用户名: 密码: 验证码:
北京山区流域土地利用系统非点源污染环境风险评价与SPARROW模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
区域土地利用/覆被系统变化产生的非点源污染压力日益增加,导致流域水质环境风险突出。本研究以北京山区流域为研究区,以多准则综合评价与土地利用系统协同方程开展农业非点源(以及农村居民点等分散无处理的点源扩散)污染风险分区,并利用半机理经验SPARROW模型分析流域水质总氮污染源,为解决缺资料地区的农村面源污染流域水土环境快速评价与区域水土资源管理提供技术方法和决策参考。本研究的主要结论有:
     (1)基于非点源产生、迁移、削减的各个过程研究,应用多准则分析的非点源污染评价方法,借鉴磷(P)指数及PNPI (Potential None-point Pollution Indicator)指标参数的选取原则,选择土地利用因子、径流因子、河流沟渠距离因子、土壤侵蚀、土壤渗透率5个因子,评价非点源污染物进入地表水体的潜在风险。通过改进的理想解法(TOPSIS)对5个因子客观赋权重,通过计算风险指数(NPA)对北京山区流域划分了潜在污染区(0-0.3)、轻度污染区(0.3-0.5)、中度污染区(0.5-0.7)、强度污染区(0.7-0.8)和重度污染区(0.8-1.0)五个等级的水污染源分区,且所占面积分别为42%、36%、14%、6%和2%(即面积分别为838.170、789.165、311.847、128.829、51.358km2).
     (2)基于各非点源环境风险区,应用序参量的特征值分析了农业土地利用系统的演化特点,探讨了农业土地利用系统耦合协调度在各非点源环境风险区的空间变化以及在密云县的时间演变过程。研究发现,主导北京山区流域土地利用系统的序参量为造林总面积、农村居民点边缘密度、恩格尔系数、灌溉面积、人口自然增长率。
     从空间变化来看,山区农业土地利用系统在潜在污染区中三个子系统的发展速度均为正,系统的序参量矢量指向第1象限,系统处于综合协调发展型。轻度污染区和中度污染区处于第Ⅱ象限,属于经济减速型。强度污染区和重度污染区处于第Ⅵ象限,属于生态调整型。进一步对协调演化状态的分析得出,潜在污染区处于0<α<45,对应协调演化类型Ⅱ。从时间变化来看,在1980-1994年内,密云县农业土地利用系统的序参量矢量指向第Ⅱ象限,系统处于经济减速型,1994年以后,流域农业土地利用系统的序参量矢量指向第1象限,系统处于综合协调发展型(社会、经济、生态协调发展)。
     (3)应用SPARROW模型,以密云水库流域为例,模拟TN污染物从产生至到达监测站点的传输及衰减过程。研究表明:SPARROW模型模拟精度R2为0.689,模型通过了统计性检验,且监测点模拟值与实测值之间的残差相对较小。对流域TN有显著贡献的因素为水产养殖,对TN传输具有重要影响的环境因子为土壤渗透率、土壤pH,对TN传输具有重要影响的环境过程为河段中的一级衰减反应。从水质来看,支流水质较好,干流水质较差。从空间分布来看,污染产率较高的子流域主要分布在各支流的源头河段,TN在子流域河段间的衰减表现出干流衰减比例大,支流衰减小的规律。
     密云水库上游流域总氮浓度在0.2-0.5mg/L之间,东帽湾及上游干流河段、密云水库周边流域、潮河遥桥峪水库上游干流河段流域总氮浓度大于1.5mg/L。总氮产率较高的子流域主要分布在各河流源头,最大产TN在4-8kg/ha.yr之间。对流域总氮来源进行解析,得出水产养殖最大贡献率分别在35%和65%。而土地利用增量流域分析结果表明,水产养殖用地预测增量流域产率在第90个百分位时为9.69kg/ha. yr。
With the increasing pressures from regional land use/cover change for surface water quality, this study took Beijing northern mountainous areas as a case study, developed an evaluation approach for the rural non-point source pollution and an comprehensive evaluation by the multi-criteria analysis method basing on the total Nitrogen pollution. The SPARROW model was calibrated to simulate the components of the total Nitrogen pollution of the watershed. It provides references for the evaluation of the land and water environment of the rural non-point source pollution and the technical methods of the water and land resources management in areas where there are lack of data. The main conclusions are as follows.
     (1) Basing on the emerging, migrating, and reducing of the non-point source pollution, applying the multi-criteria analysis on the evaluation of the non-point source pollution, and combining the rules of factors selection for the indexes of P and PNPI, the5indexes of land use, water runoff, distance, soil erosion, soil permeability are chosen to evaluate the risks of the non-point pollution entering into the surface water. The modified TOPSIS method was employed to give objective weights for the5indexes. By calculating the risk index (NPA),5pollution categories are identified, which are:latent contaminated area (0-0.3), mild contaminated area (0.3-0.5), moderate contaminated area (0.5-0.7), severe contaminated area (0.7-0.8) and extremely severe area (0.8-1.0). The corresponding percentages of the areas are42%(838.170km2),36%(789.165km2),14%(311.847km2),6%(128.829km2) and2%(51.358km2).
     (2) Basing on the environmental risk zones of the non-point area, the characteristic value of the order parameter is used to analyze the evolution of the rural land use system. The spatial change of the coupling coordination degree of the agricultural land use system among the non-point pollution zones is discussed. Results show that the dominant factors affecting the order parameter of the agricultural land system for the Beijing mountainous area are:the foresting area, the edge density of the rural resident, the Engel coefficient, the irrigation area, the natural increase rate of the population.
     In terms of the spatial changes, the development speeds of the three sub-regions of the agricultural land use system are positive among the latent contaminated areas. The vector of the system order parameter points to the first quadrant, and the system is in the state of comprehensive development. The mild contaminated area and the moderate contaminated area are in the second quadrant, which are in the state of the decrease in economic. The severe contaminated area and the extremely severe area are in the sixth quadrant, which belongs to the type of ecological modification. The evolution state is further analyzed and results show that the a of the latent contaminated area is between0and45, and the corresponding evolution type is type Ⅱ. In terms of changes in time, between1980and1994, the coupling coordinate degree of the agriculture land use system in Miyun watershed area point to the second quadrant, and the system belongs to the type of economic decrease. After1994, the coupling coordinate degree of the agriculture land use system in Miyun watershed area point to the first quadrant, and the system belongs to the type of comprehensive development (harmonious development in society, economic and ecologic).
