用户名: 密码: 验证码:
异体树突状细胞与骨肉瘤细胞融合瘤苗的制备及其抗骨肉瘤主动免疫效应实验的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
骨肉瘤(osteosarcoma)是儿童和青少年最常见的原发性恶性骨肿瘤。20世纪70年代以前,主要治疗方法是截肢和关节离断,从外科治疗到出现肺转移的平均时间为8个月,5年生存率<25%。随着外科技术和影像学的发展,新辅助化疗的进步,骨肉瘤治愈率有了明显改进,5年生存率达到80%。但目前的治疗手段仍无法解决肿瘤病人的转移、复发和药物耐药等情况,因此,有必要探索一种新的、更为有效的治疗途径。随着对肿瘤发病机制和免疫逃避机制的认识,免疫治疗尤其是主动性免疫治疗为骨肉瘤的综合治疗提供了新的手段。
     制备针对肿瘤特异性抗原(tumor-specific antigens, TSA)或肿瘤相关抗原(tumor-associated antigen, TAA)的治疗性瘤苗是目前肿瘤免疫治疗中的研究热点。其抗肿瘤免疫的重要目的就是诱导针对肿瘤抗原的特异性细胞毒性T淋巴细胞(cytocoxic T lymphocyte,CTL)反应,而CTL的激活依赖于抗原提呈细胞(antigen-presenting cell,APC)提供的抗原多肽和共刺激信号。在抗原提呈细胞中,尤以树突状细胞(dendritic cell,DC)的抗原提呈功能最强,可启动并调节免疫应答,有效刺激T、B淋巴细胞活化,在抗肿瘤、抗感染、移植排斥以及自身免疫性疾病发病过程中起重要作用。
     本研究以骨肉瘤全细胞提供肿瘤抗原,采用细胞电融合技术将肿瘤抗原通过DC呈递表达于T淋巴细胞表面。全细胞瘤苗的最大的优点就在于融合细胞能够呈递肿瘤细胞所有的抗原,包括已知的和未知的抗原,鉴于目前大多数人类和动物的肿瘤细胞(包括骨肉瘤细胞)抗原类型仍未得到明确的鉴定,用全肿瘤细胞作为瘤苗提供抗原的有效组分仍不失为一类简单、有效的方法。电融合技术是当前生物学界重要的开创性研究手段之一,在制备单克隆抗体、哺乳动物克隆实验研究及肿瘤的免疫治疗方面均获得了广泛的应用,和传统的化学融合方法(如聚二乙醇PEG法)相比,电融合方法是一种更为高效的手段,融合效率通常可以提高1~2个数量级,这在很大程度上弥补了DC数量较少的缺陷,该技术也使两个来源于异体的细胞相互融合成为可能,目前已被广泛应用于瘤苗制备领域。
     研究工作者之所以如此积极地进行异体融合瘤苗的尝试,是因为在临床应用中自体瘤苗的成功制备通常会受到疾病本身的困绕。首先,对患者自体的肿瘤细胞进行原代培养具有某种不确定性,特别是在保守治疗和以微波、射频等热疗手段处理后的肿瘤组织,失去进一步体外培养的可能;另外,目前肿瘤的治疗方案往往是手术、化疗及放疗等相结合的综合治疗,肿瘤患者的机体经过一系列治疗副效应的累加,患者的血象及血细胞质量通常难以满足进一步的免疫治疗需要,其营养状况也基本处于过消耗状态。而异体的树突状细胞可以从储备的健康志愿者外周血单核细胞获得,又可避免使所有肿瘤患者在接受免疫治疗前都必须提供相当量的自身外周血的缺陷,避免了“雪上加霜”。
     实验一UMR-106细胞系易感动物的筛选和大鼠骨肉瘤及其肺转移模型的建立
     目的探讨从普通的封闭群动物中筛选出对UMR-106大鼠骨肉瘤细胞系易感的SD大鼠,并建立其近交系的方法,以及大鼠骨肉瘤及其肺转移模型的建立方法。
     方法取10对4周龄封闭群饲养的SD大鼠,分别在右股外侧皮下接种1×10~7个大鼠骨肉瘤细胞UMR-106,观察成瘤情况,选取存活的成瘤的雌、雄大鼠,6周后同笼交配,约4周妊娠期后,产下幼鼠,4周后重复肿瘤细胞皮下接种过程……依照此方法重复共4次,获得第4代UMR-106细胞系易感的近交繁殖SD大鼠;取30只4周龄近交繁殖的SD大鼠随机分为3组,将UMR-106细胞分别以1×10~6、5×10~6、1×10~7个数量注射入大鼠右股外侧皮下。接种后,每周观察肿瘤生长情况,测量肿瘤直径,绘制肿瘤生长曲线,连续6周。至第6周末,取肿瘤及双侧肺,病理取材,HE染色,光镜下观察。
     结果4周龄封闭群饲养的SD大鼠,以1×10~7个数量接种肿瘤细胞后,肿瘤发生率仅为30%,筛选易感SD大鼠并近交繁殖4代后,肿瘤发生率达到100%,肺转移率达70%;而1×10~6及5×10~6组肿瘤生长情况不佳,均未出现肺转移。
     结论封闭群饲养的SD大鼠具有一定的遗传差异,经反复筛选并近交繁殖后,遗传性状恢复稳定,成瘤能力得以保持。大鼠骨肉瘤细胞系UMR-106具有较强的致瘤性及较高的肺转移率,应用该细胞系建立的动物模型为骨肉瘤综合治疗奠定了动物实验基础。
     实验二大鼠骨髓单核细胞为来源的树突状细胞的体外定向诱导、培养及表型鉴定
     目的以大鼠骨髓单核细胞(Bone Marrow Mononuclear Cell,BMMC)为来源,建立体外诱导、培养DC的方法,并检测该培养过程中,树突状细胞的表型变化情况。
     方法从大鼠骨髓细胞中分离出单核细胞,经淋巴细胞分离液梯度离心、聚苯乙烯细胞培养板贴壁纯化后,加入含rGM-CSF和rIL-4的RPMI-1640培养液联合诱导DC分化,诱导d6加入nrhTNF-α促进DC成熟。对经标抗大鼠OX62单抗免疫磁珠分离纯化后的DC,分别以倒置显微镜、电子显微镜观察其形态变化,采用流式细胞仪每隔3日检测DC的表型变化情况。
     结果大鼠骨髓单核细胞经诱导培养9d后,在倒置显微镜和电镜下显示出典型的树突状细胞形态和超微结构;流式细胞术分析显示在DC诱导培养过程中,细胞表面的DC功能相关抗原均呈递增性表达,第0天为OX62 1.78%,MHCⅡ13.68%,CD80 4.77%,CD86 5.77%;第3天为OX62 32.31%,MHCⅡ32.14%,CD80 23.68%,CD86 15.44%;第6天为OX62 63.13%,MHCⅡ68.36%,CD80 43.06%,CD86 54.78%;第9天为OX62 72.41%,MHCⅡ84.71%,CD80 79.06%,CD86 74.80%;而大鼠骨肉瘤相关性抗原CD44在DC始终呈阴性表达。
     结论以大鼠骨髓单核细胞为来源,联合应用rGM-CSF、rIL-4及nrhTNF-α,在体外可成功诱导培养出具有典型形态、及表型特征的DC,DC的表面分子随着诱导培养时间的推进,呈递增性改变,该研究为进一步研究DC在肿瘤免疫治疗中的应用打下了基础。
     实验三异体树突状细胞与骨肉瘤细胞融合瘤苗的制备及表型分析目的以Wistar大鼠树突状细胞和SD大鼠骨肉瘤细胞UMR-106为来源,应用细胞融合仪建立体外制备异体融合瘤苗方法,并检测融合细胞的表型变化情况。
     方法将Wistar大鼠骨髓来源的树突状细胞和SD大鼠骨肉瘤细胞UMR-106以5:1比率混合并悬浮于含10%胎牛血清的完全培养基中,离心后,将细胞悬浮于无血清的培养基中。调整细胞浓度后,将0.5ml含5×10~6个混合细胞的悬液置于ECM 2001型细胞融合仪的特制电击槽内。融合过程施加两步骤电脉冲,第一步是施加50V交流脉冲,将细胞彼此紧密接触;既而施加250V直流脉冲,使相邻细胞的细胞膜穿孔,细胞质彼此交通,来实现细胞之间的融合。整个施加电脉冲的过程重复一遍,以确保电融合效率。静止5分钟后,将融合细胞移入完全培养基,37℃条件下过夜培养。再收集贴壁细胞,经标抗大鼠OX62单抗免疫磁珠分离纯化后,分别以倒置显微镜、电子显微镜观察其形态变化,采用流式细胞仪检测融合瘤苗的表型变化情况。
     结果异体树突状细胞和骨肉瘤细胞在电脉冲作用下,实现了细胞间的融合,在扫描电镜和透射电镜下,融合细胞表现出兼具两类细胞外形特点的形态学特征和典型的多细胞核超微结构;流式细胞术分析显示,经过免疫磁珠分离纯化的融合细胞表型分子较两类成分细胞均发生了变化,其同时高表达骨肉瘤细胞表型分子CD44(50.02%)和树突状细胞表型分子OX62(83.55%),双标阳性细胞比率高达49.43%。
     结论应用细胞融合仪可以将同种异体来源的树突状细胞和骨肉瘤细胞在电脉冲作用下制备融合瘤苗,融合细胞兼具有树突状细胞与骨肉瘤细胞的形态学及表型特征,异体融合瘤苗有望在针对骨肉瘤的免疫治疗中发挥作用。
     实验四异体融合瘤苗体外诱导的抗骨肉瘤免疫效应实验
     目的本研究旨在检验异体融合瘤苗体外诱导T淋巴细胞增殖能力,以及骨肉瘤细胞特异性的细胞毒T淋巴细胞(CTL)的杀瘤效果。
     方法经标抗大鼠OX62单抗免疫磁珠分离纯化的异体融合瘤苗,接受30Gy的60Co照射后,与SD大鼠骨髓来源的T淋巴细胞作共同培养,旨在刺激T细胞的增殖,并采用MTT法测定细胞毒T淋巴细胞的杀瘤活性。将10裸鼠右后肢皮下接种UMR-106细胞1×10~6/只,3日后随机分组。治疗组以1×10~7/只皮内注射活化的T淋巴细胞,连续3次,4周后观察成瘤情况。
     结果T淋巴细胞和异体融合瘤苗(DOF)经过共同培养,T细胞得以显著增殖。与生理盐水和树突状细胞对照组相比,异体融合瘤苗诱导的UMR-106特异性CTL杀瘤效果显著。裸鼠接种UMR-106细胞28天后,治疗组、对照组肿瘤体积分别为(945±125)mm3和(4867±375)mm3,与对照组相比,治疗组移植瘤的生长受到明显抑制(p<0.05)。
     结论该研究为异体树突状细胞与骨肉瘤细胞融合瘤苗可以在体外有效的刺激T淋巴细胞增殖,并成功地诱导杀瘤效果显著的UMR-106特异性CTL提供了证据。从而表明异体融合瘤苗为以树突状细胞为基础的免疫治疗领域提供了新的策略,针对临床骨肉瘤患者具有广阔的应用前景。
     实验五异体融合瘤苗体内诱导的抗骨肉瘤主动免疫效应实验
     目的本研究旨在探讨以Wistar大鼠树突状细胞和SD大鼠骨肉瘤细胞UMR-106为来源制备的融合瘤苗诱导的特异性抗骨肉瘤免疫学效应及其应用潜能。
     方法预防接种实验以10只SD大鼠作为1组,收集筛选过的异体融合细胞,经30Gy的60Co照射后作为肿瘤疫苗,洗1遍,调整细胞浓度,于第0天和第14天在实验组每只大鼠腹股沟皮内注射1×10~6个融合细胞,同时设立4个对照组,分别以生理盐水、经过照射的自身融合的肿瘤细胞、自身融合的DC以及后二者的混合物对大鼠进行皮内接种,1周之后(即第21天)采用盲法在实验组和对照组大鼠右后肢外侧皮下均注射致死量(1×10~7个)的骨肉瘤细胞,10周之后观察动物生存状况。再次以致死剂量的骨肉瘤细胞(1×10~7个)对存活下来的大鼠进行皮下注射,7周之后观察动物生存状况以检验该预防保护作用是否具有长效性。主动免疫治疗实验于第0天在每只SD大鼠右后肢外侧皮下接种1×10~7个UMR-106细胞建立大鼠的骨肉瘤动物模型,分别于第3、7、14天在大鼠腹股沟皮内注射瘤苗进行免疫治疗,绘制动物生存曲线。
     结果10周之后,在预防接种了异体融合瘤苗的实验组,70%的大鼠抵抗了致死剂量骨肉瘤细胞的攻击,而得以存活。经过预防接种异体融合瘤苗而得以存活的大鼠,全部抵抗了第2次致死剂量的骨肉瘤细胞的免疫攻击,7周之后继续得以存活。异体融合瘤苗主动免疫治疗的效果根据注射融合细胞的数量的不同而出现差异,1×10~6组疗效较差,仅有10%的个体得以存活,而该剂量在预防接种实验中已经能够取得良好的疗效;2×10~6组疗效显著,60%的荷瘤大鼠瘤体萎缩、消失而得以长期存活。
     结论预防接种异体融合瘤苗的实验组产生了强大的抵抗骨肉瘤细胞攻击的预防保护作用,该作用在存活下来的动物机体产生了长效的免疫记忆应答。异体融合瘤苗还可以发挥良好的主动免疫治疗作用,但是治疗剂量与预防接种实验相比需要有所提高。实验结果表明大鼠骨肉瘤细胞系UMR-106与同种异基因树突状细胞的融合瘤苗可诱发有效的特异性抗骨肉瘤免疫学效应,该方法有望在针对抗原表型尚未明确的其它肿瘤的免疫治疗中获得推广应用。
Osteosarcoma is one of the most common primary malignant bone tumors mostly in youth and adolescents. The main treatment for osteosarcoma was surgical excision including amputation and joint amputation before the1970’s. The average time is 8 months from surgical treatment to lung metastasis. Less than 25% of patients had a 5-year survival rate. With the development of surgery and screenage technology and achievement of alliance of neoadjuvant chemotherapy, radiotherapy and the immunotherapy, the osteosarcoma therapy has achieved great achievement, with 5-year disease-free survival exceeds 80%. However, the metastasis, recurrent and chemotherapy-resistant cases has not been solved. Therefore, novel strategies to prevent proliferation of malignant cells are urgently needed.
