用户名: 密码: 验证码:
星载大型可展开索网天线结构设计与型面调整
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
星载大型环形桁架索网天线是近年来备受各国宇航界学者关注的一种空间可展开天线结构形式。三向网格索网天线是该类天线中的一种重要形式。以工程项目为背景,本文对环形桁架索网天线结构的型面几何设计、索网预拉力设计以及型面精度调整方法进行了比较详细而深入的研究。主要内容如下:
     首先,以索网型面的原理误差最小为设计目标,提出了三向网格索网天线型面几何设计的新方法。方法中,索网型面在天线光学口径面上的投影取为正三角形网格,索网型面结点均取在与理想抛物面同轴且等焦距的某一抛物面上,正三角形网格的边长由天线型面的设计精度要求来确定。以轴向均方根误差为天线型面精度的衡量标准,从理论上证明了本文方法所设计的索网型面为最佳索网型面。设计算例结果表明,该方法优于已有文献中所给出的型面设计方法。
     其次,为优化设计带预应力的环形桁架索网天线结构,将天线结构的整体设计分为两步:第一步,不考虑环形桁架结构变形,提出了索网结构预拉力优化设计的两种新方法;第二步,以索网结构预拉力的设计结果为基础,考虑环形桁架结构在索网预拉力作用下的变形,提出了基于环形桁架结构变形补偿的天线索网结构整体设计方法。
     索网结构预拉力优化设计中,所提第一种方法专门用于三向网格旋转抛物面索网结构的预拉力优化设计。以索网面中的索段拉力尽可能均匀为设计目标,并基于该类索网结构的力平衡特性,构建了该类索网结构预拉力优化设计的思路与方法。该方法简便易行,且效果较好。第二种方法以矩阵论中线性方程组的极小范数解理论为依据,从索网结构的结点力平衡方程组出发,并结合索网结构预拉力优化设计问题的特点,将以所有索段预拉力为设计变量的非线性数学规划问题转化为仅以前、后索网面中的索段拉力均值为设计变量的数学规划问题。与第一种方法相比,该方法的优化效果略差,但其具有较好的通用型,能够对偏置抛物面索网结构、准测地线索网结构等多种复杂索网结构的预拉力进行设计。结合旋转抛物面、偏置抛物面等多个索网结构的预拉力设计算例,说明了以上两种方法的正确性和有效性。
     以索网结构预拉力的优化设计结果为基础,构建了天线整体结构的有限元模型,模型中加入了天线环形桁架结构,并进行了天线整体结构的找形分析,天线整体结构的找形分析结果表明,网面索段的拉力均匀性发生了较大的恶化。为有效设计索网天线整体结构的预拉力,给出了带桁架索网天线结构的预拉力设计方法。方法以反复迭代的办法对天线索网结构进行预拉力设计,迭代过程中的每一次索网预拉力设计,都是以天线整体结构的找形分析结果中索网结构的位形作为预拉力重设计时索网结构的基础模型,且该索网模型中边界节点固支,其索段预拉力优化设计采用极小范数方法求解。在每一次索网预拉力重设计之后,将索网结构重新与桁架结构组合并进行整体结构的找形分析,直到天线整体结构中网面索段最大拉力比趋于稳定为止。算例结果说明了天线整体结构的预拉力优化设计方法的有效性。
     最后,为尽可能减少索网型面调整的工作量,并保证计算机辅助索网型面优化调整的实时性,以工程实际中逐根索段进行调整的事实为依据,提出了一种新的索网型面优化调整方法,即以每根索段的调整都能够使索网型面精度具有最大的提升量为目标,在每次的优化过程中,仅选取单根索段作为最佳待调整索段,并以最佳待调整索段的调节量为设计变量,以所有索段的应力均小于许用应力且大于零为约束条件,构建当前索网型面优化调整所需的数学模型。以天线结构基频和索网预拉力大小的预期值为依据,方法中详细给出了最佳待调节索段的选择方法。算例结果说明了方法的正确性和有效性,同时也表明,将所有纵向拉索的调节量同时作为设计变量进行优化是不必要的。
Large deployable Astromesh antenna, which is attracting more and more attention of space navigation scholars all over the world, is an important type for deployable mesh antenna for satellites. Triangular cable-net structure is a main form of the cablenet structure of this type antenna. Based on some engineering projects, the methods of geometrical design, pretension design and profile adjustment of structure of Astromesh antenna are mainly discussed in this paper. The main research works are as follows:
     Firstly, aimed at minimizing the principle error of the large reflector, a geometric design method for Astromesh antenna is developed. To subdivide a paraboloid surface, the first step of the geometric scheme is to subdivide the inscribed regular hexagon of the optical aperture circle into small regular triangles. Then the points of intersection of these triangles are projected or mapped on the paraboloid surface using a suitable origin of coordinates to obtain the final nodal coordinates of the facets. Certain formulas are established to determine the side length of the triangles and the origin coordinates of the paraboloid when the mapping is done. With axial square mean error as the measure of reflector's precision, the validity of the proposed method has been proved theoretically. Furthermore, illustration is provided to compare the results designed with the method proposed and with other methods.
     Secondly, the pretension design of the structure of large mesh antenna is discussed, which falls into two steps. In the first step, based on the assumption that the ring truss is rigid enough or the cablenet structure has an ideal boundary condition, pretension optimization for the pure cablenet structure of mesh antenna is done. Then, with the designed pretension cable-net structure as input, and taking the truss's elasticity into account, the ring truss of the mesh antenna is redesigned.