     (3) The SPARROW model was used to simulate the transmission and recession of the total nitrogen (TN) pollution from the beginning point of emergence to the ending point arriving at the investigation station using Miyun reservoir as a case study. Results show that the R squared of the SPARROW models is0.689, and the variations between the observed values and the simulated values are small. The contributed factor to the TN is aquaculture. The contributed environmental factors to TN are the soil permeability, the soil PH value, and the main environmental process affecting the TN transmission is the first level recession. In terms of the water quality, the quality is better in the branch stream than that in the main stream. In the spatial distribution, the watersheds with high polluting rate are in the original area of the branch stream, and the recession rates among the branch streams are higher in the main stream area, and lower in the branch streams.
     The TN density is between0.2and0.5mg/L in the upper stream of the Miyun reservoir watershed, while the TN density is larger than1.5mg/L in the upper main stream of Dongmaowan, area around Miyun reservoir and the upper main stream of the Chaoheyaoqiaoyu reservoir. The sub-regions with higher TN are distributed at the origins of each stream, with the largest production at4to8kg/ha.yr. The decomposition of the origins of TN, the factor of aquaculture contributes to up to35%and65%of the TN. The results of analysis on the incensement of the land use watershed show that the predicted value of watershed production of the land use for the aquaculture is9.69kg/ha.yr at the level of the90th percentile.
引文
[1]World Resources Institute. Interactive Map of EutropHication and HypoxiaAccessedat.http://www.wri.org/project/eutropHication/map,2011-03-01/2014-05-20
    [2]Shrestha R, Dibike Y B, Prowse T D. Modelling of climate induced hydrologic changes in Lake Winnipeg watershed. Journal of Great Lakes Research,2012,38 (3):83-94
    [3]王庆锁,孙东宝,郝卫平,等.密云水库流域地下水硝态氮的分布及其影响因素.土壤学报,2011,48(1):141-150
    [4]李文赞,李叙勇,王晓学.20年来密云水库主要入库河流总氮变化趋势和影响因素.环境科学学报,2013,33(11):3047-3052
    [5]李明涛,王晓燕,刘文竹.潮河流域景观格局与非点源污染负荷关系研究.环境科学学报,2013,33(8):2296-2306
    [6]张微微,李红,孙丹峰,周连第.怀柔水库上游农业氮磷污染负荷变化.农业工程学报,2013,29(24):124-131
    [7]Bhaduri B, Harbor J, Engel B, et al. Assessing watershed-scale, long-term hydrologic impacts of land-use change using a GIS-NPS model. Environmental Management,2000,26 (6):643-658
    [8]Allan J D, Castillo M M. Stream ecology:structure and function of running waters. Netherlands:Springer,2007
    [9]李怀恩,秦耀民,胥彦玲.陕西黑河流域土地利用变化对非点源污染的影响研究.水利发电学报,2011,30(5):240-247
    [10]Kashaigili. Impacts of land-use and land-cover changes on flow regimes of the Usangu wetland and the Great Ruaha River, Tanzania. Integrated Water Resources Management-From Concept to Practice,2008,33 (8-13):640-647
    [11]Zhang H, Huang G H. Assessment of non-point source pollution using a spatial multicriteria analysis approach. Ecological Modelling,2011,222(2):313-321
    [12]胡和兵.城市化背景下流域土地利用变化及其对河流水质影响研究:[博士学位论文].南京:南京师范大学,2013
    [13]刘亚琼,杨玉林,李法虎.基于输出系数模型的北京地区农业面源污染负荷估算.农业工程学报,2011,27(7):7-12
    [14]陈瑜,刘光逊,赵越,等.仿真流域的总氮模拟—SPARROW模型应用方法研究.水资源与水工程学报,2012,23(4):98-101
    [15]Sharpley A N. Prediction of soluble Phosphorus transport in agricultural runoff Environ Qual, 1989 (18):313-316
    [16]Benoit G R. Effect of agricultural management of wet sloping soil on nitrate and Phosphorus in surface and subsurface water. Water resources research,1973,9(5):1296-1303
    [17]McDowell L L, Willis G H, MurpHree C E. Plant nutrient yields in runoff from a Mississippi Delta watershed. Transactions of the ASAE,1984,27 (4):1059-1066
    [18]黄满湘,章申,唐以剑,等.模拟降雨条件下农田径流中氮的流失过程.土壤与环境,2001,10(1):6-10
    [19]李宪文,林培,朱德举.山麓地带耕地利用景观动态分析与质量评价.中国土地科学,2000,14(3):40-47
    [20]邹桂红.基于AnnAGNPS模型的非点源污染研究—以大沽河典型小流域为例.2007,中国海洋大学
    [21]邬伦,李佩武.降雨—产流过程与氮、磷流失特征研究.环境科学学报,1996,16(1):111-116
    [22]Ingram J J, Woolhiser D A. Chemical transfer into overland flow. In:Proceedings of ASCE Symposium on Watershed Management. New York:ASCE,1980,40-53
    [23]刘翔宇,张锡涛,谢谟文,等.基于GIS的降雨滑坡渗流-稳定实时评价方法研究.岩土工程学报,2012,34(9):1627-1635
    [24]Gao C, Zhu J G, Zhu J y, et al. Nitrogen export from an agriculture watershed in the Taihu Lake area, China. Environ Geochem Health,2004,26 (2-3):199-207
    [25]符素华,刘宝元,吴敬东,等.北京地区坡面径流计算模型的比较研究.地理科学,2002,22(5):604-609
    [26]Mishra D, Narumalani S, Rundquist D, et al. Benthic Habitat Mapping in Tropical Marine Environments Using QuickBird Imagery. Photogrammetric Engineering and Rmote Sensing, 2006,72:1037-1048
    [27]Sun S L, Deng Z L. Multi-sensor optimal information fusion Kalman filter. Automatica,2004, 40 (6):1017-1023
    [28]余新晓,秦永胜,陈丽华,等.北京山地森林生态系统服务功能及其价值初步研究.生态学报,2002,22(5):784-786
