用户名: 密码: 验证码:
船舶双层底结构振动的流固耦合分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
船用主机产生的激励直接作用的区域为机舱,双层底结构作为主机的基础,一方面影响船用主机的振动,另一方面也是影响主机与整个船体耦合振动的关键部位。以大连海事大学校船“育鲲”轮为例,为了增加船体的总纵强度和底部的局部强度,双层底结构中设置有纵横隔板和肋板,同时包含主机滑油循环柜,舱底水舱,燃油溢油舱等舱室。舱室中充有各种液体,且其中的液体高度经常发生变化,液体高度的改变可能会对主机和双层底结构的耦合振动产生一定的影响。舱室中的肋板将液面划分为多个区域,出现多个自由液面共存的情况,肋板一部分浸入到液体中,存在着结构与双侧液体同时发生耦合作用的问题,这些都是进行主机与双层底整体耦合振动分析中需要考虑的问题。
     本文的研究工作针对上述问题展开,采用矩阵分块方法求解了部分充液箱体振动方程,给出了结构两侧同时存在液体的情况下,耦合矩阵的形成过程和方法。建立了箱体内多个自由液面并存的晃动模型。分析了充液箱体在外部激励下的响应问题,最后将理论分析的结果应用到实船的主机和双层底结构的耦合振动分析,具体的工作如下。
     1.构建了压力-位移形式的流体和结构耦合振动的数学模型,采用有限元法对简支梁与流体耦合振动问题进行求解,整体振型以梁振动为主导,耦合频率远远小于流体单独振动的频率,也低于简支梁单独振动频率。采用缩减法对同一问题进行分析,给出了左侧和右侧特征值解法的具体表达形式,采用较少数量的特征向量进行运算时,会导致系统高阶次频率值略有升高,在耦合界面的信息的准确传递上,右侧特征值解法拥有更明显的优势。
     2.给出了势函数-位移形式的流固耦合振动方程以及对称形式的方程,针对二维部分充液箱体的振动问题,采用矩阵分块的方法对该问题的特征方程进行了求解。当箱内液面高度较低时,仅导致整体频率下降,对振型影响不大;当液面升高到一定程度时,整体的某些阶次振型出现变化。对十字型隔板液箱的自由振动进行了实验与仿真对比分析,二者的结果吻合良好,整体的固有频率与充液高度成反比,充液高度较低时,箱体底板在较高阶次出现明显的模态位移。充液高度较高时,液体的脉冲作用得到了加强,在较低阶次也能引起底板产生模态位移。
     3.建立了刚性箱体内液体晃动模型,采用有限元法和解析法对该模型进行求解,二者结果吻合良好,液体低频晃动频率随着液体高度升高而增加,基频增加的幅度最大,自由液面波形交替呈现对称和非对称形式,低频晃动伴随着液体质心在水平方向的变化。采用伽辽金法求解了简支梁与单侧液体的耦合振动问题,与有限元法求解的结果吻合良好,但耦合振动的频率略低于液体自由晃动的频率,与简支梁单独振动的频率值相差较大,低频振动中以液体晃动为主导,梁的弹性模量对较低阶次耦合振动频率影响较大,液面的升高导致系统的频率上升。推导了梁与双侧液体耦合振动方程,应用有限元法进行了求解,计算结果与已有的试验数据吻合良好。分析了三维液箱内液体低频晃动问题,隔板的存在使箱内液体晃动频率下降,隔板使液体出现多个自由液面,得到了相似表面波和相同特征频率的结果。
     4.以大连海事大学校船“育鲲”轮为参考建立模型,求解了船用主机与充液双层底之间的耦合振动,通过改变充液的高度来研究二者之间的自由振动特性,其中的液体分为带有自由液面晃动效应和不带有自由液面晃动效应两种。考虑液体的高频振动情况下,充液高度的改变对系统的较低阶次的频率没有影响,充液比的上升使双层底主导的振型在较低阶次出现,双层底的模态位移有所减少。考虑液体低频晃动的情况时,主机和双层底结构均没有出现明显的模态位移,求得的前16阶次频率值相同,表明结果为液体晃动的频率。考虑主机的激励的情况,对主机与双层底的流固耦合系统进行了强迫振动分析。主机出现X型振动,充液高度的变化对主机上的节点振动响应影响较小,而对双层底结构上节点节点振动响应影响明显,自由液面对整体在强迫作用下的响应影响不大。考虑液面晃动的情况下,靠近滑油舱壁两侧的液体节点的位移方向相反,最大相对位移出现在两缸侧推力最大的时刻。本文具有一定的科学和工程意义。
The zone where the marine main engine's forces exciting at directly is the engine room. As the foundation of the main engine, the double bottom tank does not only affect the vibration of main engine, but also is the key part which influence the coupled vibration between main engine and the hull. Take the DMU ship'Yu-kun'for example; to gain the overall longitudinal strength and the part strength of the bottom, the double bottom tank is equipped with wash and transverse plates, ribbed slabs, main engine oil tank, bilge tank, fuel oil overflow, etc. There are many kinds of liquid in cabins, and the height of the liquid is usually changed, which may affect the coupled vibration. The ribbed slabs cut the liquid surface into many zones, and many free surfaces exist in the mean time. Parts of the ribbed slabs immerse in the liquid, so there is coupled vibration of structure with two sides liquid. All these problems should beconsidered in the analysis of the coupled vibration of main engine and double bottom tank.