     When we discuss the pretension design of the pure cable-net structure of mesh antenna, two approaches are developed. The first optimum design method is especially for the cable-net structures of axi-symmetric parabolic antenna with a triangular net form, based on the characteristic of such structures. The second, otherwise, is a method for the pretension design of most general cable-net structures of mesh antenna, the optimization model of which is deduced from the static force balance equations of the structure by the concept of minimum norm solution of linear equations. By a comparison of the design results in some illustrations with the two approaches, it is showed that the first method takes less computation and gives a little better results, but the second method is always more applicable when the application scope is taken into account.
     Then, with the pretension cable-net structure designed under an ideal boundary condition as input, the elasticity of the ring truss is fully taken into account. Based on the feature of the deformation of the truss structure induced by the cable-net structure's pretension, a reiteration method to redesign the pretensions of cable-net structure of the mesh antenna is proposed. In each iteration step, the tension of the cable net structure is firstly redesigned using the minimum norm method with the position of the deformed structure as initial conditions, and then with the redesigned cable net structure as a part of the whole antenna structure, form-finding analysis of the whole structure is done. The iteration procedure is repeatedly done until the maximum tension ratio of the cables on the mesh surface is stabled. An illustrative example is given to clarify the effectiveness of the reiteration method proposed.
     Finally, with the goal to improve the reflector's precision in its assembling and setting procedure, the problem of optimal adjustment of the profile of mesh antenna is discussed. Aimed at minimizing the total adjustment workload and improving the calculative efficiency while we decide which cables are to be adjusted and how much the according adjustment are to be made, a new method for the profile adjustment of mesh antenna is proposed. Base on the fact that the cable adjustment is always done one by one in the factory, the method chooses only one cable as the adjusting cable and designates its adjustment quantity as the design variable at each optimization process. In order to gain maximum efficiency while only one cable is to be adjusted every time, certain criterion is established for selecting the suitable cable among all the adjustable cables. Simulation results show that the method has a certain validity and feasibility.
引文
[1]Das A and Obal M W. Revolutionary satellite structural systems technology:a vision for the future[C]. IEEE Aerospace Conference, Snowmass at Aspen, CO, USA, Mar.21-28,1998
    [2]Takano T. Large deployable antennas concepts and realization[C]. IEEE Antennas and Propagation Society International Symposium, Orlando, FL, USA, Jul.11-16,1999.