    [29]贺缠生,傅伯杰,陈立顶.非点源污染的管理及控制.环境科学,1998,19(5):87-91
    [30]Wang K, Wang H J, Shi X Z, et al. Landscape analysis of dynamic soil erosion in Subtropical China:A case study in Xingguo County, Jiangxi Province. Soil & Tillage Research,2009, 105 (2):313-321
    [31]Sadeghi S H, Moosavi V, Karami A, et al. Soil erosion assessment and prioritization of affecting factors at plot scale using the Taguchi method. Journal of Hydrology,2012,448 (1): 174-180
    [32]Zhu M Y. Soil erosion risk assessment with CORINE model:case study in the Danjiangkou Reservoir region, China. Stochastic Environmental Research and Risk Assessment,2012,26 (6):813-822
    [33]Stefanescu L, Constantin V, Surd V, et al. Assessment of soil erosion potential by the USLE method in Rosia Montana mining area and associated natech events. Carpathian Journal of Earth and Environmental Sciences,2011,6 (1):35-42
    [34]Wei W, Chen L, Yang L, et al. Spatial scale effects of water erosion dynamics:complexities, variabilities, and uncertainties. Chinese Geograp Hic Science,2012,22(2):127-143
    [35]Bagarello V, Ferro V. Analysis of soil loss data from plots of differing length for the Sparacia experimental area, Sicily, Italy. Biosystems Engineering,2010,105 (3):411-422
    [36]Xu X L, Ma KM, Fu BJ, et al. Influence of three plant species with different morphologies on water runoff and soil loss in a dry-warm river valley, SW China. Forest Ecology and Management,2008,256 (4):656-663
    [37]高佩玲,雷廷武.小流域土壤侵蚀动态过程模拟模型.农业工程学报,2010,26(10):45-50
    [38]王盛萍,张志强.MIKE-SHE与MUSLE耦合模拟小流域侵蚀产沙空间分布特征.农业工程学报,2010,26(3):92-98
    [39]Chen L D, Tian H Y, Fu B J, et al. Development of a new index for integrating landscape patterns with ecological processes at watershed scale. Chinese GeograpHical Science,2009,19 (1): 37-45
    [40]Leys A, Covers G, Gillijns K, et al. Scale effects on runoff and erosion losses from arable land under conservation and conventional tillage:The role of residue cover. Journal of Hydrology, 2010,390 (3):143-154
    [41]Tefera B, Sterk G. Land management, erosion problems and soil and water conservation in Fincha'a watershed, western Ethiopia. Land Use Policy,2010,27 (4):1027-1037
    [42]Vrieling A. Satellite remote sensing for water erosion assessment:A review. Catena,2006,65 (1):2-18
    [43]Boardman J. Soil erosion science:Reflections on the limitations of current approaches. Catena, 2006,68 (2-3):73-86
    [44]Wu J, Ransom M D, Nellis M D, et al. Assessing and managing the Conservation Reserve Program with GIS for Finney County, Kansas. PHotogrammetric Engineering Remote Sensing, 2002,68 (7):735-744
    [45]Vrieling A, Rodrigues S C, Bartholomeus H, et al. Automatic identification of erosion gullies with ASTER imagery in the Brazilian Cerrados. International Journal of Remote Sensing,2007, 28 (12):2723-2738
    [46]Thiam A K. The causes and spatial pattern of land degradation risk in southern Mauritania using multitemporal AVHRR-NDVI imagery and field data. Land Degradation Development,2003, 14 (1):133-142
    [47]Toutin T, Gray L. State-of-the-art of elevation extraction from satellite SAR data. ISPRS Journal of Photogrammetry and Remote Sensing,2000,55 (1):13-33
    [48]Escel G, Levy G J, Singer M J. Spectral reflectance properties of crusted soils under solar illumination. Soil Science Society of America Journal,2004,68 (6):1982-1991
    [49]Moran M S, Hymer D C, Qi J, et al. Comparison of ERS-2SAR and Landsat TM imagery for monitoring agricultural crop and soil conditions. Remote Sensing of Environment,2002,79(2-3):243-252
    [50]Gaynor J D, Findlay W I.Soil and Phosphorus loss from conservation and conventional tillage in Corn production. Environment Quality,1995,24:734-741
    [51]Findlay R. Infrastructure, Human Capital and International Trade. Swiss Society of Economics and Statistics,1995,131 (9):289-301
    [52]Hubbard K G. Characterization of winter wheat grain production as influenced by weather, soil and irrigation factors. Dissertation Abstracts International,1982,42 (9):28-35
    [53]Reeder J D, Schuman G E, Bowman R A. Soil C and changes on conservation reserve program lands in the Central Great Plains. Soil and Tillage Research,1998,47 (324):339-349
    [54]Titus S Seilheimer, Patrick L Zimmerman, Kirk M Stueve, et al. Landscape-scale modeling of water quality in Lake Superior and Lake Michigan watersheds:How useful are forest-based indicators?.Journal of Great Lakes Research,2013,39 (2):211-223
    [55]高常军.流域土地利用对苕溪水体C、N、P输出的影响:[博士学位论文].北京:中国林业科学院,2013
    [56]Mulholland P J. Regulation of nutrient concentrations in a temperate forest stream:roles of upland, riparian, and in stream processes. Limnology and OceanograpHy,1992,37 (7): 1512-1526
    [57]Qu W, Mike D, Wang S. Multivariate analysis of heavy metal and nutrient concentrations in sediments of Taihu Lake, China. Hydrobiologia,2001,450 (1):83-89