     A promising approach may be the prophylactic vaccination directed against a tumor-associated antigens(TAA)or tumor-special antigens(TSA)from the whole tumor cells. The major objective of active specific immunotherapy is to generate tumor- specific cytotoxic T lymphocyte (CTL) responds, but to induced CTL responds depend on the use of professional antigen presenting cells loaded with tumor antigen. In the antigen-presenting cells, dendritic cell (DC)has been considered to be the most potent professional antigen-presenting cell (APC)that can initiates primary immune responses. Its ability to stimulate and regulate T- and B-cell responses makes DC ideally suited to serve as an adjuvant for the purpose of cancer immunotherapy. DC also can be involved in the pathogenesis of graft versus host disease or host versus graft disease after transplantation as well as immunization against viral infections and immunosuppression in autoimmune diseases.
     Considering the expected emergence of antigen-loss variants and the lack of known tumor-specific antigens in most cancers, in this study, the DC-based vaccine is generated using whole osteosarcoma cell body through electrofusion process. One important advantage of immunization with the whole tumor cell is the potential to induce an immune response against all possible tumor antigens, known or unknown. Electrical cell fusion is an essential step in some of the most innovative methods in modern biology, such as the production of monoclonal antibodies, the cloning of mammals, and vaccination against cancer. Compared with the chemically induced cell fusion via polyethylene glycol (PEG), electrical cell fusion is a method with higher efficiency. More importantly, this technique makes it practical to combine two allogeneic APC or tumor cell together.
     The allogeneic fusion hybrids are particularly attractive because they would enable the use of allogeneic DC or tumor cells, both providing the costimulatory fusion or MHC molecules required to induce CTL in naive T-cell precursors. Both of the options seem to project a practical advantage. For in a clinical setting, it is not easy to cultivate original tumor cell from osteosarcoma patients, who have suffered from the complications of expectant treatment, thermotherapy by microwave or radio-frequency, et al. Allogeneic tumor cells can save the necessary process of original tumor cell collection and make cell cultivation easier. While allogeneic DC can be generated conveniently from stored peripheral mononuclear cells from normal healthy volunteers from the general population, which avoids the strike to draw additional peripheral blood from cancer patients, who have been very weak.
     Part I Bolting of UMR-106 Rat Osteosarcoma Cell Line Susceptible Population and Establishment of Animal Model of Rat Osteosarcoma and Its Lung Metastasis
     Objective To introduce a method of bolting of UMR-106 rat osteosarcoma cell line susceptible population and breeding its inbred strain, and establish animal model of rat osteosarcoma and its lung metastasis.
     Methods 10 couples 4-week-old SD rats from closed population were prepared and the UMR-106 osteosarcoma cell line was injected subcutaneously into the SD rat thigh lateral at the amount of 1×10~7. The survival couples who were susceptible to the osteosarcoma cell line were selected, and mated six weeks later. After pregnancy and delivery, the offspring emerged, who would also be challenged with UMR-106 cell line 4 weeks later……The whole process were be repeated for 4 times and as a matter of course, the the 4th generation rats from inbred strain was obtained, who were more susceptible to the osteosarcoma cell line. 30 SD rats from inbred strain of 4 weeks old were divided into 3 groups. The UMR-106 cell line was injected subcutaneously into the SD rat thigh lateral at the amount of 1×10~6、5×10~6 and 1×10~7. Neoplastic diameters were measured every week after inoculation to build the tumor growth curve. 6 weeks later, the rat’double lungs and tumors were prepared. Pathological study was made under microscope by HE stains.
     Results The 4-week-old rats from closed population seemed unsusceptible to the UMR-106 cell line and only 30% of them were infected. After bolting and propagation, the 4th generation rats from inbred strain became so susceptible to the osteosarcoma cell line that in the1×10~7 group all tumors developed and 70% of them metastasized to lungs, while the tumors of 1×10~6 and 5×10~6 groups didn’t develop well,nor lung metastasis were observed.
     Conclusions The SD rats from closed population showed up certain genetic diversity, while their offspring from inbred strain became identical and demonstrated no diversity in oncogenicity. The UMR-106 cell line has strong carcinogenic capability and high lung metastasis frequency. The animal models depending on it offer a method for the animal experiments of comprehensive therapy to osteosarcoma.
     PartⅡInduction, Proliferation and Identification of Dendritic Cells from Rat Bone Marrow Mononuclear Cells in vitro
     Objective To establish a method to induce dendritic cells from the bone marrow mononuclear cell of rats in vitro,and to identify the process of phenotypes’variation on DC.
     Methods BMMCs were isolated by Ficoll-Hypaque density gradient separation and then cultured in RPMI1640-10% FCS medium in polystyrene flask under the condition of rGM-CSF and rIL-4 at 37℃and 5% CO2. On d6 of culture, immature DC were washed and suspended in medium containing nrhTNF-αto generate mature DC. On d9 after purified by monoclonal antibody OX62 and magnetic beads, DC was identified by morphological features under both inversion microscope and electron microscope. While DC’surface antigens expression was analyzed by FACS every three days.
     Results After culture and induction,DC displayed typical morphology with elongated dendritic processes viewed by inversion microscope as well as electron microscope. DC expressed increasing level function associated surface antigens,including OX62 1.78%,MHCⅡ13.68%,CD80 4.77%,CD86 5.77% on d0; OX62 32.31%,MHCⅡ32.14%,CD80 23.68%,CD86 15.44% on d3; OX62 63.13%,MHCⅡ68.36%,CD80 43.06%,CD86 54.78%; and OX62 72.41%,MHCⅡ84.71%,CD80 79.06%,CD86 74.80%on d9. While the rat osteosarcoma associated surface antigen CD44 was always negatively expressed on DC.
     Conclusions Mature DC with typical morphology and surface antigens expression could be generated from rat bone marrow mononuclear cells under the condition of rGM-CSF, rIL-4 and nrhTNF-α,and DC’s surface antigens expression was increased progressively with culture days added, which presents the feasibility for further clinical application of DC in the immunotherapy of cancer.
     PartIII Preparation and Identification of Allogeneic DC-osteosarcoma Electrofusion Vaccine
     Objective To establish a method to prepare allogeneic DC-osteosarcoma electrofusion vaccine with the Wistar rats’bone marrow derived dendritic cells and SD rats derived osteosarcoma cell line UMR-106,and to identify the phenotypes’variation on the fusion hybrids.
     Methods Allogeneic DC and tumor cells were mixed at a 5:1 ratio and suspended in 0.3 M glucose solution containing 0.1mM Ca (CH3COO)2, 0.5mM Mg (CH3COO)2, and 10% bovine serum albumin. After centrifugation, the cells were resuspended in the same fusion medium without bovine serum albumin. Routinely, 0.5ml of cell suspension containing 6×10~6 cells were processed using a specially designed electroporation cuvette. For electrofusion, a pulse generator (model ECM 2001) was used. Electrofusion involves two independent but consecutive steps. The first reaction is to bring cells in close contact by dielectrophoresis, which can be accomplished by exposing cells to an alternating (ac) electric field of relatively low strength. Cell fusion can then be triggered by applying a single square wave pulse of 250V to induce reversible cell membrane breakdown in the zone of membrane contact. The entire process was repeated a second time to maximize fusion efficiency. The fusion mixture was allowed to stand for 5 min before suspending in complete medium and then incubated at 37℃overnight. The electrofusion products were purified by monoclonal antibody OX62 (a DC marker not expressed on tumor cells) sticking to the magnetic beads (Miltenyi Biotec) and then was identified by morphological features under both inversion microscope and electron microscope. The allogeneic DC- osteosarcoma products’surface antigens expression was analyzed by FACS and co-staining against both kinds of markers allows for the detection of double-positive hybrids.
     Results The allogeneic DC-osteosarcoma vaccine were achieved through electrofusion pulse, and the electrofusion products displayed typical morphology of both component cells viewed by scan electron microscope as well as multi-nucleus ultrastructure viewed by transmission electron microscope. FACS analysis of a purified fusion products by monoclonal antibody OX62 and magnetic beads showed both tumor cell marker and DC marker were highly expressed, for CD44 in the case of osteosarcoma was 50.02%, OX62 in the case of DC was 83.55%, while the percentage of double-positive cell was 49.43%.
     Conclusions This study demonstrated it was feasible to generate a large number of allogeneic DC-osteosarcoma hybrid cells by the electrofusion technique. The electrofusion products displayed typical morphology and phaenotype of both component cells. The allogeneic tumor vaccine affords a promising new approach for the immunotherapy of osteosarcoma.