    [3]Freeland R E. Survey of deployment antenna concepts [R], NASA Langley Research Center Large Space Antenna Systems Technol. Part.1,1983.
    [4]Misawa M. Stiffness design of deployable satellite antennas in deployed configuration [J]. Journal Spacecraft and Rockets,1998,35(3):380-386.
    [5]Williams F W, Banerjee J R and Harris S R, et al. Refined design of self-expanding stayed column for use in space [J]. Computers & Structures,1983, 16(1-4):353-360
    [6]Gregory L D and Rebekah L T. Mechanical development of antenna systems [M/OL]. [2010-6-3]. http://descanso.jpl.nasa.gov/Monograph/series8/Descanso8_08.pdf
    [7]Soykasap O, Watt A M, and Pellegrino S. New deployable reflector concept [C]. The 45th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference; Palm Springs, CA; Apr.19-22,2004. AIAA-2004-1574.
    [8]Barer H, Datashvili L and Gogava Z, et al. Building blocks of large deployable precision membrance reflectors[C]. The 42nd AIAA/ASME/ASCE/AHS/ASC structures, Structural dynamics, and materials conference and exhibit, Seattle, WA, USA, Apr.16-19,2001. AIAA 2001-1478.
    [9]Mikulas J, Collins T J and Hedgepeth J M. Preliminary design considerations for 10-40 meter-diameter precision truss reflectors [J]. Journal of Spacecraft and Rockets,1991,28(4):439-447.
    [10]Miyasaki A, Homma M and Tsujigata A, et al. Design and ground verification of large deployable reflector[C]. The 42nd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference and Exhibit, Seattle, WA, USA, Apr.16-19,2001. AIAA 2001-1480.
    [11]Natori M C, Takano T and Noda T, et al. Ground adjustment procedure of a deployable high accuracy mesh antenna for spcace VLBI mission [C]. The 39th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference and Exhibit and AIAA/ASME/AHS Adaptive Structures Forum, Long Beach, CA; USA; Apr.20-23,1998. AIAA-98-1923.
    [12]Rogers C A, Stutzman W L and Campbell T G, et al. Technology assessment and development of large deployable antennas [J]. Journal of Aerospace Engineering, 1993,6(1):34-55.
    [13]寇艳玲译.日本卫星通信天线的现状和发展动向[J].空间电子技术,1992,(2):51-54.
    [14]Natori M C, Hirabayashi H and Okuizumi N, et al. A structure concept of high precision mesh antenna for space VLBI observation [C]. The 43rd AIAA/ASME/ ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Denver, Colorado, USA, Apr.22-25,2002. AIAA 2002-1359.
    [15]Gunnar T. Depolyable tensegrity structure for space applications [D/OL], Royal institute of Technology Department of Mechanics,2002. [2010-6-3] http://www.mech.kth.se/thesis/2002/phd/phd_2002_gunnar_tibert.pdf
    [16]段宝岩.柔性天线结构分析、优化与精密控制[M].北京:科学出版社,2005.
    [17]Guest S D and Pelegrino S. A new concept for solid surface deployable antennas [J]. Acta Astronautica,1996,38(2):103-113.
    [18]Rahmat S Y and Zaghloul A I. Large deployable antennas for satellite commu-nications [C]. Proc. IEEE Antennas and Propagation Society International Symposium, Salt Lake City, UT,2000,2:528-529.
    [19]Im E, Thomson M and Fang H. Prospects of large deployable reflector antennas for a new generation of geostationary Doppler weather radar satellites [C]. AIAA SPACE 2007 Conference & Exposition, Long Beach, California, USA, Sept. 18-20,2007.AIAA-2007-9917.
    [20]Lichod Z. Inflatable deployed membrane waveguide array antenna for space[C/OL]. Collection of Technical Papers AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference,2003, (3):2262-2268. [2010-6-3] http://http://lgarde.com/papers/2003-1649.pdf
    [21]关富玲,李刚,夏劲松,等.充气可展空间结构[C].卫星结构与机构技术进展研讨会会议论文集,总装备部卫星技术专业组,西安,2003年9月.