    [58]Zhang H C, Cao Z H, Shen Q R, et al. Effect of phosphate fertilizer application on Phosphorus(P) losses from paddy soils in Taihu Lake Region.1. Effect of phosphate fertilizer rate on P losses from paddy soil. Chemosphere,2003,50 (6):695-701
    [59]Chen N, Hong H, Zhang L, et al. Nitrogen sources and exports in an agricultural watershed in Southeast China. Biogeochemistry,2008,87(2):169-179
    [60]Jarvie H P, Withers P J A, Hodgkinson R, et al. Influence of rural land use on stream water nutrients and their ecological significance. Journal of Hydrology,2008,350 (3):166-186
    [61]Stutter M I, Langan S J, Cooper R J. Spatial and temporal dynamics of stream water particulate and dissolved N, P and C forms along a catchment transect, NE Scotland. Journal of Hydrology, 2008,350 (3):187-202
    [62]Cronan C. Biogeochemistry of the Penobscot River watershed, Maine, USA:nutrient export patterns for carbon, nitrogen, and Phosphorus. Environmental Monitoring and Assessment,2012, 184 (7):4279-4288
    [63]Guo L, Cai Y, Belzile C, et al. Sources and export fluxes of inorganic and organic carbon and nutrient species from the seasonally ice-covered Yukon River. Biogeochemistry,2012,107(1-3): 187-206
    [64]Wohlfart T, Exbrayat J F, Schelde K, et al. Spatial distribution of soils determines export of nitrogen and dissolved organic carbon from an intensively managed agricultural landscape. Biogeosciences,2012,9 (11):4513-4525
    [65]Allan J D. Landscape and riverscapes:the influence of land use on river ecosystems. Annual Review of Ecology and Systematics,2004,35:257-284
    [66]Wang L, Zhang Q F, Shao H B, et al. Rainfall Interception in a Robinia pseudoacacia Forest Stand:Estimates Using Gash's Analytical Model. Journal Of Hydrologic Engineering,2013, 18 (4):474-479
    [67]吴磊,龙天渝,王玉霞.基于分布式水文模型的嘉陵江流域氮磷非点源污染负荷预测.农业工程学报,2011,27(3):55-61
    [68]Schmidt P, Morrison T H. Watershed management in an urban setting:process, scale and administration. Land Use Policy,2012,29 (1):45-52
    [69]刘珍环.快速城市化地区不透水表面动态及其水环境效应研究——以深圳市为例:[博士学位论文].北京:北京大学,2010
    [70]徐恺.东江下游流域土地利用变化对非点源污染的影响研究[博士学位论文].广州:中国科学院广州地球化学研究所,2011
    [71]Silva J, Cunha Bustamante M, Markewitz D, et al. Effects of land cover on chemical characteristics of streams in the Cerrado region of Brazil. Biogeochemistry,2011,105 (1-3): 75-88
    [72]Somura H, Takeda I, Arnold J G, et al. Impact of suspended sediment and nutrient loading from land uses against water quality in the Hii River basin, Japan. Journal of Hydrology, 2012,450-451:25-35
    [73]Zampella R A, Procopio N A, Lathrop R G, et al. Relationship of Land-Use/Land-Cover Patterns and Surface-Water Quality in The Mullica River Basin. Journal of the American Water Resources Association,2007,43 (3):594-604
    [74]Katsiapi M, Mazaris A, Charalampous E, et al. Watershed land use types as drivers of freshwater pHytoplankton structure. Hydrobiologia,2012,698 (1):121-131
    [75]Green M B, Finlay J C. Detecting characteristic hydrological and biogeochemical signals through nonparametric scatter plot analysis of normalized data. Water Resources Research,2008, 44 (8):1-13
    [76]Frost P C, Kinsman L E, Johnston C A, et al. Watershed discharge modulates relationships between landscape components and nutrient ratios in stream seston. Ecology,2009,90 (6): 1631-1640
    [77]Green M B, Finlay J C. Patterns of hydrologic control over stream water total nitrogen to total Phosphorus ratios. Biogeochemistry,2010,99(1-3):15-30
    [78]王静.丹江库区黑沟河流域农业非点源污染研究:[博士学位论文].武汉:华中农业大学,2006
    [79]李久生,杨风艳,栗岩峰.层状土壤质地对地下滴灌水氮分布的影响.农业工程学报,2009,25(7):25-31
    [80]佘冬立,邵明安,俞双恩.黄土高原水蚀风蚀交错带小流域土壤矿质氮空间变异性.农业工程学报,2010,26(6):89-96
    [81]范丙权,胡春芳,平建立.灌溉施肥对壤质潮土土壤硝态氮的影响.植物营养与肥料学报,1998,4(1):16-21
    [82]彭琳,彭祥林,卢宗藩.(土娄)土旱地土壤硝态氮季节性变化与夏季休闲的培肥增产作用.土壤学报,1981,18(3):212-222
    [83]Bergstorm L, Brink N. Effects of differentiated applications of fertilizer N leaching losses and distribution of inorganic N in soil. PLANT ANG Soil,1986,93 (3):333-345
    [84]Chang W C, Chiou R J, Ouyang C F. The effect of residual substrate utilization on sludge settling in an enhanced biological Phosphorus removal process. Water Science and Technology. 1996,34 (1/2):425-430
    [85]Wang XiaoPing, Ruan JianYun, Han WenYan, et al. Study on the nutritive peculiarity of potassium in tea plant. Acta Agronomica Sinica,1995,21 (3):324-329
    [86]Heaney D J, Nyborg M, Soldberg E D, et al. Overwinter nitrate loss and denitrification potential of cultivated soils in Alberta. Soil Biology & Biochemistry,1992,24(9):877-884
    [87]Francis D D, Schepers J S. Nitrogen uptake efficiency in maize production using irrigation water high in nitrate. Fertilizer Research,1994,39 (3):239-244