     Based on the problems mentioned above, this paper solves the partially filled liquid tank's vibration equations by matrix block method. The coupled matrix is given under the condition of the structure coupled with two-side liquid. The sloshing model of liquid tank with many free surfaces is constructed. The liquid tank's response under excitation is analysed. Finally, the results of the analysis are applied in the coupled vibration of 'Yu-kun'ship's main engine and double bottom tank, and the steps for this study are illustrated as follows.
     1. A pressure-displacement numerical model to address the coupled interaction between liquid and structure is developed, and a finite element method is employed to solve the vibration equation of a simply supported beam coupled with liquid. The whole modal is in the form of beam-dominated vibration, and the coupled frequencies are fewere than the liquid's frequencies, as well as the beam's Eigen values. The same problem is solved by modal representation method, and the counterpart equations are deduced in the right and left eigenvector sets. It also shows that a limited set of eigenvectors can make higher order frequencies increas. On the accuracy of the messages transfer, the right Eigen vector set has more advantages.
     2. The coupled equations in the form of potential-displacement and symmetric are deduced. It is solved by FEM based on matrix block method, for a2D partially filled liquid tank's Eigen value problem. The liquid height reduction make the whole frequencies decrease, but affect the modals little. Increasing liquid height affect some order modals significantly. The frequencies are in the reverse relation with filling ratio. When the filling ratio is small, there is obvious displacement on the bottom in higher order modals. When the filling ratio is large, due to the liquid impulsive effect, there is a displacement even in lower order modals.
     3. The sloshing model of liquid in a rigid tank is constructed, which is solved by FEM and analytic method separately. Sloshing frequencies increase in proportional to the liquid height, and the fundamental frequency increases significantly. The free surface shapes show symmetric and anti-symmetric waves, the sloshing modals adjoin with the relative shift of the liquid center-of mass as well. The coupled vibration problem of a beam with one side attached to liquid is solved by Galerkin method, and the results agree well with FEM results. Coupled frequencies are lower than liquid sloshing frequencies, and are far lowere than the beam's frequencies. The liquid sloshing modal is dominated in lower frequencies vibration, and the beam elastic modulus affects lower order coupled frequencies significantly. The coupled Eigen values show an increase for increasing the liquid height. For the coupled vibration equation of a beam with two side fluid, it is solved by FEM, and the results are compared with experiment data, which are in good agreement. The liquid sloshing modes in3D liquid tank with-or-without baffles are observed. The existence of baffles cause sloshing frequencies down, which cut the liquid surface into many free surfaces, and there are similar free surface waves and equal Eigen frequencies.