    [22]狄杰建.索网式可展开天线结构的反射面精度优化调整技术研究[D].西安电 子科技大学博士学位论文,2005.
    [23]Huang J. The development of inflatable array antennas [J]. IEEE Antennas and Propagation Magazine,2001,43(4):44-50.
    [24]Huang J, Reria L M and Kim A. An inflatable L-band microstrip SAR array [C/OL]. IEEE Antennas and Propagation Society International Symposium,1998, 4:2100-2103. [2010-6-3] http://trs-new.jpl.nasa.gov/dspace/bitstream/2014/ 22930/1/97-1474.pdf
    [25]Cassapakis C G, Love A W and Palisoc A L. Inflate space antennas:a brief overview. Proc.1998 IEEE Aerospace conference, Snowmass, CO, USA, March 21-28,1998
    [26]王援朝.充气天线结构技术概述[J].电讯技术,2003,43(2):6-11.
    [27]陈庚超.网状可展开天线力学分析研究[D].西安电子科技大学硕士学位论文,2007.
    [28]Campbell G, Bailey M C and Belvin W K. The development of the 15 meter hoop column antenna system with final structural and electromagnetic results [J]. Acta Astronautica,1988,17(1):69-77.
    [29]Belvin W K. Quasistatic shape adjustment of a 15 meter diameter space antenna [J]. Journal of Spacecraft and Rockets,1989,26(3):129-136.
    [30]Thomson M W. The Astromesh deployable reflector[C/OL]. Antenna and Propaga- tion Society, IEEE International symposium,1999(3):1516-1519. [2010-6-3]. http://www.as.northropgrumman.com/businessventures/ astroaerospace/capabilities/publications/assets/IMSCPaper99.pdf
    [31]Takano T, Miura K and Natori M, et al. Deployable antenna with 10 m maximum diameter for space use [J]. IEEE Transactions on Antenna and Propagation,2004, 52(1):2-11.
    [32]Takano T, Natori M and Miyoshi K, et al. Characteristics verification of a deployable onboard antenna of 10 m maximum diameter [J]. Acta Astronautica, 2002,51(11):771-778.
    [33]寇艳玲.采用绳索张力桁架结构的可展开大口径星载天线[J].空间电子技术,1999,(2):38-46.
    [34]Miura K and Miyazaki Y. Concept of the tension truss antenna [J]. AIAA Journal. 1990,28(6):1098-1104.
    [35]Yonezawa K and Homma M. Attitude control on ETS-VIII mobile communication satellite with large deployable antenna[C]. The 21st AIAA International Communications Satellite Systems Conference (ICSSC) and Exhibit; Yokohama; Japan; Apr.15-19,2003. AIAA 2003-2216.
    [36]Yamada K, Tsutsumi Y and Yoshihara M, et al. Inegration and testing of large deployable reflector on ETS-VIII [C]. The 21st AIAA International Communications Satellite Systems Conference (ICSSC) and Exhibit; Yokohama; Japan; Apr.15-19,2003. AIAA 2003-2217.
    [37]Akira M, Akio T and Naokazu H, et al. Technology status of 13 m aperture deployment antenna reflectors for engineering test satellite Ⅷ [J]. Acta Astronautica,2000,47(2-9):147-152.
    [38]万红霞,吴代华.索和膜结构的力密度法找形分析[J].武汉理工大学学报,2004,26(4):77-79.
    [39]万红霞.索和膜结构形状确定理论研究[D].武汉理工大学博士学位论文,2004.
    [40]Barnes M R. Form finding and analysis of prestressed nets and membranes [J]. Computers and Structures,1988,30(3):685-695.
    [41]Maurin B and Motro R. The surface stress density method as a form finding tool for tensile membrane [J]. Engineering Structures,1999,20(8):712-719.