    [88]谢经荣,戴祥韵,黄元仿,等.北京顺义县不同地貌类型粮田土壤剖面无机态氮周年变化规律.土壤通报,1997,28(2):76-78
    [89]Moller H. Ellenberg's reaction and nitrogen figures as indicators of humus form in terrestrial forest ecosystems in the Hanover area. Tuexenia,1997, (17):349-365
    [90]Lassaletta L, Romero E, Billen G, et al. Spatialized N budgets in a large agricultural Mediterranean watershed:high loading and low transfer. Biogeosciences,2012,1 (9):57-70
    [91]沈晔娜,吕军,陈军华,等.水源区河流非点源污染物入河量计算的水质方程反演方法.环境科学,2010,31(8):1768-1774
    [92]Ouyang W, Skidmore A K, Toxopeus A G, et al. Long-term vegetation landscape pattern with non-point source nutrient pollution in upper stream of Yellow River basin. Journal of Hydrology, 2010,389 (3-4):373-380
    [93]王慧亮,李叙勇,解莹.多模型方法在非点源污染负荷中的应用展望.水科学进展,2011,22(5):727-732
    [94]王夏晖,陆军,张庆忠,等.基于流域尺度的农业非点源污染物空间排放特征与总量控制研究.环境科学,2011,32(9):2554-2561
    [95]Seitzinger S P, Mayorga E, Bouwman A F, et al. Global river nutrient export:A scenario analysis of past and future trends. Global Biogeochemical Cycles,2010,24 (4):1-16
    [96]Caille F, Riera J L, Rosell Mele A. Modelling nitrogen and Phosphorus loads in a Mediterranean river catchment (La Tordera, NE Spain). Hydrology Earth System Sciences, 2012,16 (8):2417-2435
    [97]刘博,徐宗学.基于SWAT模型的北京沙河水库流域非点源污染模拟.农业工程学报,2011,27(5):52-61
    [98]孟爽.GIS辅助下的TOPMODEL模型在流域径流模拟中的应用:[硕士学位论文].武汉:华中科技大学,2008
    [99]Gassman P W, Reyes M R, Green C H, et al. The soil and water assessment tool:Historical development, applications, and future research directions. Transactions of the AS ABE,2007, 50 (4):1211-1250
    [100]孙瑞,张雪芹.基于SWAT模型的流域径流模拟研究进展.水文,2010,30(3):28-33
    [101]尹刚.基于SWAT模型的图们江流域氮磷营养物非点源污染研究:[博士学位论文].吉林:东北师范大学,2009
    [102]Grizzetti B, Bouraoui F, Granlund K, et al. Modeling diffuse emission and retention of nutrients in the Vantaanjoki watershed (Finland) using the SWAT model. Ecological Modeling, 2003,169:25-38
    [103]Bouraoui F, Benabdallah S, Jrad A, et al. Application of the SWAT model on the Medjerda river basin (Tunisia). PHysics and Chemistry of the Earth,2005,30:497-507
    [104]Kang M S, Park S W, Lee J J, et al. Applying SWAT for TMDL programs to a small watershed containing rice paddy fields. Agricultural Water Management,2005,79(1):72-92
    [105]Arnold J G, Muttiah R S, Srinivasan R, et al. Regional estimation of base flow and groundwater recharge in the Upper Mississippi river basin. Journal of Hydrology,2000,227 (1): 21-40
    [106]Schuol J, Abbaspour K C, Srinivasan R, et al. Estimation of freshwater availability in the West African sub-continent using the SWAT hydrologic Model. Journal of Hydrology,2008, 352 (1/2):30-49
    [107]Fohrer N, Moller D, Steiner N. An interdisciplinary modeling approach to evaluate the effects of land use change. PHysics and Chemistry of the Earth,2002,27 (9):655-662
    [108]黄清华,张万昌. SWAT分布式水文模型在黑河干流山区流域的改进及应用.南京林业大学学报(自然科学版),2004,28(2):22-26
    [109]秦耀民,胥彦玲,李怀恩.基于SWAT模型的黑河流域不同土地利用情景的非点源污染研究.环境科学学报,2009,29(2):440-448
    [110]苏保林,王建平,贾海峰,等.密云水库流域非点源模型系统.清华大学学报,2006,46(3):355-359
    [111]代俊峰,崔远来.基于SWAT的灌区分布式水文模型—Ⅰ.模型构建的原理与方法.水利学报,2009,40(2):145-152
    [112]王艳君,吕宏军,施雅风,等.城市化流域的土地利用变化对水文过程的影响—以秦淮河流域为例.自然资源学报,2009,24(1):30-36
    [113]Fan J, Tian F, Yang Y H, et al. Quantifying the magnitude of the impact of climate change and human activity on runoff decline in Mian River Basin, China. Water Science and Technology,2010,62 (4):783-791
    [114]罗睿,徐宗学,程磊SWAT模型在三川河流域的应用.水资源与水工程学报,2008,19 (5):28-33
    [115]李晓,李致家,董佳瑞.SWAT模型在伊河上游径流模拟中的应用.河海大学学报:自然科学版,2009,37(1):23-26
    [116]袁军营,苏保林,李卉,等.基于SWAT模型的柴河水库流域径流模拟研究.北京师范大学学报(自然科学版),2010,46(3):361-365
    [117]Richard A. Smith, Gregory E. Schwarz, and Richard B. Alexander. Regional interpretation of water-quality monitoring data. Water Resources Research,1997,33 (12):2781-2798
    [118]吴在兴,王晓燕.流域空间统计模型SPARROW及其研究进展.环境科学与技术,2010,33(9):87-93
    [119]Smith R A, Schwarz G E, Alexander R B. Regional interpretation of water-quality monitoring data. Water Resources Research,1997,33 (12):2781-2798
    [120]Schwarz G E, Survey G. The SPARROW surface water-quality model:Theory, application, and user documentation. US Department of the Interior:US Geological Survey,2006,1-226
    [121]Oehler F, Elliott A H. Predicting stream N and P concentrations from loads and catchment characteristics at regional scale:A concentration ratio method. Science of the Total Environment, 2011,409 (24):5392-5402
    [122]David C R, Richard M V, Gregory E S. Regional regression models of watershed suspended-sediment discharge for the eastern United States. Journal of Hydrology,2012,472 (23):53-62
    [123]Lindenschmidt, K E. The effect of complexity on parameter sensitivity and model uncertainty in river water quality modelling. Ecological Modelling,2006,190(1):72-86