     Part IV In vitro Induction of Anti-tumor CTL Effect against Osteosarcoma Cell Line by Allogeneic DC-Osteosarcoma Fusion Vaccine
     Objective This study was designed to investigate the potentiality to induce T cell proliferation and osteosarcoma-specific cytotoxic T lymphocytes of tumor vaccine produced by electrofusion between rat osteosarcoma cells and allogeneic DC.
     Methods The allogeneic DC-osteosarcoma fusion cells were purified by monoclonal antibody OX62 and magnetic beads and then irradiated with 30 Gy with radioactive ray of 60Co to ensure inactivation of the tumor cells and DC. Coculture of SD bone marrow derived T lymphocytes with the tumor vaccine was to induce T cell proliferation. Then cytotoxic T lymphocytes assay was assessed according to results of MTT assay. 10 athymic mice were challenged subcutaneously with 1×10~6 UMR-106 cells and then divided into two groups randomly 3 days later. The tumor-bearing athymic mice were immunized with 1×107 activated T lymphocytes for 3 times. The condition of tumor development was observed for 4 weeks since tumor challenge.
     Results After T cells were cultured with allogeneic DC-osteosarcoma fusion cells, effective activation of T cells was observed. The immunization using allogeneic DC-osteosarcoma vaccine induced UMR106-spcific CTL responses which were statistically significant (P<0.05) compared with corresponding control groups using saline or DC. 28 days later, the experiment of athymic mice showed that the induced CTL inhibited the growth of implanted tumor in athymic mice, and the volum of athymic mice’s implanted tumor was (945±125)mm3 in treatment group, and (4867±375)mm3 in control group respectively(p<0.05).
     Conclusions The present study provided valid evidence of the potentiality of allogeneic DC-osteosarcoma fusion cells to induce effective T cell proliferation and osteosarcoma-specific cytotoxic T lymphocytes. The fusion cells may thus represent a promising strategy for DC-based immunotherapy of osteosarcoma and play certain role in the clinical treatment and prevention.
     Part V Specific Active Antitumor Effects of Tumor Vaccine Produced by Electrofusion between Osteosarcoma Cell Line and Allogeneic Dendritic Cell in Rats in vivo.
     Objective This study was designed to investigate the potency and antitumor effects of allogeneic tumor vaccine produced by electrofusion between SD rats derived osteosarcoma cell line UMR-106 and Wistar rats’bone marrow derived DC.
     Methods In this study of immunization against tumor challenge, groups of 10 rats were immunized intradermally with 1×10~6 electrofused cells after irradiated with 30Gy 60Co-ray on days 0 and 14. One week after the second immunization (day 21), the rats were challenged double-blind with a lethal dose of tumor cells and were then monitored for tumor growth and survival over time. For the tumor challenge, vaccinated SD rats were prepared and the UMR-106 osteosarcoma cell line was injected subcutaneously into the SD rat thigh lateral at the amount of 1×10~7. In contrast to the results obtained with the fusion products, immunization with physiological saline, tumor cells that underwent the electrofusion process alone, DC that underwent electrofusion alone, or a mixture of these two populations was also made to induce antitumor protection. To determine whether the immunization could result in a long-term immunological memory, rats injected with UMR106-allogeneic DC fusion products that survived an UMR-106 tumor challenge were rechallenged with a second lethal dose of tumor cells 10 weeks later and then monitored for tumor growth and survival again for 7 weeks. In the active immunization therapeutic model, tumor cells were injected on day 0 and vaccination with electrofusion products was done on days 3, 7, and 14. Then the animals’survival curve was carried out.
     Results In the foregoing study of immunization against tumor challenge, 70% of the rats immunized with 1×10~6 electrofused cells were typically able to reject tumor challenge and remained tumor-free. And then all of the survival rats were able to reject this secondary tumor challenge and remain to live on 7 weeks later. In the active treatment study, little or no antitumor protection was observed in the rats treated with1×10~6 electrofused cells, a dose sufficient to achieve substantial tumor protection in pretreatment studies. However, substantial antitumor protection (60% long-term survivors) was obtained with a higher dose of the vaccine (2×10~6 electrofused cells).
     Conclusions Preimmunization with irradiated electrofusion products were found to provide partial to complete protection from tumor challenge in the UMR-106 tumor model. Vaccinated survivors developed long immunological memory. The therapeutic potential of this type of approach was suggested by the ability of UMR106-DC electrofusion products to induce tumor rejection in a substantial percentage of hosts bearing pre-established tumor cells. These results tended to indicate that treatment with electrofused tumor cells and allogeneic DC might be capable of inducing a potent antitumor response and could conceivably be applied to a wide range of cancer indications for which tumor-associated antigens have not been identified.
引文
[1] 范清宇.骨骼肌肉系统肿瘤的治疗原则和相关研究现状[J].第四军医大学学报,1999;20 (12): 1013-6.
    [2] Fan Q, Ma B, Zhou Y, Zhang M, Hao X. Bone tumors of the extremities or pelvis treated by microwave-induced hyperthermia[J]. Clin Orthop. 2003 Jan;(406):165-75. PMID: 12579016 [PubMed - indexed for MEDLINE]
    [3] 范清宇,马保安,周勇,张明华,叶军,裘秀春,郑联合,刘振东,沈万安,李军.插入式微波天线阵列诱导高温原位灭活治疗肢体恶性或侵袭性骨肿瘤[J].第四军医大学学报,1999;20 (12): 1024-8.
    [4] Tunn PU, Reichardt P. Chemotherapy for osteosarcoma without high-dose methotrexate: a 12-year follow-up on 53 patients[J]. Onkologie. 2007 May; 30(5):228-32. Epub 2007 Apr 24. PMID: 17460416 [PubMed - indexed for MEDLINE]
    [5] Din?ba? FO, Koca S, Mandel NM, Hiz M, Dervi?o?lu S, Se?mezacar H, Oksüz DC, Ceylaner B, Uzel B. The role of preoperative radiotherapy in nonmetastatic high-grade osteosarcoma of the extremities for limb-sparing surgery[J]. Int J Radiat Oncol Biol Phys. 2005 Jul 1;62(3):820-8. PMID: 15936566 [PubMed - indexed for MEDLINE]
    [6] Jung S. Good, bad and beautiful--the role of dendritic cells in autoimmunity[J]. Autoimmun Rev. 2004 Jan;3 (1):54-60. Review. PMID: 14871650 [PubMed - indexed for MEDLINE]
    [7] Shurin MR. Dendritic cells presenting tumor antigen[J]. Cancer Immunol Immunother. 1996 Nov;43(3):158-64. Review. PMID: 9001569 [PubMed - indexed for MEDLINE]
    [8] Gunzer M, J?nich S, Varga G, Grabbe S. Dendritic cells and tumor immunity[J]. Semin Immunol. 2001 Oct;13(5):291-302. Review. PMID: 11502164 [PubMed - indexed for MEDLINE]
    [9] Morelli AE, Thomson AW. Dendritic cells: regulators of alloimmunity and opportunities for tolerance induction[J]. Immunol Rev. 2003 Dec;196:125-46.Review. PMID: 14617202 [PubMed - indexed for MEDLINE]
    [10] 霍乃蕊,韩克光.细胞融合技术的发展及应用[J].激光生物学报,2006;15 (2): 209-13.
    [11] Jantscheff P, Spagnoli G, Zajac P, Rochlitz CF. Cell fusion: an approach to generating constitutively proliferating human tumor antigen-presenting cells[J]. Cancer Immunol Immunother. 2002 Sep;51(7):367-75. Epub 2002 Jun 25. PMID: 12192536 [PubMed - indexed for MEDLINE]
    [12] 郝新保,常智杰.电穿孔技术在转基因及动物克隆中的应用[J].生物技术通报, 2003;1: 1-4.
    [13] Zhang Y, Ma B, Zhou Y, Zhang M, Qiu X, Sui Y, Zhang X, Ma B, Fan Q. Dendritic cells fused with allogeneic breast cancer cell line induce tumor antigen-specific CTL responses against autologous breast cancer cells[J]. Breast Cancer Res Treat. 2007;105:277–86. PMID: 17187233 [PubMed - indexed for MEDLINE]
    [14] Mahdian R, Kokhaei P, Najar HM, Derkow K, Choudhury A, Mellstedt H. Dendritic cells, pulsed with lysate of allogeneic tumor cells, are capable of stimulating MHC-restricted antigen-specific antitumor T cells[J]. Med Oncol. 2006; 23(2):273-82. PMID: 16720928 [PubMed - indexed for MEDLINE]
    [15] Koido S, Hara E, Homma S, Torii A, Toyama Y, Kawahara H, Watanabe M, Yanaga K, Fujise K, Tajiri H, Gong J, Toda G. Dendritic cells fused with allogeneic colorectal cancer cell line present multiple colorectal cancer-specific antigens and induce antitumor immunity against autologous tumor cells[J]. Clin Cancer Res. 2005 Nov 1;11(21):7891-900. PMID: 16278414 [PubMed - indexed for MEDLINE]
    [16] Koido S, Tanaka Y, Tajiri H, Gong J. Generation and functional assessment of antigen-specific T cells stimulated by fusions of dendritic cells and allogeneic breast cancer cells[J]. Vaccine. 2007 Mar 30;25(14):2610-9. Epub 2007 Jan 3. PMID: 17239504 [PubMed - indexed for MEDLINE]
    [17] 于哲,马保安,周勇,张明华,张云飞,范清宇.异体树突状细胞融合瘤苗抗骨肉瘤的免疫效应实验[J].肿瘤防治研究,2006,33(11): 779-83.
    [18] 于哲,范清宇,马保安,郝新保,龙华.大鼠树突状细胞融合瘤苗的特异性抗骨肉瘤作用[J]. 癌症,2005,24(3): 285-91.