    [42]李中力,吴健生等.膜结构找形受荷与剪裁分析[C].第八届空间结构学术会议论文集,开封:1997,229-304.
    [43]Haber R B and Abel J F. Initial equilibrium solution methods for cable reinforced membranes, part Ⅰ——formulations [J]. Computer Method in Applied Mechanics and Engineering,1982,30(3):263-284.
    [44]夏劲松.索膜结构的构造理论和柔性天线的结构分析[D].浙江大学博士论文,2005.
    [45]徐旭东.索膜结构分析的全过程[D].浙江大学硕士学位论文,2002.
    [46]廖理.索膜结构力密度法找形的一种离散方法[J].空间结构,2003,9(3):46-49.
    [47]廖理.索膜结构形态分析及连接构造研究[D].浙江大学硕士论文,2003.
    [48]Ruze J. The effect of aperture errors on the antenna radiation patters [J]. Suppl. al Nuovo Cimento,1952,9(3):364-380
    [49]叶尚辉,李在贵.天线结构设计[M].西安:西北电讯工程学院出版社,1986.
    [50]Meguro A, Harada S and Watanabe M. Key techonologies for high accuracy large mesh antenna reflectors [J]. Acta Astronautica,2003,53:899-908.
    [51]李刚,关富玲.环形桁架可展开天线抛物面索网的预拉力优化[J].浙江大学学报(工学版),2005,39(10):1557-1643.
    [52]李刚,关富玲.环形桁架展开天线索网的预拉力优化技术及工程应用[J].固体力学学报,2006,27(S):174-179.
    [53]李刚.空间可展天线结构的设计分析与索膜结构分析[D].浙江大学博士学位论文,2004.
    [54]李琴琴.大型索网结构网面形状优化设计[D].西安电子科技大学硕士学位论文,2008.
    [55]狄杰建,段宝岩,等.周边式桁架可展开天线的形面调整[J].宇航学报,2004,25(5):583-586.
    [56]狄杰建,段宝岩,罗鹰,等.大型网状可展开天线预张力的优化[J].华南理工大学学报(自然科学版),2004,32(6):23-26.
    [57]狄杰建,段宝岩,罗鹰,等.大型空间网状可展开天线的形面调整[J].中国机械工程,2004,(15):51-54.
    [58]狄杰建,段宝岩,杨东武.索网式星载展开天线结构纵向调整索数及其初始张力的优化[J].机械工程学报,2005,41(11):153-157.
    [59]李团结,周懋花,段宝岩.可展天线的柔性索网结构找形分析方法[J].宇航学报,2008,29(3):794-798.
    [60]罗鹰.大型星载可展开天线的动力优化设计与工程结构的系统优化设计[D].西安电子科技大学博士学位论文,2004.
    [61]赵孟良.空间可展结构展开过程动力学理论分析、仿真及试验[D].浙江大学博士学位论文,2007.
    [62]李团结,张琰,李涛.周边桁架可展开天线展开过程动力学分析及控制[J].航空学报,2009,30(3):444-449.
    [63]赵孟良,关富玲.考虑摩擦的周边桁架式可展天线展开动力学分析[J].空间科学学报,2006,26(3):220-226.
    [64]李洲洋,陈国定,等.大型可展开卫星天线的展开过程仿真研究[J].机械设计与制造,2006,(7):67-69.
    [65]张建国,陈建军,等.基于非概率模型的星载天线展开机构可靠性分析[J].西安电子科技大学学报(自然科学版),2006,33(5):739-744.
    [66]李春贵,王三民,等.基于神经网络的空间可展天线展开过程智能控制研究[J].机床与液压,2006,(12):161-164.
    [67]冯达武,赵人杰.空间大型网状展开天线展开机构的研究[J].中国空间科学技术,1997,17(1):64-70.
    [68]Mitugi J. Comparative analysis of deployable truss structures for mesh antenna reflectors [J]. AIAA Journal,1998,36 (8):1546-1548.