    [124]Mannina G, Viviani G. Parameter uncertainty analysis of water quality model for small river. http://mssanz.org.au/modsim09,2009-07-13/2014-05-20
    [125]StepHen D Preston, Richard B Alexander, Gregory E Schwarz, et al., Factors Affecting Stream Nutrient Loads:A Synthesis of Regional SPARROW Model Results for the Continental United States. JAWRA Journal of the American Water Resources Association,2011,47 (5): 891-915
    [126]Robertson D M, Schwarz G E, Saad D A, et al. Incorporating Uncertainty Into the Ranking of SPARROW Model Nutrient Yields From Mississippi/Atchafalaya River Basin Watersheds. JAWRA Journal of the American Water Resources Association,2009,45 (2):534-549
    [127]Kenney, Terry A, Buto, et al. Evaluation of the Temporal Transferability of a Model Describing Dissolved Solids in Streams of the Upper Colorado River Basin. Journal of the American Water Resources Association,2012,48 (5):1041-1053
    [128]NEIWPCC. New England SPARROW water quality model.[2014-05-04].http: www.neiwpcc.org/pdf_docs/iwr_so4.pdf
    [129]Brakebill J W, S W Ator, et al. Sources of Suspended-Sediment Flux in Streams of the Chesapeake Bay Watershed:A Regional Application of the SPARROW Model 1.JAWRA Journal of the American Water Resources Association,2010,46 (4):757-776
    [130]Moore R B, Johnston C M, Robinson K W, et al. Estimation of Total Nitrogen and Phosphorus in New England Streams Using Spatially Referenced Regression Models. U. S: Geological Survey Scientific Investigations Report 2004,2005,14(1):101-111
    [131]Hoos A B, G McMahon. Spatial analysis of in stream nitrogen loads and factors controlling nitrogen delivery to streams in the southeastern United States using spatially referenced regression on watershed attributes (SPARROW) and regional classification frameworks. Hydrological Processes,2009,23 (16):2275-2294
    [132]Elliott A, Alexander R B, Schwarz G E, et al. Estimation of nutrient sources and transport for New Zealand using the hybrid mechanistic-statistical model SPARROW. Journal of Hydrology (New Zealand),2005,44 (1):1-27
    [133]Grizzetti B, Bouraoui F, G de Marsily, et al. A statistical method for source apportionment of riverine nitrogen loads. Journal of Hydrology,2005,304 (1):302-315
    [134]解莹,李叙勇,王慧,等.SPARROW模型研究及应用进展.水文,2012,32(1):50-54
    [135]Heathwaite L, Sharpley A, Gburek W. A Conceptual approach for integrating Phosphorus and nitrogen management at watershed scales. Journal of Environmental Quality,2000,29 (1): 158-166
    [136]Delaune P B, Moore P. Evaluation of the Phosphorus source component in the Phosphorus index for pastures. Journal of Environmental Quality,2004,33 (6):2192-2200
    [137]Veith T, Sharpley. Comparison of measured and simulated Phosphorus losses with indexed site vulnerability. Transactions of the ASAE,2005,48 (2):557-565
    [138]Birr A, Mulla D. Evaluation of the Phosphorus index in watersheds at the regional scale. Journal of Environmental Quality,2001,30(6):2018-2025
    [139]Bostler C H, Vadas P A, Sharpley A N, et al. Using a Phosphorus Loss Model to Evaluate and Improve Phosphorus Indices. Journal of Environmental Quality,2012,41 (6):1758-1766
    [140]Vadas P A, Good L W, Moore P A, et al. Estimating Phosphorus loss in runoff from manure and fertilizer for a Phosphorus loss quantification tool. Journal of environmental quality,2009, 38 (4):1645-1653
    [141]李娜,郭怀成.农业非点源磷流失潜在风险评价—磷指数法研究进展.地理科学进展,2010,29(11):1360-1367
    [142]张平,高阳听,刘云慧,等.基于氮磷指数的小流域氮磷流失风险评价.生态环境学报,2011,20(6):1018-1025
    [143]张淑荣,陈利项,付博杰,等.农业区非点源污染潜在危险性评价——以于桥水库流域磷流失为例.第四纪研究,2003,23(3):262-269
    [144]周惠平,高超.巢湖流域非点源磷流失关键源区识别.环境科学,2008,29,2696-2702
    [145]Alexander, G E S A. SPARROW地表水质模型理论方法与应用指南(吴文俊,蒋洪强,张 静).北京:中国环境科学出版社,2012
    [146]Brakebill J W, Wolock D M, Terziotti S E. Digital Hydrologic Networks Supporting Applications Related to Spatially Referenced Regression Modeling. Journal of the American water resources association,2011,47 (5):916-932
    [147]David A Saad, Gregory E Schwarz, Dale M Robertson, et al. A Multi-Agency Nutrient Dataset Used to Estimate Loads, Improve Monitoring Design, and Calibrate Regional Nutrient SPARROW Models. JAWRA Journal of the American Water Resources Association,2011,47 (5):933-449
    [148]White Head P G, Wilson E, et al. A semi-distributed nitrogen model for multiple source assessments in catchments (INCA), part1-Model structure and process equations. Science of the Total Environment,1998,210-211:547-558
    [149]Merritt W S, Letcher R A, Jakeman A J. A review of erosion and sediment transport models. Environmental Modelling & Software,2003,18 (8-9):761-799
    [150]Ongley E D, Xiaolan Z, Tao Y. Current status of agricultural and rural non-point source Pollution assessment in China. Environmental Pollution,2010,158 (5):1159-1168