    [19] Yu Z, Ma B, Zhou Y, Zhang M, Long H, Wang Y, Fan Q. Allogeneic Tumor Vaccine Produced by Electrofusion between Osteosarcoma Cell Line and Dendritic Cells in the Induction of Antitumor Immunity[J]. Cancer Invest. 2007; 25(7) :535-41. PMID: 17952746 [PubMed - as supplied by publisher]
    [20] Yu Z, Fan Q, Hao X, Long H. Specific Antitumor Effects of Tumor Vaccine Produced by Electrofusion between Osteosarcoma Cell Line and Dendritic Cells in Rats[J]. Cell Mol Immunol. 2004 Dec;1(6):454-60. PMID: 16293215 [PubMed - indexed for MEDLINE]
    [21] Kirpensteijn J, Timmermans-Sprang EP, van Garderen E, Rutteman GR, Lantinga-van Leeuwen IS, Mol JA. Growth hormone gene expression in canine normal growth plates and spontaneous osteosarcoma[J]. Mol Cell Endocrinol. 2002 Nov 29; 197(1-2):179-85. PMID: 12431811 [PubMed - indexed for MEDLINE]
    [22] Pirie-Shepherd SR, Coffman KT, Resnick D, Chan R, Kisker O, Folkman J, Waters DJ. The role of angiostatin in the spontaneous bone and prostate cancers of pet dogs[J]. Biochem Biophys Res Commun. 2002 Apr 12;292(4):886-91. PMID: 11944897 [PubMed - indexed for MEDLINE]
    [23] Lass P, Scheffler J. 153Sm-EDTMP and (89)SrCl(2) in a dog with spontaneous osteosarcoma[J]. Eur J Nucl Med Mol Imaging. 2002 Oct;29(10):1414; author reply 1415. Epub 2002 Aug 10. No abstract available. PMID: 12271428 [PubMed - indexed for MEDLINE]
    [24] Kvinnsland Y, Bruland O, Moe L, Skretting A. A method for measurement of the uptake patterns of two beta-emitting radionuclides in the same tissue section with a digital silicon detector: application to a study of 89SrCl2 and 153Sm-EDTMP in a dog with spontaneous osteosarcoma[J]. Eur J Nucl Med Mol Imaging. 2002 Feb; 29(2):191-7. PMID: 11926381 [PubMed - indexed for MEDLINE]
    [25] Kido A, Tsutsumi M, Iki K, Takahama M, Tsujiuchi T, Morishita T, Tamai S,Konishi Y. Overexpression of matrix metalloproteinase (MMP)-9 correlates with metastatic potency of spontaneous and 4-hydroxyaminoquinoline 1-oxide (4-HAQO)-induced transplantable osteosarcomas in rats[J]. Cancer Lett. 1999 Apr 1;137(2):209-16. PMID: 10374843 [PubMed - indexed for MEDLINE]
    [26] Madarame H, Itoh A, Hirose M, Ogihara K. Spontaneous extraskeletal osteosarcomas of the subcutis in Djungarian hamsters (Phodopus sungorus): report of two cases[J]. J Vet Med A Physiol Pathol Clin Med. 2004 Jun;51(5):232-6. PMID: 15315702 [PubMed - indexed for MEDLINE]
    [27] Joliat MJ, Umeda S, Lyons BL, Lynes MA, Shultz LD. Establishment and characterization of a new osteogenic cell line (MOS-J) from a spontaneous C57BL/6J mouse osteosarcoma[J]. In Vivo. 2002 Jul-Aug;16(4):223-8. PMID: 12224130 [PubMed - indexed for MEDLINE]
    [28] 王玉民,尤占云,韦志康,刘佩彬,徐琳,伦明跃,李哲,郭红梅,耿秀娥,周慧,候天慧,王丽华.物理、化学因子诱癌模型及其剂量-效应相关模式[J].职业卫生与应急救援,2000;18(1):1-3.
    [29] Bruenger FW, Miller SC, Lloyd RD. A comparison of the natural survival of beagle dogs injected intravenously with low levels of 239Pu, 226Ra, 228Ra, 228Th, or 90Sr[J]. Radiat Res. 1991 Jun;126(3):328-37. PMID: 2034790 [PubMed - indexed for MEDLINE]
    [30] Tinkey PT, Lembo TM, Evans GR, Cundiff JH, Gray KN, Price RE. Postirradiation sarcomas in Sprague-Dawley rats[J]. Radiat Res. 1998 Apr;149(4):401-4. PMID: 9525506 [PubMed - indexed for MEDLINE]
    [31] Reeves AL. Beryllium carcinogenesis[J]. Adv Exp Med Biol. 1977;91:13-27. Review. PMID: 415524 [PubMed - indexed for MEDLINE]
    [32] Sieber SM, Correa P, Dalgard DW, Adamson RH. Induction of osteogenic sarcomas and tumors of the hepatobiliary system in nonhuman primates with aflatoxin B1[J]. Cancer Res. 1979 Nov;39(11):4545-54. PMID: 115576 [PubMed - indexed for MEDLINE]
    [33] Mure K, Uddin AN, Lopez LC, Styblo M, Rossman TG. Arsenite induces delayedmutagenesis and transformation in human osteosarcoma cells at extremely low concentrations[J]. Environ Mol Mutagen. 2003;41(5):322-31. PMID: 12802802 [PubMed - indexed for MEDLINE]
    [34] Rhim JS, Kim CM, Arnstein P, Huebner RJ, Weisburger EK, Nelson Ress WA. Transformation of human osteosarcoma cells by a chemical carcinogen[J]. J Natl Cancer Inst. 1975 Dec;55(6):1291-4. PMID: 813009 [PubMed - indexed for MEDLINE]
    [35] Kido A, Tsujiuchi T, Tsutsumi M, Takahama M, Okajima E, Kobitsu K, Miyauchi Y, Mii Y, Tamai S, Konishi Y. p53 mutation and absence of mdm2 amplification and Ki-ras mutation in 4-hydroxyamino quinoline 1-oxide induced transplantable osteosarcomas in rats[J]. Cancer Lett. 1997 Jan 15;112(1):5-10. PMID: 9029163 [PubMed - indexed for MEDLINE]
    [36] 邱存平,吴红.恶性肿瘤动物模型的建立[J].医学与哲学,1999;20(8):16-8.
    [37] Yumoto T, Poel WE, Kodama T, Dmochowski L. Studies on FBJ virus-induced bone tumors in mice[J]. Tex Rep Biol Med. 1970 Spring;28(1):145-65. PMID: 4320579 [PubMed - indexed for MEDLINE]
    [38] Olson HM, Capen CC. Virus-induced animal model of osteosarcoma in the rat: Morphologic and biochemical studies[J]. Am J Pathol. 1977 Feb;86(2):437-58. PMID: 189616 [PubMed - indexed for MEDLINE]
    [39] Shah KV, Galloway DA, Knowles WA, Viscidi RP. Simian virus 40 (SV40) and human cancer: a review of the serological data[J]. Rev Med Virol. 2004 Jul-Aug;14(4):231-9. Review. PMID: 15248251 [PubMed - indexed for MEDLINE]
    [40] Lowe DB, Shearer MH, Jumper CA, Kennedy RC. SV40 association with human malignancies and mechanisms of tumor immunity by large tumor antigen[J]. Cell Mol Life Sci. 2007 Apr;64(7-8):803-14. Review. PMID: 17260087 [PubMed - indexed for MEDLINE]
    [41] Furuno A, Yogo Y. Free viral DNA present in BKV hamster osteosarcoma (Os-513) cell clones[J]. Jpn J Med Sci Biol. 1983 Apr;36(2):105-8. PMID: 6310186 [PubMed - indexed for MEDLINE]
    [42] 范伟,谭毅,安洪.骨肉瘤动物模型研究概述[J].中国实验动物学杂志,2002;12(3): 186-9.
    [43] Finkel MP, Reilly CA Jr, Biskis BO. Pathogenesis of radiation and virus-induced bone tumors[J]. Recent Results Cancer Res. 1976;(54):92-103. PMID: 189372 [PubMed - indexed for MEDLINE]
    [44] Merregaert J, Michiels L, van der Rauwelaert E, Lommel M, Gol-Winkler R, Janowski M. Oncogene involvement in radiation- and virus-induced mouse osteosarcomas[J]. Leuk Res. 1986;10(7):915-21. PMID: 3016418 [PubMed - indexed for MEDLINE]
    [45] Macedo MF, Velders MP, Nieland JD, Rudolf MP, Weijzen S, Da Silva DM, Franke A, Holt G, Loviscek K, Carbone M, Kast WM. Cellular immunity and immunotherapy against deoxyribonucleic acid virus-induced tumors[J]. Monaldi Arch Chest Dis. 1998 Apr;53(2):211-8. Review. PMID: 9689811 [PubMed - indexed for MEDLINE]
    [46] Martin TJ, Ingleton PM, Underwood JC, Michelangeli VP, Hunt NH, Melick RA. Parathyroid hormone-responsive adenylate cyclase in induced transplantable osteogenic rat sarcoma[J]. Nature. 1976 Apr 1;260(5550):436-8. No abstract available. PMID: 1062678 [PubMed - indexed for MEDLINE]
    [47] 郝新保,范清宇,张殿忠,裘秀春,殷剑宁,张惠中,王晓宁.巨噬细胞融合瘤苗对大鼠骨肉瘤的主动性免疫治疗[J].第四军医大学学报,1999;20(12): 1042-4.
    [48] 于哲,范清宇,郝新保.骨肉瘤肺转移大鼠模型的建立[J].中国临床康复,2004;8(20):4048-9.
    [49] Kudawara I, Ueda T, Yoshikawa H, Miyama T, Yamamoto T, Nishizawa Y. In vivo inhibition of tumour growth by dexamethasone in murine osteosarcomas[J]. Eur J Cancer. 2001 Sep;37(13):1703-8. PMID: 11527699 [PubMed - indexed for MEDLINE]
    [50] Yamamoto T, Nishiguchi M, Inoue N, Goto HG, Kudawara I, Ueda T, Yoshikawa H, Tanigaki Y, Nishizawa Y. Inhibition of murine osteosarcoma cell proliferation by glucocorticoid[J]. Anticancer Res. 2002 Nov-Dec;22(6C):4151-6.PMID: 12553047 [PubMed - indexed for MEDLINE]
    [51] 纪方,陈永裕,陈舰,苗积生,沈茜.90钇标记抗人成骨肉瘤单克隆抗体对荷瘤裸鼠的放射免疫治疗[J].中华骨科杂志,1998;18(11):698-701.
    [52] Hemminki A, Kanerva A, Kremer EJ, Bauerschmitz GJ, Smith BF, Liu B, Wang M, Desmond RA, Keriel A, Barnett B, Baker HJ, Siegal GP, Curiel DT. A canine conditionally replicating adenovirus for evaluating oncolytic virotherapy in a syngeneic animal model[J]. Mol Ther. 2003 Feb;7(2):163-73. PMID: 12597904 [PubMed - indexed for MEDLINE]
    [53] 师长宏,施新猷,朱德生.LJH-OS人骨肉瘤裸鼠原位移植模型的建立及其生物学特性[J].中国实验动物学报,1999;7(2): 102-6.
