用户名: 密码: 验证码:
非合作通信中信号检测及调制识别的关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
信号检测及调制识别技术是非合作通信中接收机的关键技术,在自适应调制、军事侦察、电子对抗中有重要的应用价值。针对目前非合作通信中信号的检测与识别性能低且不能满足实际应用需求的问题,本文对非合作通信中信号检测及调制识别的关键技术进行了系统的研究,主要涉及到多径信道下数字调制信号的参数估计和识别、非高斯噪声下数字调制信号的识别以及单通道时频重叠信号的参数估计和识别,所取得的主要研究成果为:
     1.针对传统的OFDM信号带宽估计方法在低信噪比多径信道下估计精度低且计算量大的问题,提出一种基于经验模态分解的OFDM信号带宽估计方法,该方法有效地克服了噪声的影响。仿真结果表明,该方法不但估计精度更高且计算复杂度更低;针对多径信道下传统的OFDM信号信噪比盲估计方法的估计性能差、计算复杂度高的问题,提出了一种基于AR模型和高阶累积量的OFDM信号信噪比盲估计方法,该方法无需任何先验信息,在多径信道下具有良好的估计性能且计算复杂度低。针对低信噪比多径信道下ZP-OFDM信号时域参数估计精度低的问题,提出了一种改进的ZP-OFDM信号的时域参数盲估计方法,该方法通过功率自相关函数和小波消噪及平滑滤波对符号总长度进行了有效地估计,并利用符号总长度数据的幅度平方值和小波分解与重构对零前缀估计长度也进行了估计。仿真结果表明,在低信噪比多径信道条件下,该方法具有良好的估计性能。
     2.针对低信噪比多径信道下含有频偏和相偏的数字调制信号识别性能差的问题,提出了一种基于循环平稳特性的数字调制信号识别方法,不仅从理论上证明了该方法可以消除频偏、相偏、噪声和多径衰落信道的影响,并通过仿真验证了该方法的有效可行性和稳健性;针对多径信道下含有导频的OFDM信号子载波调制方式难识别的问题,提出了一种基于高阶累积量和改进的减法聚类相结合的OFDM信号子载波识别方法,该方法可以消除多径信道带来的衰减和相位旋转的影响。结果表明,在多径环境下该方法有效地实现了含有导频的OFDM信号子载波调制方式的识别。
     3.针对传统数字调制识别方法在非高斯噪声下识别性能差的问题,该文提出一种基于广义分数阶傅里叶变换和分数低阶Wigner-Ville分布的数字调制识别方法,该方法提取广义分数阶傅里叶变换的零中心归一化瞬时幅度谱密度的最大值和分数低阶Wigner-Ville分布幅度的最大值作为识别特征参数有效地实现了非高斯噪声下数字调制信号识别。仿真结果表明,在非高斯噪声下,该识别方法不仅性能明显优于传统方法并且具有较高的识别率和良好的稳健性。针对传统数字调制识别方法在Alpha稳定分布噪声下识别性能差、计算复杂度高的问题,本文提出了一种基于广义分数阶傅里叶变换和分数低阶协方差谱的的数字调制识别方法。该方法提取广义分数阶傅里叶变换的归一化瞬时频率谱密度的最大值和分数低阶协方差谱幅度的最大值作为识别特征参数,有效地实现了非高斯噪声下数字调制信号识别。仿真结果表明,在Alpha稳定分布噪声下,该方法不但具有较高的识别率和良好的稳健性并且计算复杂度更低。
     4.针对传统的单通道时频重叠信号的个数估计方法性能差的问题,提出了一种基于四阶循环累积量的单通道时频重叠信号的个数估计方法,该方法不但具有良好的抗噪性能,并且对信号频谱重叠率具有鲁棒性;针对传统的单通道时频重叠信号的载波频率估计方法性能差、计算复杂度高的问题,提出了一种基于四阶循环累积量的单通道时频重叠信号的载波频率估计方法。仿真结果表明,该方法在低信噪比条件下具有良好的估计性能且计算复杂度低;针对传统的单通道时频重叠信号的码元速率估计方法性能差、计算复杂度高的问题,提出了一种基于循环谱的单通道时频重叠信号的码元速率估计方法,该方法从理论上分析了在循环谱截面上进行离散谱线检测的可行性,并通过计算机仿真验证了其有效性。仿真结果表明,该方法不但具有较强的抗噪能力并且具有更低的计算复杂度。
     5.针对单信道时频重叠信号的识别存在识别性能差、识别调制类型单一的缺点,提出了一种基于高阶循环累积量的单通道时频重叠信号识别方法,该方法具有较强的抗噪能力。仿真结果表明,该方法在低信噪比条件下不但识别性能好、计算复杂度低,而且对信号频谱重叠率具有鲁棒性。
Signals detection and modulation recognition are the key technologies of receivers in non-cooperative communication system, which have the important application value in adaptive modulation, military reconnaissance and electronic countermeasure fields. According to the problems that current signals detection and modulation recognition technologies have poor performance and could not meet the requirement of practical application in non-cooperative communication. This dissertation is mainly concerned with the the key technologies of signals detection and modulation recognition in non-cooperative communication, which including parameters estimation and recognition of digital modulation signals over multipath channels, recognition digital modulation signals with non-Gaussian noise and parameters estimation and recognition for time-frequency overlapped signals over single channel. The author's major contributions are outlined as follows:
     1. According to the problems that traditional bandwidth estimation schemes for OFDM signals have low estimation accuracy and high complexity in low SNR over multiple channels, a novel bandwidth estimation scheme for OFDM signals base on Empirical Mode Decomposition is proposed. This scheme effectively overcomes the effects of noise. Simulation results show that this scheme has higher estimation accuracy and lower computational complexity. According to the problems that traditional SNR blind estimation schemes for OFDM signals have poor performance and high1complexity over multiple channels, a novel SNR blind estimation scheme for OFDM signals based on AR model and high-order cumulant is proposed and this scheme dose not need any priori information and has better estimation performance and lower complexity over multiple channels. According to the problems that time domain parameter estimation schemes for ZP-OFDM signals have low estimation accuracy in low SNR over multiple channels, a novel time domain parameter estimation scheme for ZP-OFDM signals is proposed. This scheme effectively estimates the total length of the symbols by power autocorrelation function, Wavelet de-noising and smoothing filtering. This scheme also estimates the length of the zero prefix by using magnitude-squared value of the data of the total length of the symbols and Wavelet decomposition and reconstruction. Simulation results show that this scheme has better performance in low SNR over multiple channels.
     2. According to the problems that the recognition schemes of digital modulation signals with frequency offset and phase offset have poor performance in low SNR over multipath channels, a novel recognition scheme of digital modulation signals base on cyclostationarity property is proposed. It is proved that this scheme could eliminate the effect of frequency offset, phase offset, noise and multipath fading channels. Simulation results show that this scheme has effective feasibility and robustness. According to the problems that the modulation subcarriers of OFDM signals with pilot are recognized difficultly over multiple channels, a novel subcarriers recognition scheme for OFDM signals base on high-order cumulant and improved subtractive clustering is proposed. This scheme could eliminate the effect of attenuation and phase rotation. Simulation results show that this scheme could effectively achieve the recognition of modulation subcarriers for OFDM signals with pilot.