     4. A numerical model is constructed based on DMU's'Yu-kun'ship, and that the coupled vibration of the main engine and the double bottom tank is solved, in different filling ratio conditions, where the sloshing effect is considered or not. The liquid height has no effect on lower order frequencies, and there are double bottom dominated modals in lower orders vibration with filling ratio increasing, while the double bottom displacement is reduced. When the sloshing effect is not considered, there is no obvious displacement in main engine and the double bottom tank. The first16frequencies are equal, so the obtained results are liquid sloshing frequencies, when the sloshing effect is considered. The coupled vibration system of main engine and double bottom tank are investigated under main engine's excitation. The main engine vibrates in X form. The filling ratio almost has no effect on the main engine's vibration, but it has significant effect on the double tank's nodes. The free surface effect has no effect on the coupled vibration, and the displacement directions of liquid nodes near the lube oil cabin wall are opposite, while the most relative displacements are in the time of two cylinder's biggest side thrust.
     It has an important significance in science and engineering.
引文
[1]金咸定,夏利娟.船体振动学[M].上海:上海交通大学出版社,2011.
    [2]张健,尹群,王珂,等.抗水下爆炸载荷的新型船舶结构形式研究[J].船舶工程,2007,29(1):20-23.
    [3]李磊,冯顺山,董永香,等.水下爆炸对船底结构毁伤效应的数值仿真[J].舰船科学技术,2007,29(1):91-94.
    [4]刘峰,王自力.一种新型抗搁浅双层底结构[J].船舶工程,2005,27(1):33-36.
    [5]徐张明,汪玉,华宏星,等.双层壳体的船舶动力舱振动与声辐射的有限元结合边界元数值计算[J].中国造船,2002 43(4):39-44.
    [6]Zienkiewicz 0 C, Bettess P. Fluid-structure dynamic interaction and wave forces. An introduction to numerical treatment[J]. International Journal for Numerical Methods in Engineering,1978,13(1):1-16.
    [7]张弩,宗智,张文鹏,等.基于双渐进方法的水下爆炸气泡载荷作用下舰船的动态响应分析[J].振动与冲击,2012,31(23):50-56.
    [8]GEERS T L. Residual potential and approximation methods for three dimensional fluid-structure interaction problems[J]. Journal of The Acoustical Society of America, 1971,49:1505-1510.
    [9]GEERS T L Doubly asympotic approximation for transient motions of submerged structures [J]. Journal of The Acoustical Society of America,1978,64:1500-1508.
    [10]GEERS T L, FELIPPA C A. Doubly asymptotic approximations for vibration analysis of submerged structures[J]. Journal of The Acoustical Society of America,1980,73: 1152-1159.
    [11]姚熊亮,张成,杨衡,等.弹体出水引起的非稳态流场数值计算方法[J].哈尔滨工程大学学报,2012,33(6):677-683.
    [12]姚熊亮,孙士丽,陈玉,等.非线性双渐进法应用于水中结构瞬态运动的研究[J].振动与冲击,2010,29(010):9-15.
    [13]Zienkiewicz 0 C, Bettess P, Kelly D W. The finite element method for determining fluid loadings on rigid structures:two-and three-dimensional formulations[J]. Numerical methods in offshore engineering,1978:141-183.
    [14]Zienkiewicz 0 C, Bettess P. Fluid-structure dynamic interaction and some unified approximation processes[R]. NASA STI/Recon Technical Report A,1981:119-145.
    [15]Zienkiewicz 0 C, Bettess P. Dynamic fluid-structure interaction. Numerical modelling of the coupled problem[J]. Numerical methods in offshore engineering, 1978,47(1),15-35.
    [16]Bathe K J, Hahn W F. On transient analysis of fluid-structure systems [J]. Computers & Structures,1979,10(1):383-391.
    [17]Bathe K J, Nitikitpaiboon C, Wang X. A mixed displacement-based finite element formulation for acoustic fluid-structure interaction[J]. Computers & Structures, 1995,56(2):225-237.
    [18]戴大农,王勖成,杜庆华.流固耦合系统动力响应的模态分析理论[J].固体力学学报,1990,11(4):305-312.
    [19]杜建镔,王勖成.旋转周期性含液容器的流固耦合动力特性分析(Ⅰ)[J].清华大学学报(自然科学版),1999,8:108-116.
    [20]杜建镔,王勖成.旋转周期性含液容器的流固耦合动力特性分析(Ⅱ)[J].清华大学学报(自然科学版),1999,8:305-312.