    [54] Ek O, Waurzyniak B, Myers DE, Uckun FM. Antitumor activity of TP3(anti-p80)- pokeweed antiviral protein immunotoxin in hamster cheek pouch and severe combined immunodeficient mouse xenograft models of human osteosarcoma[J]. Clin Cancer Res. 1998 Jul;4(7):1641-7. PMID: 9676838 [PubMed - indexed for MEDLINE]
    [55] Ek O, Yanishevski Y, Zeren T, Waurzyniak B, Gunther R, Chelstrom L, Chandan-Langlie M, Schneider E, Myers DE, Evans W, Uckun FM. In vivo toxicity and pharmacokinetic features of B43(Anti-CD19)-Genistein immunoconjugate[J]. Leuk Lymphoma. 1998 Jul;30(3-4):389-94. PMID: 9713969 [PubMed - indexed for MEDLINE]
    [56] Crnalic S, H?kansson I, Boquist L, L?fvenberg R, Brostrom LA. A novel spontaneous metastasis model of human osteosarcoma developed using orthotopic transplantation of intact tumor tissue into tibia of nude mice[J]. Clin Exp Metastasis. 1997 Mar;15(2):164-72. PMID: 9062393 [PubMed - indexed for MEDLINE]
    [57] Kono K, Takahashi A, Sugai H, Fujii H, Choudhury AR, Kiessling R, Matsumoto Y. Dendritic cells pulsed with HER-2/neu-derived peptides can induce specific T-cell responses in patients with gastric cancer[J]. Clin Cancer Res. 2002 Nov; 8(11):3394-400. PMID: 12429626 [PubMed - indexed for MEDLINE]
    [58] Schaefer BC, Schaefer ML, Kappler JW, Marrack P, Kedl RM. Observation ofantigen-dependent CD8+ T-cell/ dendritic cell interactions in vivo[J]. Cell Immunol. 2001 Dec 15;214(2):110-22. PMID: 12088410 [PubMed - indexed for MEDLINE]
    [59] Labarriere N, Bretaudeau L, Gervois N, Bodinier M, Bougras G, Diez E, Lang F, Gregoire M, Jotereau F. Apoptotic body-loaded dendritic cells efficiently cross-prime cytotoxic T lymphocytes specific for NA17-A antigen but not for Melan-A/MART-1 antigen[J]. Int J Cancer. 2002 Sep 20;101(3):280-6. PMID: 12209980 [PubMed - indexed for MEDLINE]
    [60] Siders WM, Vergilis KL, Johnson C, Shields J, Kaplan JM. Induction of specific antitumor immunity in the mouse with the electrofusion product of tumor cells and dendritic cells[J]. Mol Ther. 2003 Apr;7(4):498-505. PMID: 12727113 [PubMed - indexed for MEDLINE]
    [61] Schadendorf D, Paschen A, Sun Y. Autologous, allogeneic tumor cells or genetically engineered cells as cancer vaccine against melanoma[J]. Immunol Lett. 2000 Sep 15;74(1):67-74. Review. PMID: 10996630 [PubMed - indexed for MEDLINE]
    [62] Gong J, Nikrui N, Chen D, Koido S, Wu Z, Tanaka Y, Cannistra S, Avigan D, Kufe D. Fusions of human ovarian carcinoma cells with autologous or allogeneic dendritic cells induce antitumor immunity[J]. J Immunol. 2000 Aug 1;165(3):1705-11. PMID: 10903782 [PubMed - indexed for MEDLINE]
    [63] Neves AR, Ensina LF, Anselmo LB, Leite KR, Buzaid AC, Camara-Lopes LH, Barbuto JA. Dendritic cells derived from metastatic cancer patients vaccinated with allogeneic dendritic cell-autologous tumor cell hybrids express more CD86 and induce higher levels of interferon-gamma in mixed lymphocyte reactions[J]. Cancer Immunol Immunother. 2005 Jan;54(1):61-6. PMID: 15693140 [PubMed - indexed for MEDLINE]
    [64] Tanaka H, Shimizu K, Hayashi T, Shu S. Therapeutic immune response induced by electrofusion of dendritic and tumor cells[J]. Cell Immunol. 2002 Nov;220(1):1-12. PMID: 12718934 [PubMed - indexed for MEDLINE]
    [65] Orentas RJ, Schauer D, Bin Q, Johnson BD. Electrofusion of a weakly immunogenic neuroblastoma with dendritic cells produces a tumor vaccine[J]. Cell Immunol. 2001Oct 10;213(1):4-13. PMID: 11747351 [PubMed - indexed for MEDLINE]
    [66] Cao X, Zhang W, Wang J, Zhang M, Huang X, Hamada H, Chen W. Therapy of established tumour with a hybrid cellular vaccine generated by using granulocyte-macrophage colony-stimulating factor genetically modified dendritic cells [J]. Immunology. 1999 Aug;97(4):616-25. PMID: 10457215 [PubMed - indexed for MEDLINE]
    [67] Lamparski HG, Metha-Damani A, Yao JY, Patel S, Hsu DH, Ruegg C, Le Pecq JB. Production and characterization of clinical grade exosomes derived from dendritic cells [J]. J Immunol Methods. 2002 Dec 15;270(2):211-26. PMID: 12379326 [PubMed - indexed for MEDLINE]
    [68] Hao S, Bai O, Yuan J, Qureshi M, Xiang J. Dendritic cell-derived exosomes stimulate stronger CD8+ CTL responses and antitumor immunity than tumor cell-derived exosomes[J]. Cell Mol Immunol. 2006 Jun;3(3):205-11. PMID: 16893501 [PubMed - indexed for MEDLINE]
    [69] Hao S, Moyana T, Xiang J. Review: cancer immunotherapy by exosome-based vaccines[J]. Cancer Biother Radiopharm. 2007 Oct;22(5):692-703. PMID: 17979572 [PubMed - in process]
    [70] Ta?eb J, Chaput N, Zitvogel L. Dendritic cell-derived exosomes as cell-free peptide-based vaccines[J]. Crit Rev Immunol. 2005;25(3):215-23. Review. PMID: 16048436 [PubMed - indexed for MEDLINE]
    [71] Chaput N, Ta?eb J, André F, Zitvogel L. The potential of exosomes in immunotherapy[J]. Expert Opin Biol Ther. 2005 Jun;5(6):737-47. Review. PMID: 15952905 [PubMed - indexed for MEDLINE]
    [72] Schuler-Thurner B, Dieckmann D, Keikavoussi P, Bender A, Maczek C, Jonuleit H, Roder C, Haendle I, Leisgang W, Dunbar R, Cerundolo V, von Den Driesch P, Knop J, Brocker EB, Enk A, Kampgen E, Schuler G. Mage-3 and influenza-matrix peptide-specific cytotoxic T cells are inducible in terminal stage HLA-A2.1+ melanoma patients by mature monocyte-derived dendritic cells[J]. J Immunol. 2000 Sep 15;165(6):3492-6. PMID: 10975870 [PubMed - indexed for MEDLINE]
    [73] Jarnjak-Jankovic S, Saeb?e-Larssen S, Kvalheim G, Gaudernack G. mRNA transfection of DC in the immature or mature state: comparable in vitro priming of Th and cytotoxic T lymphocytes against DC electroporated with tumor cell line-derived mRNA[J]. Cytotherapy. 2007;9(6):587-92. PMID: 17882723 [PubMed - indexed for MEDLINE]
    [74] Gao L, Fan HH, Lu HZ, Nie XX, Liu Y, Yang YM, Qian KC, Gao F. Impact of transfection with total RNA of K562 cells upon antigen presenting, maturation, and function of human dendritic cells from peripheral blood mononuclear cells[J]. Transfusion. 2007 Feb;47(2):256-65. PMID: 17302772 [PubMed - indexed for MEDLINE]
    [75] Zhang HM, Zhang LW, Liu WC, Cheng J, Si XM, Ren J. Comparative analysis of DC fused with tumor cells or transfected with tumor total RNA as potential cancer vaccines against hepatocellular carcinoma[J]. Cytotherapy. 2006;8(6):580-8. PMID: 17148035 [PubMed - indexed for MEDLINE]
    [76] Frolkis M, Fischer MB, Wang Z, Lebkowski JS, Chiu CP, Majumdar AS. Dendritic cells reconstituted with human telomerase gene induce potent cytotoxic T-cell response against different types of tumors[J]. Cancer Gene Ther. 2003 Mar; 10(3):239-49. PMID: 12637945 [PubMed - indexed for MEDLINE]
    [77] Ludewig B, Barchiesi F, Pericin M, Zinkernagel RM, Hengartner H, Schwendener RA. In vivo antigen loading and activation of dendritic cells via a liposomal peptide vaccine mediates protective antiviral and anti-tumour immunity[J]. Vaccine. 2000 Aug 15;19(1):23-32. PMID: 10924783 [PubMed - indexed for MEDLINE]
    [78] Merad M, Sugie T, Engleman EG, Fong L. In vivo manipulation of dendritic cells to induce therapeutic immunity[J]. Blood. 2002 Mar 1;99(5):1676-82. PMID: 11861283 [PubMed - indexed for MEDLINE]
    [79] Hsu FJ, Benike C, Fagnoni F, Liles TM, Czerwinski D, Taidi B, Engleman EG, Levy R. Vaccination of patients with B-cell lymphoma using autologous antigen-pulsed dendritic cells[J]. Nat Med. 1996 Jan;2(1):52-8. PMID: 8564842 [PubMed - indexed for MEDLINE]
    [80] Nestle FO, Tun Kyi A, Gilliet M, Dummer R, Burg G. Vaccination therapy of malignant melanoma[J]. Ther Umsch. 1999 Jun;56(6):334-7. German. PMID: 10420817 [PubMed - indexed for MEDLINE]
    [81] Nestle FO, Alijagic S, Gilliet M, Sun Y, Grabbe S, Dummer R, Burg G, Schadendorf D. Vaccination of melanoma patients with peptide- or tumor lysate-pulsed dendritic cells [J]. Nat Med. 1998 Mar;4(3):328-32. PMID: 9500607 [PubMed - indexed for MEDLINE]
    [82] Thurner B, Haendle I, Roder C, Dieckmann D, Keikavoussi P, Jonuleit H, Bender A, Maczek C, Schreiner D, von den Driesch P, Brocker EB, Steinman RM, Enk A, Kampgen E, Schuler G. Vaccination with mage-3A1 peptide-pulsed mature, monocyte-derived dendritic cells expands specific cytotoxic T cells and induces regression of some metastases in advanced stage IV melanoma[J]. J Exp Med. 1999 Dec 6;190(11):1669-78. PMID: 10587357 [PubMed - indexed for MEDLINE]
    [83] Yu JS, Wheeler CJ, Zeltzer PM, Ying H, Finger DN, Lee PK, Yong WH, Incardona F, Thompson RC, Riedinger MS, Zhang W, Prins RM, Black KL. Vaccination of malignant glioma patients with peptide-pulsed dendritic cells elicits systemic cytotoxicity and intracranial T-cell infiltration[J]. Cancer Res. 2001 Feb 1;61(3):842-7. PMID: 11221866 [PubMed - indexed for MEDLINE]
    [84] Yu JS, Liu G, Ying H, Yong WH, Black KL, Wheeler CJ. Vaccination with tumor lysate-pulsed dendritic cells elicits antigen-specific, cytotoxic T-cells in patients with malignant glioma[J]. Cancer Res. 2004 Jul 15;64(14):4973-9. PMID: 15256471 [PubMed - in process]
    [85] Kugler A, Stuhler G, Walden P, Zoller G, Zobywalski A, Brossart P, Trefzer U, Ullrich S, Muller CA, Becker V, Gross AJ, Hemmerlein B, Kanz L, Muller GA, Ringert RH. Regression of human metastatic renal cell carcinoma after vaccination with tumor cell-dendritic cell hybrids[J]. Nat Med. 2000 Mar;6(3):332-6. Retraction in: Kugler A, Stuhler G, Walden P, Zoller G, Zobywalski A, Brossart P, Trefzer U, Ullrich S, Muller CA, Becker V, Gross AJ, Hemmerlein B, Kanz L, Muller GA, Ringert RH. Nat Med. 2003 Sep;9(9):1221.PMID: 10700237 [PubMed - indexed for MEDLINE]
    [86] Holtl L, Zelle-Rieser C, Gander H, Papesh C, Ramoner R, Bartsch G, Rogatsch H, Barsoum AL, Coggin JH Jr, Thurnher M. Immunotherapy of metastatic renal cell carcinoma with tumor lysate-pulsed autologous dendritic cells[J]. Clin Cancer Res. 2002 Nov;8(11):3369-76. PMID: 12429623 [PubMed - indexed for MEDLINE]
    [87] Heiser A, Coleman D, Dannull J, Yancey D, Maurice MA, Lallas CD, Dahm P, Niedzwiecki D, Gilboa E, Vieweg J. Autologous dendritic cells transfected with prostate-specific antigen RNA stimulate CTL responses against metastatic prostate tumors[J]. J Clin Invest. 2002 Feb;109(3):409-17. PMID: 11828001 [PubMed - indexed for MEDLINE]