    [151]Shen Z, Liao Q, Hong Q, et al. An overview of research on agricultural non-point source pollution modelling in China.Separation and Purification Technology,2012,84:104-111
    [152]National Research Council. Assessing the TMDL approach to water quality management.Washington D C:the National Academy press,2001,1-109
    [153]National Research Council. Clean coastal waters-understanding and reducing the effects of nutrient pollution. Washington D C:National Academy Press,2000, 1-405
    [154]Alexander, R B, et al. Estimating the sources and transport of nutrients in the Waikato River Basin, New Zealand. Water Resources Research,2002,38 (12):4-26
    [155]Drewry J J, Newham L T H, Greene R B, et al. Index models to evaluate the risk of Phosphorus and nitrogen loss at catchment scales.Journal of Environmental Management,2011, 92 (3):639-649
    [156]Heathwaite A L, Fraser A I, Johnes P J, et al. The Phosphorus indicators Tool:a simple model of diffuse P loss from agricultural land to water. Soil use and Management,2003,19 (1): 1-11
    [157]Dumont E, Harrison J, Kroeze C, et al. Global distribution and sources of dissolved inorganic nitrogen export to the coastal zone:Results from a spatially explicit, global model. Global Biogeochemical Cycles,2005,19(4):1-13
    [158]晏维金.人类活动影响下营养盐向河口/近海的输出和模型研究.地理研究,2006,25(5):825-835
    [159]王晓燕,秦福来,欧洋,等.基于SWAT模型的流域非点源污染模拟—以密云水库北部流域为例.农业环境科学学报,2008,27(3):1098-1105
    [160]窦培谦,王晓燕,王照蒸.密云水库上游流域非点源氮流失特征研究.地球与环境,2006,4 (3):71-76
    [161]Wang X Y, LiT F, Xu Q, et al. Study on the distribution of non-point source pollution in the watershed of Miyun reservoir, Beijing. China. Water Science and Technology,2001,44 (7):35-40
    [162]尹洁,郑玉涛,王晓燕.密云水库水源保护区不同类型村庄生活污水排放特征.农业环境科学学报,2009,28(6):1200-1207
    [163]欧阳喜辉,朱姝青,崔晶.北京市水源保护区施肥及其对水体污染控制研究.农业环境保护,1996,15(3):107-110
    [164]王晓燕,郭芳,蔡新广.密云水库潮白河流域非点源污染负荷.城市环境与城市生态,2003,16(1):31-33
    [165]王晓燕.密云水库上游流域多尺度景观与水质响应关系研究.北京:首都师范大学,2011
    [166]欧洋,王晓燕,耿润哲.密云水库上游流域不同尺度景观特征对水质的影响.环境科学学报,2012,32(5):1219-1226
    [167]刘文竹,王晓燕,欧洋.密云水库小流域不同尺度景观格局与水质的相关性分析.首都师范大学学报(自然科学版),2013,34(6):70-75
    [168]刘阳,王凯,徐淳宁,等.密云水库流域坡面降雨侵蚀的计算机模拟.吉林大学学报:信息科学版,2004,22(1):79-81
    [169]叶芝菡.北京山区养分流失机理与模拟.北京:北京师范大学,2005
    [170]孙峰,郝芳华.基于GIS的官厅水库流域非点源污染负荷计算研究.北京水利,2004,(1):16-18
    [171]邹桂红,崔建勇.基于AnnAGNPS模型的农业非点源污染模拟.农业工程学报,2007,23(12):11-17
    [172]Weiwei Zhang, Hong Li, Danfeng Sun. A Statistical Assessment of the Impact of Agricultural Land Use Intensity on Regional Surface Water Quality at Multiple Scales. International Journal of Environmental Research and Public Health,2012,9 (11),4170-4186
    [173]耿润哲,王晓燕,焦帅,等.密云水库流域非点源污染负荷估算及特征分析.环境科学学报,2013,33(5):1484-1492
    [174]黄生斌,刘宝元,刘晓霞,等.密云水库流域农业非点源污染基本特征分析.农业环境科学学报,2007,26(4):1219-1223
    [175]王晓燕,王晓峰,汪清平,等.北京密云水库小流域非点源污染负荷估算.地理科学,2004,2(2):227-231
    [176]张微微,李红,霍霄妮.基于能值分析的农业土地利用强度.农业工程学报,2009,25(7):204-210
    [177]陈华.基于DEM修正的山区土地生产潜力研究—以北京西山门头沟区为例:[硕士学位论文].北京:中国农业大学,2002
    [178]Sharpley A N, S S J. Prediction of soluble Phosphorus transport in agricultural runoff. Environment Quality,1989 (18):313-316
    [179]李莲芳.北京市地表水污染评价与控制对策研究:[博士学位论文].北京:中国农业大学,2004
    [180]Cohn T A, Delong L L, E J Gilroy, et al. Estimating constituent loads, Water Resources Research,1989,25 (5):937-942
    [181]Withers P, Jarvie H. Delivery and cycling of Phosphorus in rivers:A review. Science of theTotal Environment,2008,400:379-395
    [182]Buczko U, Kuchenbuch R O.Phosphorus indices as risk-assessment tools in the USA and Europe-a review. Journal of Plant Nutrition and Soil Science,2007,170 (4):445-460
    [183]Gburek W J, Sharpley A N. Hydrologic controls on Phosphorus loss from upland agricultural watersheds. Journal of Environmental Quality,1998,27 (2):267-277
    [184]Hughes K J, Magette W L, Kurz I. Identifying critical source areas for Phosphorus loss in Ireland using field and catchment scale ranking schemes. Journal of Hydrology,2005,304 (1/4): 430-445
    [185]Cecchi G, Munafo M, Baiocco F, et al. Estimating river pollution from diffuse sources in the Viterbo province using the potential non-point pollution index. Ann 1st Super Sanita,2007,43 (3):295-301
    [186]Lemunyon J L, Gilbert R G. The concept and need for a Phosphorus assessment tool. Journal of Production Agriculture,1993,6 (3):483-486
    [187]张微微.北京山区流域地表水质时空格局分析与建模初步建立:[博士学位论文].北京:中国农业大学,2010
    [188]武晓峰,李婷.流域内污染负荷分布的评价模型研究—以密云县蛇鱼川小流域为例.中国环境科学,2011,31(4):680-687
    [189]Johnes P J. Evaluation and management of the impact of land use change on the nitrogen and Phosphorus load delivered to surface waters:the export coefficient modelling approach. Journal of Hydrology,1996,183 (3/4):323-349
    [190]李连芳.北京市地表水体污染评价与控制对策研究:[博士学位论文].北京:中国农业大学,2004
    [191]张燕,张志强,张俊卿,等.密云水库土门西沟流域非点源污染负荷估算.农业工程学报,2009,25(5):183-191
    [192]孙丹峰,王雅,李红,等.基于MODIS NDVI年序列的区域化肥投入空间化方法.农业工程学报,2010,26(6):175-180.