    [21]Olson L G, Bathe K J. A study of displacement-based fluid finite elements for calculating frequencies of fluid and fluid-structure systems[J]. Nuclear Engineering and Design,1983,76(2):137-151.
    [22]Kim Y S, Yun C B. A spurious free four-node displacement-based fluid element for fluid-structure interaction analysis[J]. Engineering Structures,1997,19(8): 665-678.
    [23]Petyt M, Lea J, Koopmann G H. A finite element method for determining the acoustic modes of irregular shaped cavities[J]. Journal of Sound and Vibration,1976,45(4): 495-502.
    [24]Everstine G C. A symmetric potential formulation for fluid-structure interaction[J]. Journal of Sound and Vibration,1981,79(1):157-160.
    [25]Liu M, Gorman D G. Symmetrization of equations of motion for coupled systems subject to fluid-structural interactions[J]. Communications in numerical methods in engineering,1995,11(10):831-838.
    [26]Sandberg G, Goransson P. A symmetric finite element formulation for acoustic fluid-structure interaction analysis[J]. Journal of sound and vibration,1988,123(3): 507-515.
    [27]Harari I, Grosh K, Hughes T J R, et al. Recent developments in finite element methods for structural acoustics [J]. Archives of Computational Methods in Engineering, 1996,3(2-3):131-309.
    [28]戴大农.流固耦合系统动力分析的若干基本问题与数值方法[D]:(博士学位论文).北京:清华大学工程力学系,1988.
    [29]王永辉.流体与结构相耦合系统的有限元法研究[D]:(博士学位论文).北京:清华大学,1990.
    [30]Jeong K H, Kim K J. Free vibration of a circular cylindrical shell filled with bounded compressible fluid[J]. Journal of sound and vibration,1998,217(2):197-221.
    [31]Jeong K H, Amabili M. Bending vibration of perforated beams in contact with a liquid[J]. Journal of sound and vibration,2006,298(1):404-419.
    [32]Jeong K H, Kim J W. Hydroelastic vibration analysis of two flexible rectangular plates partially coupled with a liquid [J]. Nuclear Engineering and Technology,2009, 41(3):335-346.
    [33]Cho J R, Kim K W, Lee J K, et al. Axisymmetric modal analysis of liquid-storage tanks considering compressibility effects[J]. International journal for numerical methods in engineering,2002,55(6):733-752.
    [34]Cho J R, Song J M. Assessment of classical numerical models for the separate fluid-structure modal analysis[J]. Journal of Sound and vibration,2001,239(5): 995-1012.
    [35]Cho J R, Lee H W, Kim K W. Free vibration analysis of baffled liquid-storage tanks by the structural-acoustic finite element formulation[J]. Journal of sound and vibration,2002,258(5):847-866.
    [36]Cho J R, Song J M, Lee J K. Finite element techniques for the free-vibration and seismic analysis of liquid-storage tanks [J]. Finite elements in analysis and design, 2001,37(6):467-483.
    [37]Rebel G, Park K C, Felippa C A. A contact formulation based on localized Lagrange multipliers:formulation and application to two-dimensional problems[J]. International Journal for Numerical Methods in Engineering,2002,54(2):263-297.
    [38]Park K C, Felippa C A, Ohayon R. Partitioned formulation of internal fluid-structure interaction problems by localized Lagrange multipliers[J]. Computer Methods in Applied Mechanics and Engineering,2001,190(24):2989-3007.
    [39]Felippa C A, Park K C, Ross M R. A classification of interface treatments for fsi[M]//Fluid Structure Interaction II. Springer Berlin Heidelberg,2010:27-51.
    [40]Ross M R, Sprague M A, Felippa C A, et al. Treatment of acoustic fluid-structure interaction by localized Lagrange multipliers and comparison to alternative interface-coupling methods[J]. Computer Methods in Applied Mechanics and Engineering, 2009,198(9):986-1005.
    [41]刘云贺,俞茂宏,王克成.流体-固体瞬态动力耦合有限元分析研究[J].水利学报,2002,2:85-89.
    [42]刘云贺,俞茂宏,陈厚群.流体固体动力耦合分析的有限元法[J].工程力学,2005,22(6):1-6.