    [88] Fong L, Brockstedt D, Benike C, Breen JK, Strang G, Ruegg CL, Engleman EG. Dendritic cell-based xenoantigen vaccination for prostate cancer immunotherapy[J]. J Immunol. 2001 Dec 15;167(12):7150-6. PMID: 11739538 [PubMed - indexed for MEDLINE]
    [89] Sadanaga N, Nagashima H, Mashino K, Tahara K, Yamaguchi H, Ohta M, Fujie T, Tanaka F, Inoue H, Takesako K, Akiyoshi T, Mori M. Dendritic cell vaccination with MAGE peptide is a novel therapeutic approach for gastrointestinal carcinomas[J]. Clin Cancer Res. 2001 Aug;7(8):2277-84. PMID: 11489802 [PubMed - indexed for MEDLINE]
    [90] Rains N, Cannan RJ, Chen W, Stubbs RS. Development of a dendritic cell (DC)-based vaccine for patients with advanced colorectal cancer[J]. Hepatogastroenterology. 2001 Mar-Apr;48(38):347-51. PMID: 11379307 [PubMed - indexed for MEDLINE]
    [91] Dhodapkar MV, Krasovsky J, Steinman RM, Bhardwaj N. Mature dendritic cells boost functionally superior CD8(+) T-cell in humans without foreign helper epitopes[J]. J Clin Invest. 2000 Mar;105(6):R9-R14. PMID: 10727452 [PubMed - indexed for MEDLINE]
    [92] Jefford M, Maraskovsky E, Cebon J, Davis ID. The use of dendritic cells in cancer therapy[J]. Lancet Oncol. 2001 Jun;2(6):343-53. Review. Erratum in: Lancet Oncol 2001 Jul;2(7):455.PMID: 11905751 [PubMed - indexed for MEDLINE]
    [93] Schuler G, Schuler-Thurner B, Steinman RM. The use of dendritic cells in cancer immunotherapy[J]. Curr Opin Immunol. 2003 Apr;15(2):138-47. Review. PMID: 12633662 [PubMed - indexed for MEDLINE]
    [94] Eggert AO, Becker JC, Ammon M, McLellan AD, Renner G, Merkel A, Brocker EB, Kampgen E. Specific peptide-mediated immunity against established melanoma tumors with dendritic cells requires IL-2 and fetal calf serum-free cell culture[J]. Eur J Immunol. 2002 Jan;32(1):122-7. PMID: 11754352 [PubMed - indexed for MEDLINE]
    [95] Escobar A, López M, Serrano A, Ramirez M, Pérez C, Aguirre A, González R, Alfaro J, Larrondo M, Fodor M, Ferrada C, Salazar-Onfray F. Dendritic cell immunizations alone or combined with low doses of interleukin-2 induce specific immune responses in melanoma patients[J]. Clin Exp Immunol. 2005 Dec;142(3):555-68. PMID: 16297169 [PubMed - indexed for MEDLINE]
    [96] Bubeník J, Mikysková R, Vonka V, Mendoza L, Símová J, Smahel M, Indrová M. Interleukin-2 and dendritic cells as adjuvants for surgical therapy of tumours associated with human papillomavirus type 16[J]. Vaccine. 2003 Feb 14; 21(9-10):891-6. PMID: 12547599 [PubMed - indexed for MEDLINE]
    [97] Nagayama H, Sato K, Morishita M, Uchimaru K, Oyaizu N, Inazawa T, Yamasaki T, Enomoto M, Nakaoka T, Nakamura T, Maekawa T, Yamamoto A, Shimada S, Saida T, Kawakami Y, Asano S, Tani K, Takahashi TA, Yamashita N. Results of a phase I clinical study using autologous tumour lysate-pulsed monocyte-derived mature dendritic cell vaccinations for stage IV malignant melanoma patients combined with low dose interleukin-2[J]. Melanoma Res. 2003 Oct;13(5):521-30. PMID: 14512794 [PubMed - indexed for MEDLINE]
    [98] Rubinstein MP, Kadima AN, Salem ML, Nguyen CL, Gillanders WE, Cole DJ. Systemic administration of IL-15 augments the antigen-specific primary CD8+ T cell response following vaccination with peptide-pulsed dendritic cells[J]. J Immunol. 2002 Nov 1;169(9):4928-35. PMID: 12391205 [PubMed - indexed for MEDLINE]
    [99] Efferson CL, Kawano K, Tsuda N, Palese P, García-Sastre A, Ioannides CG. Stimulation of human T cells by an influenza A vector expressing a CTL epitope from the HER-2/neu protooncogene results in higher numbers of antigen-specific TCRhi cells than stimulation with peptide. Divergent roles of IL-2 and IL-15[J]. Anticancer Res. 2005 Mar-Apr;25(2A):715-24. PMID: 15868901 [PubMed - indexed for MEDLINE]
    [100] Kleindienst P, Brocker T. Endogenous dendritic cells are required for amplification of T cell responses induced by dendritic cell vaccines in vivo[J]. J Immunol. 2003 Mar 15; 170 (6): 2817-23. PMID: 12626531 [PubMed - indexed for MEDLINE]
    [101] 罗立新.细胞融合技术与应用[M].北京:化学工业出版社,2003: 1-12.
    [102] 李志勇.细胞工程[M].北京:科学出版社,2003: 3-21.
    [103] 霍乃蕊,盂利梅.细胞融合技术的应用研究进展[J].动物医学进展,2005;26 (3): 32-5.
    [104] 罗立新,潘力,郑穗平.细胞工程[M].广州:华南理工大学出版社,2003: 5-19.
    [105] Jena BP. Insights on membrane fusion [J]. Cell Biol Int. 2000;24 (11):769-71. PMID: 11067761 [PubMed - indexed for MEDLINE]
    [106] Allan M, Harrison P. Co-expression of differentiation markers in hybrids between Friend cells and lymphoid cells and the influence of the cell shape[J]. Cell. 1980 Feb;19(2):437-47. PMID: 6965613 [PubMed - indexed for MEDLINE]
    [107] 俞索静,肖鲁伟,吴承亮.细胞的“逆分裂”现象[J].浙江中医学院学报,2004;28 (5): 1-3.
    [108] Hart. Tumor cell hybridization and neoplastic progression[J]. Symp Fundam Cancer Res. 1983;36:133-43. Review. PMID: 6382503 [PubMed - indexed for MEDLINE]
    [109] Okada Y. Cell fusion and cell engineering[J]. Biken J. 1985 Jun;28(1-2):37-8. PMID: 3000349 [PubMed - indexed for MEDLINE]
    [110] Asano A, Okada Y. Inhibition of virus-induced fusion of Ehrlich ascites tumor cells by cytochalasin B and D[J]. Life Sci. 1977 Jan 1;20(1):117-22. PMID: 189147 [PubMed - indexed for MEDLINE]
    [111] Ohno-Shosaku T, Hama-Inaba H, Okada Y. Somatic hybridization between human and mouse lymphoblast cells produced by an electric pulse-induced fusion technique[J]. Cell Struct Funct. 1984 Jun;9(2):193-6. PMID: 6498948 [PubMed - indexed for MEDLINE]
    [112] Kohn A, Fuchs P. Cell fusion by various strains of Newcastle disease virus and their virulence[J]. J Virol. 1969 May;3(5):539-40. PMID: 5786185 [PubMed - indexed for MEDLINE]
    [113] Poste. Virus-induced polykaryocytosis and the mechanism of cell fusion[J]. Adv Virus Res. 1970;16:303-56. Review. PMID: 4924990 [PubMed - indexed for MEDLINE]
    [114] Okada Y, Hosokawa Y. Isolation of a new variant of HVJ showing low cell fusion activity[J]. Biken J. 1961 Sep;4:217-20. PMID: 14481500 [PubMed - indexed for MEDLINE]
    [115] Okada Y, Murayama F, Yamada K. Requirement of energy for the cell fusion reaction of Ehrlich ascites tumor cells by HVJ[J]. Virology. 1966 Jan;28(1):115-30. PMID: 4159264 [PubMed - indexed for MEDLINE]
    [116] Okada Y, Kim J, Maeda Y, Koseki I. Specific movement of cell membranes fused with HVJ (Sendai virus)[J]. Proc Natl Acad Sci U S A. 1974 May;71(5):2043-7. PMID: 4365583 [PubMed - indexed for MEDLINE]
    [117] Okada Y, Koseki I, Kim J, Maeda Y, Hashimoto T. Modification of cell membranes with viral envelopes during fusion of cells with HVJ (Sendai virus)[J]. Exp Cell Res. 1975 Jul;93(2):368-78. PMID: 169133 [PubMed - indexed for MEDLINE]
    [118] Okada Y, Hashimoto T, Maeda Y. Modification of cell membranes with viral envelopes during fusion cells with HVJ (Sendai virus). II. Effects of pretreatment with a small number of HVJ[J]. Exp Cell Res. 1975 Jul;93(2):379-87. PMID: 169134 [PubMed - indexed for MEDLINE]
    [119] Kim J, Okada Y. Morphological changes in Ehrlich ascites tumor cells during the cell fusion reaction with HVJ (Sendai virus). III. Morphological characterization of HVJ glycoproteins integrated into the plasma membrane and their internalization by coated vesicles[J]. Exp Cell Res. 1982 Jul;140(1):127-36.PMID: 6286330 [PubMed - indexed for MEDLINE]
    [120] Harris H. Cell fusion and the analysis of malignancy[J]. Proc R Soc Lond B Biol Sci. 1971 Oct 12;179(54):1-20. PMID: 4398772 [PubMed - indexed for MEDLINE]
    [121] Harris H, Miller OJ, Klein G, Worst P, Tachibana T. Suppression of malignancy by cell fusion[J]. Nature. 1969 Jul 26;223(5204):363-8. PMID: 5387828 [PubMed - indexed for MEDLINE]
    [122] Schneeberger EE, Harris H. An ultrastructural study of inter-specific cell fusion induced by inactivated Sendai virus[J]. J Cell Sci. 1966 Dec;1(4):401-6. PMID: 4289189 [PubMed - indexed for MEDLINE]
    [123] Littlefield JW, Goldstein S. Some aspects of somatic cell hybridization[J]. In Vitro. 1970 Jul-Aug;6(1):21-31. PMID: 4331914 [PubMed - indexed for MEDLINE]
    [124] Littlefield JW. Attempted hybridizations with senescent human fibroblasts[J]. J Cell Physiol. 1973 Aug;82(1):129-32. PMID: 4729512 [PubMed - indexed for MEDLINE]
    [125] Watkins JF. Cell fusion in the study of tumor cells[J].Int Rev Exp Pathol. 1971;10:115-41. Review. PMID: 4945805 [PubMed - indexed for MEDLINE]
    [126] Watkins JF. The effects of some metabolic inhibitors on the ability of SV40 virus in transformed cells to be detected by cell fusion[J]. J Cell Sci. 1970 May;6 (3):721-37. PMID: 4318033 [PubMed - indexed for MEDLINE]
    [127] Koprowski H. Cell fusion and virus rescue[J]. Fed Proc. 1971 May-Jun; 30(3):914-20. PMID: 4324978 [PubMed - indexed for MEDLINE]
    [128] Ruddle FH, Kucherlapati RS. Hybrid cells and human genes[J]. Sci Am. 1974 Jul; 231(1):36-44. PMID: 4846961 [PubMed - indexed for MEDLINE]
    [129] Pontecorvo G. Production of mammalian somatic cell hybrids by means of polyethylene glycol treatment[J]. Somatic Cell Genet. 1975 Oct;1(4):397-400. PMID: 1242069 [PubMed - indexed for MEDLINE]
    [130] Pontecorvo G. Polyethylene glycol (PEG) in the production of mammalian somatic cell hybrids[J]. Birth Defects Orig Artic Ser. 1976;12(7):399-400. PMID: 799524 [PubMed - indexed for MEDLINE]
    [131] Pontecorvo G, Riddle PN, Hales A. Time and mode of fusion of human fibroblasts treated with polyethylene glycol (PEG)[J]. Nature. 1977 Jan 20;265(5591):257-8. PMID: 319367 [PubMed - indexed for MEDLINE]
    [132] Davidson RL, Gerald PS. Improved techniques for the induction of mammalian cell hybridization by polyethylene glycol[J]. Somatic Cell Genet. 1976 Mar;2(2):165-76. PMID: 1028164 [PubMed - indexed for MEDLINE]
    [133] Davidson RL, O'Malley KA, Wheeler TB.Polyethylene glycol-induced mammalian cell hybridization: effect of polyethylene glycol molecular weight and concentration[J]. Somatic Cell Genet. 1976 May;2(3):271-80. PMID: 1028174 [PubMed - indexed for MEDLINE]
    [134] 王克明.细胞融合技术及其进展[J].浙江科技学院学报,2004;16 (2): 113-6.
