFT calculations[J]. J. Phys. Chem. B, 2005,109(23):11414-11419.
    [36]Valentin C D, Finazzi E, Pacchioni G, et al. N-doped TiO2:Theory and experiment [J]. Chem. Phys.2007,339 (1/3):44-56.
    [37]Chen X B, Mao S S, Titanium dioxide nanomaterials:synthesis, properties, modifications, and appications [J]. Chem. Rev.2007,107(7):2891-2959.
    [38]李斌川,翟玉春,刘奎仁,等.Al掺杂对锐钛矿型TiO2光催化性能影响的研究[J].分子科学学报,2008,24(1):46-50.
    [39]肖万能,赵霁,王维江.周期多层量子阱结构的光吸收特性与电场分布[J].物理学报,2003,52(9):2293-2297.
    [40]成晓玲.N和Al共掺杂Ti02薄膜的制备及性能研究[D].广州:广东工业大学博士学位论文,2008.
    [41]Swamy V, Kuznetsov A, Dubrovinsky L S, et al. Finite-size and pressure effects on the Raman spectrum of nanocrystalline anatase TiO2[J]. Phys. Rev. B,2005,71 (18):184302-184312.
    [42]Lazic S, Calleja J M, Hey R, Ploog K. Raman study of N bonding in AlGaAs/InGaAsN multiquantum wells [J]. Physica status solidi (b),2006,243(7):1643-1638.
    [43]Saikia P M, Bora M, Dutta R K, Acid-base equilibrium of anionic dyes partially bound to micelles of nonionic surfactants [J]. J. Colliod Interface. Sci.2005,285:382-387.
    [44]Chakraborty H, Sarkar M, Interaction of piroxicam with micelles:Effect of hydrophobic chain length on structural switchover [J]. Biophys. Chem.2005,117:79-85.
    [45]Xi J Q, Guo R, Acid-base equilibrium of puerarin in CTAB micelles [J]. J. Pharm. Biomed. Anal.2007,43(1):111-118.
    [46]Zsila F, Bikadi Z, Simonyi M, Probing the binding of the flavonoid, quercetin to human serum albumin by circular dichroism, electronic absorption spectroscopy and molecular modelling methods [J]. Biochem. Pharmacol.2003,65(3):447-456.
    [47]唐文华,刘少友,冯庆革,等.金属掺杂二氧化钛介孔材料对葛根素的吸附行为[J].过程工程学报,2010,10(4):685-690.
    [48]Liu S Y, Feng Q G. Synthesis of uranium doped TiO2 nanomaterial and its visible light degradation property [J]. Advanced Materials Research,2011,148-149:1208-1211.
    [49]Livraghi S, Paganini M C, Giamello E, et al. Origin of photoactivity of nitrogen-doped titanium dioxide under visible light [J]. J. Am. Chem. Soc.,2006,128(49):15666-15671.
    [50]Kim D H, Hong H S, Kim S J, et al. Photocatalytic behaviors and structural characteri-zation of nano-crystal-line Fe-doped TiO2 synthesized by mechanical alloying [J]. J. Alloys and Compounds,2004,375(1/2):259-264.
    [51]Long M C, Cai W M, Wang Z P, et al. Correlation of electronic structures and crystal structures with photocatalytic properties of undoped, N-doped and I-doped TiO2 [J]. Chem. Phys. Lett.,2006,420(1/3):71-76.
    [52]Rusu C N, Yates J T Jr, Defect Sites on TiO2 (110) detection by O2 photodesorption [J]. Langmuir,1997,13 (16):4311-4316.
    [53]陈东丹,胡晓力,胡晓洪,等.稀土La2O3掺杂对TiO2光催化性能的影响[J].中国陶瓷,2003,39(1):1-3.
    [55]魏凤玉,倪良锁.硼硫共掺杂TiO2的光催化性能及掺杂机理[J].催化学报,2007,28(10):905-909
    [56]柏源,孙红旗,刘会景,等.浓度梯度分布的镍和氮共掺杂Ti02光催化剂的制备和表征[J].高等学校化学学报,2008,29(11):2232-2238.
    [57]黄东升,曾人杰,陈朝凤,等.铁、氮共掺杂二氧化钛薄膜的亲水性能[J].物理化学学报,2007,23(7):1037-1041
    [58]Wang R, Hashimoto K, Fujishima A, et al. Light-induced amphiphilic surfaces [J]. Nature,1997,388:431-432.
    [59]Wang R, Hashimoto K, Fujishima A, et al. Photogeneration of highly amphiphilic surfaces [J].Adv Mater,1998,10(2):135-138.
    [60]Yu J G, Zhao X J, Zhao Q N. Preparation and characterization of super hydrophilic porous TiO2 coating films [J]. Mater Chem Phys,2001,68(1/3):253-259.
    [61]Bai X M, Arthur F. V, Richard G. H, et al. Efficient Annealing of Radiation Damage Near Grain Boundaries via Interstitial Emission Radiation defects in nanomaterials [J]. Science,2010,327 (5973):1631-1634.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700