    [43]郝鹏,刘云贺,刘哲,等.三维流体固体动力耦合模型研究[J].水利学报,2012,43(002):246-252.
    [44]孙利民,张庆华,赵勇.卧式圆形储油罐液固耦合模态分析[J].郑州大学学报(工学版),2005,26(2):89-91.
    [45]杨吉新,张可,党慧慧.基于ANSYS的流固耦合动力分析方法[J].船海工程,2008,37(6):85-89.
    [46]冯威,袁兆成,刘伟哲.用液固耦合方法研究柴油机油底壳辐射声场[J].内燃机学报,2005,23(6):536-540.
    [47]Ohayon R. Reduced symmetric models for modal analysis of internal structural-acoustic and hydroelastic-sloshing systems[J]. Computer methods in applied mechanics and engineering,2001,190(24):3009-3019.
    [48]Andrianarison 0, Ohayon R. Reduced models for modal analysis of fluid-structure systems taking into account compressibility and gravity effects[J]. Computer methods in applied mechanics and engineering,2006,195(41):5656-5672.
    [49]裴智勇,吴卫国,翁长俭.高速船舱壁加筋板流固耦合振动分析[J].工程力学,2003,20(2):159-162.
    [50]谢志勇,周其斗,纪刚.双层柱壳的流固耦合模态计算与试验研究[J].海军工程大学学报,2009,21(2):97-101.
    [51]程选生,周志,史晓宇.矩形贮液结构的液-固耦合振动特性试验[J].农业工程学报,2010,26(02),197-201.
    [52]Abramson H N. The dynamic behavior of liquids in moving containers. NASA SP-106[R]. NASA Special Publication,1966,106.
    [53]Housner G W. Earthquake pressures on fluid containers[R].8th Technical report under Office of Naval Research. Pasadena (CA):California Institute of Technology,1954.
    [54]Aliabadi S, Johnson A, Abedi J. Comparison of finite element and pendulum models for simulation of sloshing[J]. Computers & fluids,2003,32(4):535-545.
    [55]程绪铎.微重时矩形容器内液体自由晃动等效力学模型[J].吉林大学自然科学学报,1999,7(3):44-48.
    [56]夏恒新,郑亚.多腔充液晃动的等效特性[J].动力学与控制学报,2007,5(4):346-349.
    [57]莫依舍夫H H,鲁苗采夫B B.充液刚体动力学[M].韩子鹏译.北京:宇航出版社,1992.
    [58]陈科,李俊峰,王天舒.矩形贮箱内液体非线性晃动动力学建模与分析[J].力学学报,2005,37(3):339-344.
    [59]吕敬,李俊峰,王天舒.平动矩形贮箱刚-液耦合非线性动力学研究[J].工程力学,2007,24(2):1-8.
    [60]Xing J T, Price W G, Pomfret M J et al. Natural Vibration of a Beam—Water Interaction System[J]. Journal of sound and vibration,1997,199(3):491-512.
    [61]Zhu F. Rayleigh-Ritz method in coupled fluid-structure interacting systems and its applications[J]. Journal of sound and vibration,1995,186(4):543-550.
    [62]Amabili M. Eigenvalue problems for vibrating structures coupled with quiescent fluids with free surface[J]. Journal of Sound and Vibration,2000,231(1):79-97.
    [63]Askari E, Daneshmand F. Coupled vibration of a partially fluid-filled cylindrical container with a cylindrical internal body [J]. Journal of Fluids and Structures,2009, 25(2):389-405.
    [64]潘利剑,武湛君,张博明,等.应用瑞利-里滋法分析储箱内液体晃动模态[J].哈尔滨工程大学学报,2007,28(1):31-34.
    [65]汤晓昀,包光伟.柔性贮箱内液体晃动的分析模型[J].上海交通大学学报,2004,38(8):1412-1416.
    [66]傅衣铭,徐晓贤.弹性底板矩形贮箱流固耦合系统的自由振动分析[J].湖南大学学报:自然科学版,2006,33(1):33-37.
    [67]陈柏成,白象忠.充液矩形贮箱弹性箱底板应力与变形分析[J].应用力学学报,2012,29(003):242-246.