     3. According to the problems that traditional recognition schemes of digital modulation signals with non-Gaussian noise have poor recognition performance, this paper is proposed a novel recognition scheme based on generalized Fractional Fourier Transform and fractional lower Wigner-Ville distribution. This scheme extracts the recognition characteristic parameters which are the maximum of the spectrum density of zero center normalized instantaneous amplitude of Fractional Fourier Transform and the maximum of fractional lower Wigner-Ville distribution amplitudes to identify the digital modulation signals with a non-Gaussian noise. Simulation results show that this scheme has better recognition performance and better robustness than the traditional schemes. According to the problems that traditional recognition schemes of digital modulation signals have poor recognition performance and high complexity in an Alpha stable distribution noise environment, a novel recognition scheme of digital modulation signals based on generalized Fractional Fourier Transform and fractional lower covariance spectrum is proposed. This scheme extracts the characteristic parameters which are the maximum of the spectrum density of normalized instantaneous frequency of Fractional Fourier Transform and the maximum of fractional lower covariance spectrum amplitudes to identify the digital modulation signals an Alpha stable distribution noise environment. Simulation results show that this scheme has higher recognition rates, better robustness and lower complexity than the traditional schemes.
     4. According to the problems that traditional number estimation schemes for time-frequency overlapped signals over single channel have poor performance, a novel number estimation scheme for overlapped signals based on fourth-order cyclic cumulant is proposed. This scheme has good anti-noise performance and is robust for signals spectrum overlap rates. According to the problems that traditional frequency estimation schemes for time-frequency overlapped signals over single channel have poor performance and high complexity, a novel frequency estimation scheme for overlapped signals based on fourth-order cyclic cumulant is proposed. Simulation results show that this scheme has better estimation performance and lower complexity than the traditional schemes. According to the problems that traditional symbol rate estimation schemes for time-frequency overlapped signals over single channel have poor performance and high complexity, a novel symbol rate estimation scheme for overlapped signals based on cyclic spectrum is proposed. This scheme analyzes the feasibility of discrete spectral lines detection in the cyclic spectrum cross-section and verifies its effectiveness in simulation. Simulation results show that this scheme not only has strong anti-noise ability and lower complexity.
     5. According to the problems that the traditional recognition schemes for time-frequency overlapped signals over single channel have poor performance and only can recognize single type modulation signal, a novel recognition scheme for time-frequency overlapped signals over single channel based on high-order cyclic cumulant is proposed. This scheme has strong anti-noise ability. Simulation results show that this scheme not only has better recognition performance and lower complexity, but also is robust for signals spectrum overlapped rates.
引文
[1]许小东.非协作数字通信系统盲解调关键技术研究[D].中国科学技术大学,2007.
    [2]周家喜.非协作通信中连续相位调制信号盲解调关键技术研究[D].中国科学技术大学,2009.
    [3]陈吉锋.基于时频分析的调制模式识别[D].西安电子科技大学,2006.
    [4]姜园.通信对抗中的现代信号处理技术应用研究[D].浙江大学,2004.
    [5]吴丹.非合作OFDM信号检测及识别技术研究[D].哈尔滨工程大学,2009.
    [6]李一兵,葛娟,林云.基于熵特征和支持向量机的调制识别方法[J].系统工程与电子技术,2012,34(08):1691-169.
    [7]胡亚,王永庆,吴嗣亮,马远星,张春.利用频域连续性检测非合作突发通信信号[J].北京理工大学学报,2012,32(10):1071-1076
    [8]冯祥,梁伟洋.数字调制通信信号载波频率估计算法[J].电讯技术,2006(1):105-107.
    [9]范小骞.电子对抗中通信信号数字调制自动识别的研究[D].太原理工大学,2006.
    [10]李彦栓,罗明,李霞.基于高阶累积量的OFDM信号调制识别技术[J].电子信息对抗技术,2012,27(04):1-4.
    [11]沈家瑞.通信对抗中的干扰识别技术研究[D].电子科技大学,2011.
    [12]邹武平.干扰检测与识别技术研究与实现[D].电子科技大学,2011.
    [13]吴昊,张杭.基于高阶累积量与神经网络的干扰识别算法[J].算法军事通信术,2008,29(01):67-71.
    [14]程汉文,朱雷,吴乐南.基于累计量的干扰信号调制识别算法[J].电子与信息学报,2009,31(07):1741-1745.