    [69]Langbecker T. Kinematic analysis of deployable scissor structures [J]. International Journal of Space Structures,1999,14 (1):1-17.
    [70]张建国.不确定结构(机构)分析和可靠性专题研究[D].西安电子科技大学博士论文,2006.
    [71]李团结,张琰,段宝岩.周边桁架可展开天线展开过程运动分析及控制[J].西安电子科技大学学报(自然科学版),2007,34(6):916-921.
    [72]Mitsugi J, Ando K and Senbokuya Y, et al. Deployment analysis of large space antenna using flexible multibody dynamics simulation [J]. Acta Astronautica, 2000,47(1):19-26.
    [73]Gan W W. Analysis and design of colosed-loop deployable structures [D]. PhD dissertation, University of Cambridge,2007.
    [74]Gan W W and Pellegrino S. Closed-loop deployable structures [C]. The 44th AIAA Structures, Structural Dynamics, and Materials Conference, Norfolk, VA, April 7-10,2003. AIAA 2003-1450.
    [75]陈务军.空间展开桁架结构设计原理与展开动力学分析理论研究[D].浙江大学博士学位论文,1998.
    [76]陈向阳.可展桁架结构展开过程和动力响应分析与结构设计[D].浙江大学博士学位论文,2000.
    [77]胡其彪.空间可伸展结构的设计与动力学分析研究[D].浙江大学博士学位论文,2001.
    [78]张京街.弹簧驱动空间可展桁架结构设计与分析理论研究[D].浙江大学博士学位论文,2001.
    [79]岳建如.空间可动机构结构设计与控制分析[D].浙江大学博士学位论文,2002.
    [80]杨艳妮,朱敏波,徐晓婷.星载天线在轨温度场的影响参数分析[J].计算机工程与设计,2007,28(8):1960-1965.
    [81]朱敏波,何恩,曹峰云.星载天线热分析系统研究与开发[J].计算机工程与设计,2004,25(12):2251-2267.
    [82]张淑杰.空间可展桁架结构的设计与热分析[D].浙江大学博士论文,2001.
    [83]朱敏波,曹峰云,刘明治,等.星载大型可展开天线太空辐射热变形计算[J].西安电子科技大学学报,2004,31(1):28-31.
    [84]朱敏波,刘明治,徐海强.基于在轨热环境的可展开天线反射面精度调整技术[J].宇航学报,2007,28(3):727-730.
    [85]徐海强,朱敏波,杨艳妮.星载天线的热分析技术方法研究[J].强度与环境,2007,34(1):39-42.
    [86]杨玉龙,关富玲,张淑杰.可展桁架天线温度场和热变形分析[J].空间科学学报,2005,25(3):235-240.
    [87]Jin M, Tetsuo Y and Koryo M. Shape control of the tension truss antenna [J]. AIAA Journal,1990,28(2):316-322.
    [88]Agrawal P K, Anderson M S and Card M F. Preliminary design of large reflectors with flat facets [J]. IEEE Transactions on Antennas and Propagation,1981, AP-29(4):688-694.
    [89]宋燕平,肖勇,马小飞.空间大型可展天线结构概述[C].星载大型可展开天线技术研讨会会议论文集,总装备部卫星技术专业组,2003年4月.
    [90]夏劲松,关富玲,李刚.张力天线的类型和反射面网格[C].卫星结构与机构技术进展研讨会会议论文集,总装备部卫星技术专业组,2003年9月.
    [91]李刚,关富玲,夏劲松.环柱状柔性天线抛物面索网的网格生成技术及设计参数研究[C],卫星结构与机构技术进展研讨会会议论文集,总装备部卫星技术专业组,2003年9月.
    [92]仇原鹰,黄小玲等.改进型周边构架可展开天线的结构分析[C].星载大型可展开天线技术研讨会论文集,总装备部卫星有效载荷技术专业组,2003年4月.