    [68]Faltinsen 0 M, Rognebakke 0 F, Lukovsky I A, et al. Multidimensional modal analysis of nonlinear sloshing in a rectangular tank with finite water depth[J]. Journal of Fluid Mechanics,2000,407:201-234.
    [69]Faltinsen 0 M, Rognebakke 0 F, Timokha A N. Resonant three-dimensional nonlinear sloshing in a square-base basin[J]. Journal of Fluid Mechanics,2003,487:1-42.
    [70]Faltinsen 0 M, Rognebakke 0 F, Timokha A N. Resonant three-dimensional nonlinear sloshing in a square-base basin. Part 2. Effect of higher modes[J]. Journal of Fluid Mechanics,2005,523(1):199-218.
    [71]余延生,马兴瑞,王本利.用多维模态理论分析航天器贮箱液体有限幅晃动力[J].宇航学报,2007,28(4):981-985.
    [72]吕敬,李俊峰,王天舒,等.充液箱位置对航天器耦合特性影响分析[J].动力学与控制学报,2007,5(2):159-164.
    [73]Frandsen J B. Sloshing motions in excited tanks[J]. Journal of Computational Physics,2004,196(1):53-87.
    [74]Frandsen J B. Numerical predictions of tuned liquid tank structural systems[J]. Journal of fluids and structures,2005,20(3):309-329.
    [75]Wu C H, Chen B F. Sloshing waves and resonance modes of fluid in a 3D tank by a time-independent finite difference method[J]. Ocean Engineering,2009,36(6): 500-510.
    [76]Wu C H, Chen B F. Transient response of sloshing fluid in a three dimensinal tank [J]. JOURNAL OF MARINE SCIENCE AND TECHNOLOGY-TAIWAN,2012,20(1):26-37.
    [77]Amsden A A, Harlow F H. A simplified MAC technique for incompressible fluid flow calculations[J]. Journal of Computational Physics,1970,6(2):322-325.
    [78]Armenio V, La Rocca M. On the analysis of sloshing of water in rectangular containers:numerical study and experimental validation [J]. Ocean Engineering,1996, 23(8):705-739.
    [79]王日新,沈国光.两层流体TLD摇动的解析解和数值模拟[J].水动力学研究与进展,2000,15(3):351-358.
    [80]Hirt C W, Nichols B D. Volume of fluid (VOF) method for the dynamics of free boundaries[J]. Journal of computational physics,1981,39(1):201-225.
    [81]Liu D, Lin P. A numerical study of three-dimensional liquid sloshing in tanks[J]. Journal of Computational Physics,2008,227(8):3921-3939.
    [82]Liu D, Lin P. Three-dimensional liquid sloshing in a tank with baffles[J]. Ocean engineering,2009,36(2):202-212.
    [83]Akyildiz H. A numerical study of the effects of the vertical baffle on liquid sloshing in two-dimensional rectangular tank[J]. Journal of Sound and Vibration,2012, 331(1):41-52.
    [84]端木玉,朱仁庆,陈正云,等.不同液舱结构形式对晃荡的影响分析[J].水动力学研究与进展:A辑,2006,21(6):760-769.
    [85]Osher S, Sethian J A. Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations[J]. Journal of computational physics,1988,79(1):12-49.
    [86]方智勇,端木玉,朱仁庆.基于Level-set法的液舱液体晃荡数值模拟[J].船舶力学,2007,11(1):62-67.
    [87]朱仁庆,方智勇,张照钢,等.Level-set法预报液舱内剧烈晃荡引起的冲击压强[J].船舶力学,2008,12(3):344-352.
    [88]Oden J T. Finite-Element Analogue of Navier-Stokes Equation[J]. Journal of the Engineering Mechanics Division,1970,96(4):529-534.
    [89]包光伟,王政伟.液体三维晃动特征问题的有限元数值计算方法[J].力学季刊,2003,24(2):185-190.
    [90]贾善坡,许成祥.储液容器内液体自由晃动的有限元分析[J].船舶力学,2012,16(1):21-26.
    [91]Cho J R, Lee H W. Numerical study on liquid sloshing in baffled tank by nonlinear finite element method[J]. Computer methods in applied mechanics and engineering,2004, 193(23):2581-2598.