    [193]Mallarino A P, Stewart B M, Baker J L, et al. Phosphorus indexing for cropland:Overview and basic concepts of the Iowa Phosphorus index. Journal of Soil and Water Conservation,2002, 57 (6):440-447
    [194]Bechmann M E, Stalnacke P, Kv?rn(?) S H, et al. Testing the Norwegian Phosphorus index at the field and subcatchment scale. Agriculture, ecosystem &environment,2007,120 (2-4), 117-128
    [195]Sharpley A N, Kleinman P J A, Heathwaite A L. Integrating contributing areas and indexing Phosphorus loss from agricultural watersheds. Journal of environmental quality.2008,37 (4): 1488-1496
    [196]苏静君.流域动态非点源磷污染指数的构建及应用—以滦河为例:[博士后论文].北京:中国科学院生态环境研究中心,2013
    [197]刘宝元,毕小刚,符素华,等.北京土壤流失方程.北京:科学出版社,2010
    [198]车振海.试论土壤渗透系数的经验公式和曲线图.东北水利水电,1995,135(9):17-19
    [199]孟博,李国平,刘茂,等.基于洪水风险感知与空间多标准分析方法的土地使用类型研究.中国公共安全(学术版),2011,1:14-22
    [200]陈红艳.改进理想解法及其在工程评标中的应用.系统工程理论方法应用,2004,13(5):471-473
    [201]屈吉鸿,陈南祥,黄强,等.改进的逼近理想解在地下水资源承载力评价中的应用.水利学报,2008,39(12):1309-1315
    [202]史东生,弟宇鸣,周春林.改进的TOPSIS法在辐射环境质量评价中的应用.辐射防护,2007,27(1):53-57
    [203]张先起,梁川,刘慧卿,等.改进的TOPSIS模型及其在黄河置换水量分配中的应用.四川大学学报:工程科学版,2006,38(1):30-33
    [204]Reenberg A. Land system science:handling complex series of natural and socio-economic processes. Journal of Land Use Science,2009,4 (1):1-4
    [205]Turner Ⅱ B L, Janetos A C, Verburg P H, Murray A T. Land system architecture:Using land systems to adapt and mitigate global environmental change. Global Environmental Change, 2013,23 (2):395-397
    [206]Verburg P H, Overmars K. Combining top-down and bottom-up dynamics in land use modeling: exploring the future of abandoned farmlands in Europe with the Dyna-CLUE model. Landscape Ecology,2009,24 (9):1167-1181
    [207]Volk M, Ewert F. Scaling methods in integrated assessment of agricultural systems-State-of-the-art and future directions. Agriculture, Ecosystems and Environment,2011, 142 (1-2):1-5
    [208]Liu J, Dietz T, Carpenter S R, Folke C, et al. Coupled human and Natural Systems. Ambio, 2007,36 (8):639-649
    [209]Bezlepkina I, Reidsma P, Sieber S, Helming K. Integrated assessment of sustainability of agricultural systems and land use:Methods, tools and applications. Agricultural Systems, 2011,104 (2):105-109
    [210]Turner B L, Matson P A, McCarthy J J, et al. Illustrating the coupled human-environment system for vulnerability analysis:Three case studies. Proceedings of the National Academy of Sciences,2003,100 (14):8080-8085
    [211]Parker D C, Hessl A, Davis S C. Complexity, land-use modeling, and the human dimension:Fundamental challenges for mapping unknown outcome spaces. Geoforum,2008, 39 (2):789-804
    [212]李彦.区域土地利用系统协同管理的理论与方法研究.南京:南京农业大学,2010
    [213]廖晓听.稳定性的理论、方法和应用.武汉:华中科技人学出版社,1999
    [214]Bertalanffy L V. General system theory-foundation, development, applications (Reversion edition).NewYork:GeorgeBeaziller,1987
    [215]徐学荣,吴祖建,张巨勇,等.可持续发展通道及预警研究.数学的实践与认识,2003,33(2):31-37
    [216]李崇明,丁烈云.小城镇资源环境与社会经济协调发展评价模型及应用研究.系统工程理论与实践,2004,(11):134-139
    [217]Valerie llingworth. The Penguin Dictionary of Physics. Beijing:Foreign Language Press,1996: 92-93
    [218]杨珏,钱新,张玉超,等.两种新型流域非点源污染负荷估算模型的比较.中国环境科学,2009,29(7):762-766
    [219]邢可霞,郭怀成,孙延枫,等.基于HSPF模型的滇池流域非点源污染模拟.中国环境科学,2004,24(2):229-232
    [220]朱磊,李怀恩,李家科,等.水文水质模型联合应用于水库水质预测研究.中国环境科学,2012,32(3):571-576
    [221]Smith R A, Schwarz G E, Alexander R B. Regional interpretation of water-quality monitoring data. Water Resources Research,1997,33 (12):2781-2798
    [222]BEVEN K, KIRKBY M J A. PHysically Based, Variable Contributing Area Model of Basin Hydrology. Hydro-logical ScienceBulletin,1979,24(1):43-69
    [223]北京市农林科学院.北京山区农业资源可持续利用与数字山区建设.北京:北京市农林科学院农业综合发展研究所,2004
    [224]李子君,李秀彬.水利水保措施对潮河流域年径流量的影响—基于经验统计模型的评估.地理学报,2008,63(9):958-968
    [225]焦剑,朱少波,杨扬.密云水库上游流域水体营养物质现状及来源分析.水土保持通报,2013,33(4):12-17
    [226]张广分.潮白河上游河岸植被缓冲带对氮、磷去除效果研究.中国农学通报,2013,29(8):189-194

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700