    [93]杨东武,仇原鹰,段宝岩.索网式天线结构预拉力优化的新方法[J].西安电子科技大学学宝(自然科学版),2008,35(2):319-323.
    [94]黄保和等.C语言程序设计[M].北京:清华大学出版社,2006.
    [95]McMahon D, Topa D M.A beginner's guide to mathematica [M]. CHAPMAN & HALL/CRC,2006.
    [96]Lubrano V, Mizzoni R and Silvestrucci, et al. PIM characteristics of the large deployable reflector[C]. The 4th International Workshop on Multipactor, Corona and Passive Intermodulation in Space RF Hardware, ESTEC, Noordwijk, The Netherlands, Sept.8-11,2003. [2010-6-2] http://conferences.esa.int/03C26/ papers/a029.pdf
    [97]Lai C Y and Pellegrino S. Feasibility study of a deployable mesh reflector [D]. Deployable Structure Laboratory Department of Engineering, University of Cambridge,2001.
    [98]Tan L T and Pellegrino S. Ultra thin deployable reflector antennas[C/OL]. Proc. 45th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, Palm Springs, CA, Apr.19-22,2004. AIAA 2004-1730. [2010-06-03] http://www-civ.eng.cam.ac.uk/dsl/publications/Ultrathin_antennas Paper.pdf
    [99]Wang P H, Tabarrok T C B and Qin I. Nonlinear analysis of tension structures [J]. Computers and Structures,1992,45(5):973-984.
    [100]张莉.张拉结构形状确定理论研究[D].同济大学博士学位论文,2000.
    [101]张其林.预应力结构非线性分析的索单元理论[J].工程力学,1993,10(4):93-101.
    [102]晏景通,高日.不同索元模式对索网结构受力分析的影响[J].空间钢构,2002,17(3):16-18.
    [103]陈务军,关富玲,裘红妹等.索杆可展结构的体系分析[J].空间结构,1997,3(4):28-33.
    [104]Kai U B and Ekkehard R. A general finite element approach to the form finding of tensile structures by the updated reference strategy [J]. International Journal of Space Structures,1999,14(2):131-145.
    [105]张华,单建.预应力索膜结构的D.R法找形分析[J].工程力学,2002,19(2):41-44.
    [106]王肇民,罗烈.空间索网结构的非线性分析[J].建筑结构学报,1995,16(1):26-31.
    [107]沈祖炎,高振锋,张其林.索网结构几何非线性分析的增量理论[J].同济大学学报,1996,24(4):357-362.
    [108]王仕统,金峰,姜正荣.索-桁架结构的静力分析及动力特性研究[J].空间结构,1999,5(4):31-38.
    [109]Raid K. Some modeling aspects in the nonlinear finite element analysis of cable supported bridges [J]. Computer and Sturctures,1999,71(4):397-412.
    [110]胡松,何艳丽,王肇民.大挠度索结构的非线性有限元分析[J].工程力学,2000,17(2):36-42.
    [111]张亚欧,谷志飞.ANSYS7.0有限元分析实用教程[M].北京:清华大学出版 社,2004.
    [112]宋勇,艾宴清,梁波.精通ANSYS7.0有限元分析[M].北京:清华大学出版社,2004.
    [113]刘国庆,杨庆东ANSYS7.0工程应用教程——机械篇[M].北京:中国铁道出版社,2003.
    [114]洪庆章,刘清吉,郭嘉源ANSYS教学范例[M].北京:中国铁道出版社,2002.
    [115]王国强.实用工程数值模拟技术及其在ANSYS上的实践[M].西安:西北工业大学出版社,2000.
    [116]段宝岩.天线结构分析、优化与测量[M].西安:西安电子科技大学出版社,1998.
    [117]Kazahide A, Jin M and Yami S. Analyses of cable-membrane structure combined with deployable truss [J]. Computers and Structures,2000,74(1):21-39.
    [118]那柏.大型空间网状展开天线反射面精度调整技术研究[D].西安电子科技大学硕士学位论文,2000.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700