    [15]刘伟光.认知无线电中的频谱感知技术研究[D].电子科技大学,2011.
    [16]陈伟.认知无线电中的频谱感知与干扰评估技术研究[D].电子科技大学,2010.
    [17]刘四喜.基于认知无线电网络的频谱检测技术研究[D].湖南大学,2010.
    [18]Kuangdai Li, Lili Guo, Rong Shi, et al. Modulation Recognition Method Based on High Order Cyclic Cumulants for Time-Frequency Overlapped Two-Signal in the Single-Channel[C].Congress on Image and Signal Processing, May,2008: 474-478.
    [19]Haitao Fu, Qun Wan, Rong Shi. Modulation Classification Based on Cyclic Spectral Features for Co-Channel Time-Frequency Overlapped Two-Signal[C].Pacific-Asia Conference on Circuits, Communications and System, May,2009:31-34.
    [20]Ningyu Yu,Hong guang Ma, Rong Shi.Modulation Recognition of Co-channel OQPSK and MSK Based on Cyclostationarity[C]. The 2nd IEEE International Conference, April,2010:284-287.
    [21]高玉龙,张中兆.基于循环谱的同信道多信号调制方式识别[J].高技术通讯,2007,17(8):793-797.
    [22]冯祥,李建东.基于高阶循环累积量的SQAM信号调制识别算法[J.电子与信息学报,2007,29(1):125-128.
    [23]李建东,冯详.基于支持矢量机和循环累积量的调制识别算法[J].系统工程与电子技术,2007,29(4):520-23.
    [24]王嘉澜.数理统计中关于假设检验的几个要点问题[J].高等理科教育,2005(1):79-81.
    [25]张仔兵,李立萍,肖先赐.MPSK信号的循环谱检测及码元速率估计[J].系统工程与电子技术,2005,27(5):803-806.
    [26]金艳,姬红兵.基于循环自相关的PSK信号盲参数估计新方法[J].西安电子科技大学学报(自然科学版),2006,33(6):892-895.
    [27]史建锋,朱良学,冯辉.基于循环谱包络的BPSK码元速率估计算法研究[J].系统工程与电子技术,2007,29(2):185-187.
    [28]邓振淼,刘渝.MPSK信号载频盲估计[J].通信学报,2007,28(2):94-100.
    [29]于宁宇,马红光,石荣,石磊.基于二阶循环统计量的BPSK参数估计[J].系统工程与电子技术,2011,33(9):2117-2121.
    [30]于宁宇,马红光.多分量相移键控信号码速率盲估计[J].西南交通大学学报,2011,46(2):303-309.
    [31]郭黎利,李旷代,石荣,吴丹.单信道时频重叠双信号的码速率估计方法[J].电子信息对抗技术,2009,24(1):1-4.
    [32]于宁宇,马红光,石荣,余志斌.基于循环谱包络的共信道多信号参数估计[J].西南交通大学学报,2011,64(6):904-909.
    [33]龚牡丹,郭荣辉.基于二阶循环累积量的载波频率估计[J].计算机工程,2011,37(20):81-82.
    [34]朱波.基于小波的单通道时频重叠信号参数分析与实现研究[D].电子科技大学,2011.
    [35]Walter A, Eric K, Andre Q. OFDM parameters estimation a time approach[C].Conference Record of the Thirty-Fourth Asilomar Conference on Signals, Systems and Computers. Pacific Grove:IEEE,2000:142-146.
    [36]Nir V L, Waterschoot T V, Moonen M, et al. Blind CP-OFDM and ZP-OFDM Parameter Estimation in Frequency Selective Channels[J]. EURASIP Journal on Wireless Communications and Networking,2009:1-10.
    [37]任光亮,张辉,常义林.基于虚载波的OFDM系统信噪比盲估计方法[J].西安电子科技大学学报,2004,31(2):186-189.