    [135] Lane RD, Crissman RS, Lachman MF. Comparison of polyethylene glycols as fusogens for producing lymphocyte-myeloma hybrids[J]. J Immunol Methods. 1984 Aug 3;72(1):71-6. PMID: 6747307 [PubMed - indexed for MEDLINE]
    [136] de StGroth SF, Scheidegger D. Production of monoclonal antibodies: strategy and tactics[J]. J Immunol Methods. 1980;35(1-2):1-21. Review. PMID: 7009747 [PubMed - indexed for MEDLINE]
    [137] Lane RD. A short-duration polyethylene glycol fusion technique for increasing production of monoclonal antibody-secreting hybridomas[J]. J Immunol Methods. 1985 Aug 2;81(2):223-8. PMID: 4020150 [PubMed - indexed for MEDLINE]
    [138] Zimmermann U, Vienken J, Halfmann J, Emeis CC. Electrofusion: a novel hybridization technique[J]. Adv Biotechnol Processes. 1985;4:79-150. Review. PMID: 3902055 [PubMed - indexed for MEDLINE]
    [139] Zimmermann U. Electrical breakdown, electropermeabilization and electrofusion[J]. Rev Physiol Biochem Pharmacol. 1986;105:176-256. Review. PMID: 3541139 [PubMed - indexed for MEDLINE]
    [140] Zimmermann U, Urnovitz HB. Principles of electrofusion and electropermeabilization [J]. Methods Enzymol. 1987;151:194-221. PMID: 3431442 [PubMed - indexed for MEDLINE]
    [141] SchierenbergE. Altered cell-division rates after laser-induced cell fusion in nematode embryos[J]. Dev Biol. 1984 Jan;101(1):240-5. PMID: 6692977 [PubMed - indexed for MEDLINE]
    [142] Qi P, Todorova N, Todorov AT, Fendler JH, Rodziewicz GS. Action potentials pass severed earthworm MGA segments reconnected by laser and electric field pulses[J]. Brain Res Bull. 1995;37(2):189-92. PMID: 7606494 [PubMed - indexed for MEDLINE]
    [143] Steubing RW, Cheng S, Wright WH, Numajiri Y, Berns MW. Laser induced cell fusion in combination with optical tweezers: the laser cell fusion trap[J]. Cytometry. 1991;12(6):505-10. PMID: 1764975 [PubMed - indexed for MEDLINE]
    [144] 赵志强,郑小林,张思杰,韦晓兰.细胞融合技术[J].生物学通报,2005;40 (10): 40-1.
    [145] Boudreault R, Armstrong DW. Space biotechnology: current and future perspectives[J]. Trends Biotechnol. 1988 Apr; 6(4):91-5. Review. PMID: 11541201 [PubMed - indexed for MEDLINE]
    [146] Cogoli A. From cell biology to biotechnology in space[J]. Korean J Biol Sci. 2000 Sep;4 (3):195-200. PMID: 12760369 [PubMed - indexed for MEDLINE]
    [147] Sammons DW, Zimmermann U, Klinman NR, Gessner P, Humphreys RC, Emmons SP, Neil GA. An experimental system for determining the influence of microgravity on B lymphocyte activation and cell fusion[J]. Adv Space Res. 1992;12(1):363-72. PMID: 11536982 [PubMed - indexed for MEDLINE]
    [148] 袁成凌,余增亮.低能离子束在生物技术中的应用研究[J].中国生物工程杂志,2003;23 (4): 57-61.
    [149] Schettino G, Folkard M, Prise KM, Vojnovic B, Bowey AG, Michael BD. Low-dose hypersensitivity in Chinese hamster V79 cells targeted with counted protons using a charged-particle microbeam[J]. Radiat Res. 2001 Nov;156(5 Pt 1):526-34.PMID: 11604066 [PubMed - indexed for MEDLINE]
    [150] Liu F, Wang Y, Xue J, Wang S, Du G, Zhao W. Transmission measurement based on STM observation to detect the penetration depth of low-energy heavy ions in botanic samples[J]. Radiat Meas. 2003 Feb;37(1):9-14. PMID: 12521047 [PubMed - indexed for MEDLINE]
    [151] Hei TK, Wu LJ, Liu SX, Vannais D, Waldren CA, Randers-Pehrson G. Mutagenic effects of a single and an exact number of alpha particles in mammalian cells[J]. Proc Natl Acad Sci U S A. 1997 Apr 15;94(8):3765-70. PMID: 9108052 [PubMed - indexed for MEDLINE]
    [152] Parkhurst MR, DePan C, Riley JP, Rosenberg SA, Shu S.Hybrids of dendritic cells and tumor cells generated by electrofusion simultaneously present immunodominant epitopes from multiple human tumor-associated antigens in the context of MHC class I and class II molecules[J]. J Immunol. 2003 May 15;170(10):5317-25. PMID: 12734382 [PubMed - indexed for MEDLINE]
    [153] 盛立霞,谢晓宝,邱国强.树突状细胞与肿瘤细胞融合瘤苗研究进展[J].国外医学肿瘤学分册,2004;31 (5): 342-5.
    [154] Moldenhauer A, Nociari MM, Dias S, Lalezari P, Moore MA. Optimized culture conditions for the generation of dendritic cells from peripheral blood monocytes[J]. Vox Sang. 2003 Apr;84(3):228-36. PMID: 12670372 [PubMed - indexed for MEDLINE]
    [155] Scott-Taylor TH, Pettengell R, Clarke I, Stuhler G, La Barthe MC, Walden P, Dalgleish AG. Human tumour and dendritic cell hybrids generated by electrofusion: potential for cancer vaccines[J]. Biochim Biophys Acta. 2000 Mar 17; 1500(3):265-79. PMID: 10699368 [PubMed - indexed for MEDLINE]
    [156] 伊焕发,唐军民.树突状细胞-肿瘤细胞之融合细胞在抗肿瘤免疫中的研究进展[J].解剖学报,2003;34 (6): 665-6.
    [157] Vasir B, Borges V, Wu Z, Grosman D, Rosenblatt J, Irie M, Anderson K, Kufe D, Avigan D. Fusion of dendritic cells with multiple myeloma cells results in maturation and enhanced antigen presentation[J]. Br J Haematol. 2005 Jun;129(5):687-700. PMID: 15916692 [PubMed - indexed for MEDLINE]
    [158] Soruri A, Fayyazi A, Neumann C, Schlott T, Jung T, Matthes C, Zwirner J, Riggert J, Peters JH. Ex vivo generation of human anti-melanoma autologous cytolytic T cells by dentritic cell/melanoma cell hybridomas[J]. Cancer Immunol Immunother. 2001 Aug;50(6):307-14. PMID: 11570584 [PubMed - indexed for MEDLINE]
    [159] Gong J, Chen D, Kashiwaba M, Li Y, Chen L, Takeuchi H, Qu H, Rowse GJ, Gendler SJ, Kufe D. Reversal of tolerance to human MUC1 antigen in MUC1 transgenic mice immunized with fusions of dendritic and carcinoma cells[J]. Proc Natl Acad Sci U S A. 1998 May 26;95(11):6279-83. PMID: 9600956 [PubMed - indexed for MEDLINE]
    [160] Gong J, Koido S, Chen D, Tanaka Y, Huang L, Avigan D, Anderson K, Ohno T, Kufe D. Immunization against murine multiple myeloma with fusions of dendritic and plasmacytoma cells is potentiated by interleukin 12[J]. Blood. 2002 Apr 1; 99(7):2512-7. PMID: 11895787 [PubMed - indexed for MEDLINE]
    [161] Gottfried E, Krieg R, Eichelberg C, Andreesen R, Mackensen A, Krause SW. Characterization of cells prepared by dendritic cell-tumor cell fusion[J]. Cancer Immun. 2002 Nov 7;2:15. PMID: 12747760 [PubMed - indexed for MEDLINE]
    [162] [162] Yu Z, Ma B, Zhou Y, Zhang M, Qiu X, Fan Q. Activation of antitumor cytotoxic T lymphocytes by fusion of patient-derived dendritic cells with autologous osteosarcoma [J]. Experimental Oncology. 2005; 27 (4): 273-8. PMID: 16404346 [PubMed - indexed for MEDLINE]
    [163] Kawada M, Ikeda H, Takahashi T, Ishizu A, Ishikura H, Katoh H, Yoshiki T. Vaccination of fusion cells of rat dendritic and carcinoma cells prevents tumor growth in vivo[J]. Int J Cancer. 2003 Jul 1;105(4):520-6. PMID: 12712444 [PubMed - indexed for MEDLINE]
    [164] M?rten A, Renoth S, Heinicke T, Albers P, Pauli A, Mey U, Caspari R, Flieger D, Hanfland P, Von Ruecker A, Eis-Hübinger AM, Müller S, Schwaner I, Lohmann U, Heylmann G, Sauerbruch T, Schmidt-Wolf IG. Allogeneic dendritic cells fused with tumor cells: preclinical results and outcome of a clinical phase I/II trial in patientswith metastatic renal cell carcinoma[J]. Hum Gene Ther. 2003 Mar 20;14(5):483-94. PMID: 12691613 [PubMed - indexed for MEDLINE]
    [165] Trefzer U, Weingart G, Chen Y, Herberth G, Adrian K, Winter H, Audring H, Guo Y, Sterry W, Walden P. Hybrid cell vaccination for cancer immune therapy: first clinical trial with metastatic melanoma[J]. Int J Cancer. 2000 Mar 1;85(5):618-26. PMID: 10699939 [PubMed - indexed for MEDLINE]
    [166] Krause SW, Neumann C, Soruri A, Mayer S, Peters JH, Andreesen R. The treatment of patients with disseminated malignant melanoma by vaccination with autologous cell hybrids of tumor cells and dendritic cells[J]. J Immunother (1997). 2002 Sep-Oct; 25(5):421-8. PMID: 12218780 [PubMed - indexed for MEDLINE]
    [167] Barbuto JA, Ensina LF, Neves AR, Bergami-Santos P, Leite KR, Marques R, Costa F, Martins SC, Camara-Lopes LH, Buzaid AC. Dendritic cell-tumor cell hybrid vaccination for metastatic cancer[J]. Cancer Immunol Immunother. 2004 Dec; 53(12):1111-8. PMID: 15185011 [PubMed - indexed for MEDLINE]
    [168] Homma S, Matai K, Irie M, Ohno T, Kufe D, Toda G. Immunotherapy using fusions of autologous dendritic cells and tumor cells showed effective clinical response in a patient with advanced gastric carcinoma[J]. J Gastroenterol. 2003;38(10):989-94. PMID: 14614608 [PubMed - indexed for MEDLINE]
    [169] Avigan D, Vasir B, Gong J, Borges V, Wu Z, Uhl L, Atkins M, Mier J, McDermott D, Smith T, Giallambardo N, Stone C, Schadt K, Dolgoff J, Tetreault JC, Villarroel M, Kufe D. Fusion cell vaccination of patients with metastatic breast and renal cancer induces immunological and clinical responses[J]. Clin Cancer Res. 2004 Jul 15;10(14):4699-708. PMID: 15269142 [PubMed - indexed for MEDLINE]
    [170] Avigan D.Dendritic cell-tumor fusion vaccines for renal cell carcinoma[J]. Clin Cancer Res. 2004 Sep 15;10(18 Pt 2):6347S-52S. Review. PMID: 15448029 [PubMed - indexed for MEDLINE]
    [171] Kikuchi T, Akasaki Y, Irie M, Homma S, Abe T, Ohno T. Results of a phase I clinical trial of vaccination of glioma patients with fusions of dendritic and glioma cells[J].Cancer Immunol Immunother. 2001 Sep;50(7):337-44. PMID: 11676393 [PubMed - indexed for MEDLINE]
    [172] Tai KF, Chen DS, Hwang LH. Curative potential of GM-CSF-secreting tumor cell vaccines on established orthotopic liver tumors: mechanisms for the superior antitumor activity of live tumor cell vaccines[J]. J Biomed Sci. 2004 Mar-Apr; 11(2):228-38. PMID: 14966373 [PubMed - indexed for MEDLINE]
    [173] Ludewig B, Ochsenbein AF, Odermatt B, Paulin D, Hengartner H, Zinkernagel RM. Immunotherapy with dendritic cells directed against tumor antigens shared with normal host cells results in severe autoimmune disease[J]. J Exp Med. 2000 Mar 6;191(5):795-804. PMID: 10704461 [PubMed - indexed for MEDLINE]
    [174] Hart I, Colaco C. Immunotherapy. Fusion induces tumour rejection[J]. Nature. 1997 Aug 14;388(6643):626-7. PMID: 9262393 [PubMed - indexed for MEDLINE]
    [175] 王蘅文,主编.实验肿瘤学基础[M].人民卫生出版社,1992:18-9.