    [92]Cho J R, Lee H W, Ha S Y. Finite element analysis of resonant sloshing response in 2-D baffled tank[J]. Journal of Sound and Vibration,2005,288(4):829-845.
    [93]Arafa M. Finite element analysis of sloshing in liquid-filled containers[C]. Production Engineering & Design for Development, PEDD7, Cario, Feburary,2006:7-9.
    [94]Mitra S, Sinhamahapatra K P.2D simulation of fluid-structure interaction using finite element method [J]. Finite Elements in Analysis and Design,2008,45(1):52-59.
    [95]Biswal K C, Bhattacharyya S K, Sinha P K. Free-vibration analysis of liquid-filled tank with baffles[J]. Journal of Sound and vibration,2003,259(1):177-192.
    [96]Wei W, Junfeng L, Tianshu W. Modal analysis of liquid sloshing with different contact line boundary conditions using FEM[J]. Journal of Sound and Vibration,2008, 317(3):739-759.
    [97]Hernandez E, Santamarina D. Active control of sloshing in containers with elastic baffle plates[J]. International Journal for Numerical Methods in Engineering,2012, 91(6):604-621.
    [98]Wu G X, Ma Q W, Eatock Taylor R. Numerical simulation of sloshing waves in a 3D tank based on a finite element method[J]. Applied Ocean Research,1998,20(6): 337-355.
    [99]Biswal K C, Bhattacharyya S K, Sinha P K. Dynamic response analysis of a liquid-filled cylindrical tank with annular baffle[J]. Journal of sound and vibration, 2004,274(1):13-37.
    [100]Virella J C, Prato C A, Godoy L A. Linear and nonlinear 2D finite element analysis of sloshing modes and pressures in rectangular tanks subject to horizontal harmonic motions[J]. Journal of Sound and Vibration,2008,312(3):442-460.
    [101]Gedikli A, Erguven M E. Evaluation of sloshing problem by variational boundary element method [J]. Engineering analysis with boundary elements,2003,27 (9):935-943.
    [102]Chantasiriwan S. Modal analysis of free vibration of liquid in rigid container by the method of fundamental solutions[J]. Engineering analysis with boundary elements,2009,33(5):726-730.
    [103]Ning D Z, Song W H, Liu Y L, et al. A Boundary Element Investigation of Liquid Sloshing in Coupled Horizontal and Vertical Excitation[J]. Journal of Applied Mathematics,2012,1-20
    [104]Chen Y H, Hwang W S, Ko C H. Sloshing behaviours of rectangular and cylindrical liquid tanks subjected to harmonic and seismic excitations [J]. Earthquake Engineering & Structural Dynamics,2007,36(12):1701-1717.
    [105]李松,高芳清,杨翊仁,等.液体晃动有限元模态分析及试验研究[J].核动力工程,2007,28(4):54-57.
    [106]Maleki A, ZiyaeifarM. Damping enhancement of seismic isolated cylindrical liquid storage tanks using baffles[J]. Engineering Structures,2007,29(12):3227-3240.
    [107]Eswaran M, Saha U K, Maity D. Effect of baffles on a partially filled cubic tank: numerical simulation and experimental validation[J]. Computers & Structures,2009, 87(3):198-205.
    [108]Panigrahy P K, Saha U K, Maity D. Experimental studies on sloshing behavior due to horizontal movement of liquids in baffled tanks [J]. Ocean Engineering,2009,36(3): 213-222.
    [109]Herczynski A, Weidman P D. Experiments on the periodic oscillation of free containers driven by liquid sloshing[J]. Journal of Fluid Mechanics,2012,693: 216-242.
    [110]董大伟,谭达明.柴油机激扰下内燃机车车体动力响应计算方法[J].西南交通大学学报,1996,31(2):175-179.
    [111]杨铁军,顾仲权,刘志刚,等.双层隔振系统耦合振动主动控制试验研究[J].振动工程学报,2003,16(2):149-152.
    [112]张兆强,潘亦苏.基于多体动力学的柴油机动力学性能研究[J].内燃机车(8):1-3.
    [113]欧阳光耀,高洪滨,谭笛,等.安装基础刚度对柴油机振动烈度的影响分析[J].内燃机工程,2007,28(6):70-72.