    [38]Wang Kun, Zhang Xianda. Blind noise variance and SNR estimation for OFDM systems based on information theoretic criteria[J]. Signal Processing,2010,90(9): 2766-2772.
    [39]Cui Tao, Tellambura Chintha. Power Delay Profile and Noise Variance Estimation for OFDM[J]. IEEE Communication Letters,2006,10(1):25-27.
    [40]Socheleau Francois-Xavier, Abdeldialil Aissa-El-Bey, Sebastien Houcke. Non Data-Aided SNR Estimation of OFDM Signals[J], IEEE Communication Letters, 2008,12(11):813-815.
    [41]Kim Seonae, An Donggeon, Ryu Heunggyoon, et al. Efficient SNR Estimation in OFDM System[C]. Proceedings 2011 IEEE Radio and Wireless Symposium, Phoenix, AZ, USA, Jan,2011:182-185.
    [42]Walter Akmouche, Eric Kerherve, et al. OFDM spectral characterization: estimation of the bandwidth and the number of sub-carriers[C]. Statistical Signal and Array Processing 2000, Proceedings of the Tenth IEEE Workshop on 2000: 48-52.
    [43]Peng Liu, Bing-bing Li, Zhao-yang Lu, Feng-kui Gong. An OFDM Bandwidth Estimation Scheme for Spectrum Monitoring[C]. WCNM05,2005:228-231.
    [44]贺涛.数字通信信号调制识别若干新问题研究[D].电子科技大学,2008.
    [45]李鹏,汪芙平,王赞基.时变多径信道中通信信号调制识别算法[J].清华大学学报(自然科学版),2007,47(7):1097-1100.
    [46]Chen Liang, Chen Huawen, Wu Lenan. Modulation classification of MPSK signals based on no nonparametric Bayesian inference[J]. Journal of Southeast University(English Edition),2009,25(2):171-174.
    [47]Fahed Hammed, A.Dobre, Dimitrie C.Popescu. On the likelihood-based Approach to modulation classification [J]. IEEE Transaction on Wireless Communication. 2009,8(12):5884-5892.
    [48]Jefferson L.Xu, Wei Su, Mengchu Zhou. Likelihood-Ratio Approach to Automatic Modulation Classification[J]. IEEE Transaction on system, MAN, and Cybernetics-Part C:Application and Review,2011,41(4):455-469.
    [49]M.L.Dennis, Sie King Ting, Asoke K.Nandi. Naive Bays Classification of Adaptive Broadband Wireless Modulation Schemes with Higher Order Cumulants[C]. ICSPCS,2008:1-5.
    [50]闫朋展,王振宇,程伟.基于瞬时信息的数字调制模式自动识别[J].电子信息对抗技术,2010,25(6):22-25.
    [51]李伟.基于人工神经网络的数字调制信号的快速识别方法[J].洛阳理工学院学报(自然科学版),2009,19(4):60-63.
    [52]陈吉锋.基于时频分析的调制模式识别[D].西安电子科技大学,2006.
    [53]秦立龙,王振宇,闫朋展.改进小波在调制模式识别中的应用[J].通信技术.2012,(11):11-13.
    [54]陈前宝,刘洛琨,汪涛,康荣宗.一种基于时域相关的OFDM时域参数盲估计方法[J].通信技术,2009,42(03):28-32.
    [55]唐宁洁.OFDM信号时域参数及信噪比盲估计[D].西安电子科技大学,2012.
    [56]Uaidis T, Weber C L. Block adaptive techniques for channel identification and data demodulation over band-limited channels[J]. IEEE Trans. Common,1998,46(2): 232-243.
    [57]M. Shi, Y. Bar Ness, and W. Su. Blind OFDM systems parameters estimation for software defined radio[C], in Proc. IEEE Int. Symposium on New Frontiers in Dynamic Spectrum Access Networks, Dublin, Ireland,2007:119-122.