    [176] 郭鹞,主编.人类疾病的动物模型[M].第一辑.人民卫生出版社,1990:34.
    [177] Lardon F, Snoeck HW, Berneman ZN, Van Tendeloo VF, Nijs G, Lenjou M, Henckaerts E, Boeckxtaens CJ, Vandenabeele P, Kestens LL, Van Bockstaele DR, Vanham GL. Generation of dendritic cells from bone marrow progenitors using GM-CSF, TNF-alpha, and additional cytokines: antagonistic effects of IL-4 and IFN-gamma and selective involvement of TNF-alpha receptor-1[J]. Immunology. 1997 Aug;91(4):553-9. PMID: 9378494 [PubMed - indexed for MEDLINE]
    [178] Navarrete CV, Gómez J, Borràs FE. Cord blood dendritic cells: subsets, functional characteristics and in vitro generation[J]. Leuk Lymphoma. 2003 Jun;44(6):923-8. Review. PMID: 12854889 [PubMed - indexed for MEDLINE]
    [179] Thomson AW, O'Connell PJ, Steptoe RJ, Lu L. Immunobiology of liver dendritic cells[J]. Immunol Cell Biol. 2002 Feb;80(1):65-73. Review. PMID: 11881616 [PubMed - indexed for MEDLINE]
    [180] Ashton-Chess J, Blancho G. An in vitro evaluation of the potential suitability of peripheral blood CD14(+) and bone marrow CD34(+)-derived dendritic cells for a tolerance inducing regimen in the primate[J]. J Immunol Methods. 2005 Feb; 297(1-2):237-52. PMID: 15777946 [PubMed - indexed for MEDLINE]
    [181] Kramer JL, Baltathakis I, Alcantara OS, Boldt DH. Differentiation of functional dendritic cells and macrophages from human peripheral blood monocyte precursors is dependent on expression of p21 (WAF1/CIP1) and requires iron[J]. Br J Haematol. 2002 Jun;117(3):727-34. Erratum in: Br J Haematol 2002 Oct;119(1):289. PMID: 12028050 [PubMed - indexed for MEDLINE]
    [182] 曹雪涛.树突状细胞与肿瘤的免疫治疗和基因治疗——树突状细胞的细胞的细胞与分子生物学 Keystone 会议(美国)简介.中国肿瘤生物治疗杂志,1998;5(2): 82-4.
    [183] Steinman RM, Cohn ZA. Identification of a novel cell type in peripheral lymphoid organs of mice. I. Morphology, quantitation, tissue distribution[J]. J Exp Med. 1973 May 1;137(5):1142-62. PMID: 4573839 [PubMed - indexed for MEDLINE]
    [184] 金伯泉,主编.细胞和分子免疫学[M].第 2 版.北京: 科学出版社,2001: 504-6.
    [185] Hart DN, Hill GR. Dendritic cell immunotherapy for cancer: application to low-grade lymphoma and multiple myeloma[J]. Immunol Cell Biol. 1999 Oct; 77(5):451-9. Review. PMID: 10540212 [PubMed - indexed for MEDLINE]
    [186] Markowicz S, Engleman EG. Granulocyte-macrophage colony-stimulating factor promotes differentiation and survival of human peripheral blood dendritic cells in vitro[J]. J Clin Invest. 1990 Mar;85(3):955-61. PMID: 2179270 [PubMed - indexed for MEDLINE
    [187] Della Bella S, Nicola S, Riva A, Biasin M, Clerici M, Villa ML. Functional repertoire of dendritic cells generated in granulocyte macrophage-colony stimulating factor and interferon-alpha[J]. J Leukoc Biol. 2004 Jan;75(1):106-16. Epub 2003 Oct 2. PMID: 14525963 [PubMed - indexed for MEDLINE]
    [188] DePaz HA, Oluwole OO, Adeyeri AO, Witkowski P, Jin MX, Hardy MA, OluwoleSF. Immature rat myeloid dendritic cells generated in low-dose granulocyte macrophage-colony stimulating factor prolong donor-specific rat cardiac allograft survival[J]. Transplantation. 2003 Feb 27;75(4):521-8. PMID: 12605121 [PubMed - indexed for MEDLINE]
    [189] Jansen JH, Wientjens GJ, Fibbe WE, Willemze R, Kluin-Nelemans HC. Inhibition of human macrophage colony formation by interleukin 4[J]. J Exp Med. 1989 Aug 1;170(2):577-82. PMID: 2666563 [PubMed - indexed for MEDLINE]
    [190] Dauer M, Pohl K, Obermaier B, Meskendahl T, R?be J, Schnurr M, Endres S, Eigler A. Interferon-alpha disables dendritic cell precursors: dendritic cells derived from interferon-alpha-treated monocytes are defective in maturation and T-cell stimulation[J]. Immunology. 2003 Sep;110(1):38-47. PMID: 12941139 [PubMed - indexed for MEDLINE]
    [191] Weigel BJ, Nath N, Taylor PA, Panoskaltsis-Mortari A, Chen W, Krieg AM, Brasel K, Blazar BR. Comparative analysis of murine marrow-derived dendritic cells generated by Flt3L or GM-CSF/IL-4 and matured with immune stimulatory agents on the in vivo induction of antileukemia responses[J]. Blood. 2002 Dec 1;100(12):4169-76. PMID: 12393694 [PubMed - indexed for MEDLINE]
    [192] Shurin MR, Pandharipande PP, Zorina TD, Haluszczak C, Subbotin VM, Hunter O, Brumfield A, Storkus WJ, Maraskovsky E, Lotze MT. FLT3 ligand induces the generation of functionally active dendritic cells in mice[J]. Cell Immunol. 1997 Aug 1;179(2):174-84. PMID: 9268501 [PubMed - indexed for MEDLINE]
    [193] Lisovsky M, Estrov Z, Zhang X, Consoli U, Sanchez-Williams G, Snell V, Munker R, Goodacre A, Savchenko V, Andreeff M. Flt3 ligand stimulates proliferation and inhibits apoptosis of acute myeloid leukemia cells: regulation of Bcl-2 and Bax[J]. Blood. 1996 Nov 15;88(10):3987-97. PMID: 8916965 [PubMed - indexed for MEDLINE]
    [194] Steinman RM, Kaplan G, Witmer MD, Cohn ZA. Identification of a novel cell type in peripheral lymphoid organs of mice. V. Purification of spleen dendritic cells, new surface markers, and maintenance in vitro[J]. J Exp Med. 1979 Jan 1;149(1):1-16.PMID: 762493 [PubMed - indexed for MEDLINE]
    [195] Chen-Woan M, Delaney CP, Fournier V, Wakizaka Y, Murase N, Fung J, Starzl TE, Demetris AJ. In vitro characterization of rat bone marrow-derived dendritic cells and their precursors[J]. J Leukoc Biol. 1996 Feb;59(2):196-207. PMID: 8603992 [PubMed - indexed for MEDLINE]
    [196] Muthana M, Fairburn B, Mirza S, Slack LK, Pockley AG. Systematic evaluation of the conditions required for the generation of immature rat bone marrow-derived dendritic cells and their phenotypic and functional characterization[J]. J Immunol Methods. 2004 Nov;294(1-2):165-79. PMID: 15604025 [PubMed - indexed for MEDLINE]
    [197] Santini MT, Rainaldi G, Ferrante A, Indovina PL, Vecchia P, Donelli G. Effects of a 50 Hz sinusoidal magnetic field on cell adhesion molecule expression in two human osteosarcoma cell lines (MG-63 and Saos-2)[J]. Bioelectromagnetics. 2003 Jul; 24(5):327-38. PMID: 12820290 [PubMed - indexed for MEDLINE]
    [198] 彭挺生,丘钜世,李智,张萌,梁惠珍.CD44对骨肉瘤细胞增殖、黏附和侵袭性的影响[J].中华病理学杂志,2005;34(6):362-6.
    [199] 张宏伟,郑玉梅.免疫磁珠性质及其应用[J].国外医学免疫学分册,2000;23 (1): 5-8.
    [200] 刘晓平,李宝金,张超.逆转录病毒携带白细胞介素-12转染树突状细胞体外诱导特异免疫杀伤肝癌细胞[J].中华实验外科杂志,2005;22(10): 1211-3.
    [201] 彭宝岗,梁力建,谢斌辉,陈祖兵,何强.转染肿瘤mRNA的树突状细胞疫苗诱导抗肝癌免疫研究[J].中华实验外科杂志,2005;22(4): 432-4.
    [202] 孙华文,唐启彬,汤聪,邹声泉.转Survivin基因树突状细胞抗消化道肿瘤的免疫效应研究[J].中华实验外科杂志,2004;21(12): 1490-2.
    [203] Lee WT, Shimizu K, Kuriyama H, Tanaka H, Kjaergaard J, Shu S. Tumor-dendritic cell fusion as a basis for cancer immunotherapy[J]. Otolaryngol Head Neck Surg. 2005 May;132(5):755-64. PMID: 15886631 [PubMed - indexed for MEDLINE]
    [204] 郑宏宇,王芳,许丽南,李刚毅,韩小红.肿瘤的特异性主动免疫疗法[J].首都医药,2003;10(12): 35-8.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700