    [114]寇向东.船用柴油机和试验台耦合振动模态分析[D]:(博士学位论文),大连:大连理工大学,2005.
    [115]董伟.发动机台架振动仿真分析研究[J].拖拉机与农用运输车,2011,38(3):31-36.
    [116]李文贺.舰船水下爆炸冲击波载荷作用下动力响应研究[D]:(博士学位论文),大连:大连理工大学,2009.
    [117]郭君,崔杰,肖巍,等.舰船双层底液舱水下爆炸作用下动态响应[J].噪声与振动控制,2012,32(6):94-99.
    [118]张健,尹群,王珂,等.抗水下爆炸载荷的新型船舶结构形式研究[J].船舶工程,2007,29(1):20-23.
    [119]张善元,路国运,雷建平.充满液体弹塑性圆柱壳轴向冲击屈曲的数值模拟[J].计算力学学报,2002,19(1):36-41.
    [120]徐慕冰,张小铭.充液圆柱壳受迫振动的能量流输入及传播[J].声学学报,1999,24(4):391-399.
    [121]尹群,陈永念,张健,等.水下爆炸载荷作用下舰船结构动响应及新型防护结构[J].中国造船,2007,48(4):42-52.
    [122]宋玉超,于洪亮.双层底液舱及其内部油液对主机振动传递特性的影响[J].大连海事大学学报:自然科学版,2008,34(4):147-149.
    [123]宋玉超,于洪亮.分舱和充液对箱式主机滑油舱振动模态的影响[J].船舶工程,2009,31(2):12-15.
    [124]宋玉超,于洪亮.充液对箱形多腔结构振动特性的影响[J].振动与冲击,2009,11:038,159-165.
    [125]Kim J W, Kim K, Kim P S et al. Sloshing-ship motion coupling effect for the sloshing impact load on the LNG containment system[C]//Proceedings of the Fifteenth International Offshore and Polar Engineering Conference.2005:282-291.
    [126]Kim Y, Nam B W, Kim D W et al. Study on coupling effects of ship motion and sloshing[J]. Ocean Engineering,2007,34(16):2176-2187.
    [127]金鸿章,张宏瀚.利用双水舱减摇系统预防船舶参数横摇研究[J].海洋工程,2010,28(003):97-101.
    [128]Van Daalen E. F. G, Kleefsman K. M. T, Gerrits. J, et al. Anti Roll Tank Simulations with a Volume of Fluid (VOF) based Navier-Stokes Solver[C]//23rd Symposium on Naval Hydrodynamics.2000.
    [129]徐芝纶.弹性力学(第4版)[M].北京:高等教育出版社,2006.
    [130]Chargin M, Gartrmeier 0. A finite element procedure for calculating fluid-structure interaction using MSC/NASTRAN[R], NASA Technical Memorandum 102857, 1990.
    [131]Sandberg G. A new strategy for solving fluid-structure problems[J]. International journal for numerical methods in engineering,1995,38(3):357-370.
    [132]Everstine G C. Finite element formulatons of structural acoustics problems [J]. Computers & Structures,1997,65(3):307-321.
    [133]LMS Test. Lab软件功能中文说明书[M].比利时LMS公司北京代表处,2009.
    [134]Release 11.0 Doucment for ANSYS. ANSYS Inc.2007.
    [135]包光伟充液系统动力学[M].上海交通大学,2002.
    [136]Morand H J P, Ohayon R. Fluid structure interaction:applied numerical methods[M]. New York:Wiley,1995.
    [137]Dodge F T. The New Dynamic Behavior of Liquids in Moving Containers [R]. Southwest Research Institute San-Antonio, Texas,2000.
    [138]X.-J. Chai. Influence de la gravite sur les interactions fluide-structure pour un fluide dans undomaine borne 6 surface libre[D]:PhD thesis, Institut National Polytechnique de Lorraine,1996.
    [139]胡以怀,应启光.船舶柴油机振动噪声及废气排放[M].大连:大连海事大学出版社,2003.
    [140]MAN B&W S35MC7-TⅡ Project Guide. Denmark:MAN Diesel&Turbo,2010.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700