    [58]张艳,黄奇珊,曹世文.基于MUSIC算法的OFDM系统参数盲估计仿真研究[J].计算机工程与应用,2008,44(36):189-191.
    [59]W Akmouche, E. Kerherve, A. Quinquis OFDM parameters estimation a timeapproach [C]. Conference Record of the Asilomar Conference on Signals, Systems and Computers.2000:42-46.
    [60]Liu Peng, Li Bingbing, Lu Zhaoyang and Gong Fengkui. A Blind Time-parameters Estimation Scheme for OFDM in Multi-path Channle[C], Wireless Communications, Networking and Mobile Computing,2005:242-246.
    [61]Li Zou. Automatic Detection of the Guard Interval Length in OFDM System[J]. Journal of Communications,2006,1(6):28-32.
    [62]Walter A, Eric K, Andre Q. OFDM parameters estimation a time approach[C]. Conference Record of the Thirty-Fourth Asilomar Conference on Signals, Systems and Computers. Pacific Grove:IEEE,2000:142-146.
    [63]Nir V L, Waterschoot T V, Moonen M, et al. Blind CP-OFDM and ZP-OFDM Parameter Estimation in Frequency Selective Channels[J]. EURASIP Journal on Wireless Communications and Networking,2009:1-10.
    [64]A.Swami, B.M.Sadler. Hierarchical digital modulation classification using cumulants[J]. IEEE Transaction on Communications.2000,48(3):416-429.
    [65]O.A.Dobre, Y.Bar-Ness, Wei Su. Higher-order cyclic cumulants for high order modulation classification[A]. Proc.MILCOM2003[C],2003:112-117.
    [66]A. Punchihewa, Q. Zhang, O.A. Dobre, et al. On the Cyclostationarity of OFDM and Single Carrier Linearly Digitally Modulated Signals in Time Dispersive Channels:Theoretical Developments and Application[J]. IEEE Transactions on Wireless Communications,2010,19(8):2588-2599
    [67]郭黎利,于志明.基于多参数特征的OFDM信号盲识别[J].西南交通大学学报,2010,45(5):732-738.
    [68]Bin Wang, Lindong Ge. A Joint Blind Equalization and Modulation Identification Algorithm[C], IEEE International Conference on Communication, Circuits and Systems Proceedings,2006:593-597.
    [69]Lin Yang, Zhi Ji, Xiaodong Xu, Xuchu Dai, Peixia Xu. Modulation Classification in Multipath Fading Environments[C], International Symposium on Wireless Communication Systems 2007:171-174.
    [70]Eric Like, Vasu Chakravarthy, Robert Husnay, Zhiqiang Wu. Modulation Recognition In Multipath Fading Channels Using Cyclic Spectral Analysis[C], IEEE Communication Society and GLOBECOM.2008:1-6.
    [71]Vladimir D. Orlic, Miroslav L. Dukic. Automatic Modulation Classification Algorithm Using Higher-order Cumulants Under Real-World Channel Conditions[J]. IEEE Communications Letters,2009,13(12):917-919
    [72]Vladimir D.Orlic, Miroslav L. Dukic. Multipath channel estimation algorithm for automatic modulation classification using six-order cumulants[J], IEEE Electronic Letters,2010,46(19):1348-1349.
    [73]Fahed Hameed, Octavia A. Dobre, Dimitrie C. Popescu. On the Likelihood-Based Approach to Modulation Classification[J]. IEEE Transaction on Wireless Communications,2009,18(12):5884-5892.
    [74]Thomas A. Drumright, Zhi Ding. QAM Constellation Classification Based on Statistical Sampling for Linear Distortive Channels[J]. IEEE Transactions on Signal Processing,2006,54(5):1575-1586.
    [75]Markus Flohberger, Wilfrid Gappmair, Otto Koudelka. Modulation Classifier Signals Used in Satellite Communications[C]. ASMS-SPSC,2010:198-202.
    [76]V. Chaithanya,V. U. Reddy. Blind Modulation Classification in the Presence of Carrier Frequency Offset. SPCOM,2010:1-5.
    [77]崔伟亮,李剑强,江桦,黄文芳.衰落信道盲接收条件下的调制分类[J],电子与信息学报,2011,33(8):1895-1901.
    [78]William C. Headly, Claudio R. C. M. da Silva. Asynchronous Classification of Digital Amplitude-Phase Modulated Signals in Flat-Fading Channels [J], IEEE Transactions on Communications,2011,59(1):7-12.
    [79]L.Haring,Y.Chen,A.Czylwik. Automatic Modulation Classification Methods for Wireless OFDM Systems in TDD Mode[J]. IEEE Transaction on Communications, 2010,58(9):2480-2485.
    [80]韩钢,李建东,李长乐.自适应OFDM中信号盲检测技术[J].西安电子科技大学学报,2006,33(4):602-606.
    [81]冯祥,李建东.自适应OFDM系统中调制识别算法研究[J].系统工程与电子技术,2005,27(8):1325-1328.
    [82]M. L. Dennis, Sie King Ting, Asoke K. Nandi. Naive Bayes Classification of Adaptive Broadband Wireless Modulation Schemes with Higher Order Cumulants[C]. ICSPCS,2008:1-5.
    [83]刘伟,钟子发.正交频分复用信号子载波调制方式识别[J],电子信息对抗技术, 2011,26(3):33-36.
    [84]黄奇珊,彭启琮,邵怀宗,李程.在未知多径信道下OFDM系统的星座类型盲辨识[J].电子科技大学学报,2007,36(5):1029-1032.
    [85]郑文秀,赵国庆,罗明.基于高阶循环累积量的OFDM子载波盲估计[J].电子与信息学报,2008,30(2):347-349.
    [86]Fanggang Wang, Xiaodong Wang. Fast and Robust Modulation Classification via Kolmogorov-Smirnov Test [J]. IEEE Transactions on Communications,2010, 58(8):2324-2332.
    [87]V.Gautham Chavali, Claudio R. C. M. da Silva, Maximum-Likelihood Classification of Digital Amplitude-Phase Modulated Signals in Flat Fading Non-Gaussian Channels[J]. IEEE Transactions on Communications,2011,59(8): 2051-2056.
    [88]杨伟超,赵春晖,成宝芝.Alpha稳定分布噪声下的通信信号识别[J].应用科学学报,2010,28(2):111-114.
    [89]赵春晖,杨伟超,马爽.基于广义二阶循环统计量的通信信号调制识别研究[J].通信学报,2011,32(1):144-150.
    [90]赵春晖,杨伟超,杜宇.采用分数低阶循环谱相干系数的调制识别[J].应用科学学报,2011,29(6):565-570.
    [91]王青红,彭华,张金成.一种基于循环谱的共信道多信号调制参数估计方法[J].信号处理,2011,27(8):1153-1159.
    [92]Haiyan Luan, Hua Jiang, Xiaobao Liu. Source Number Estimation in Single Channel Blind Source Separation[C]. International Congress Image and Signal Processing,2010:4445-4449.
    [93]栾海妍,宋连萍,江桦.基于能量算子的单通道盲分离中源信号数目估计算法[J].信息工程大学学报,2011,12(3):295-301.
    [94]SPOONER C M. On the Utility of Sixth-Order Cyclic Cumulants for RF signal Classification [C]. Proc 35th Asilormar on Signals, Systems, and Computers,2001: 890-897.
    [95]李旷代,郭黎利,石荣,吴丹.单信道时频重叠MPSK信号的调制识别方法[J],火力与指挥控制,2010,2(35):150-153.
    [96]陈卫东,杨绍全.基于循环累量不变量的MPSK信号调制识别算法[J],电子与信息学报,2003,25(3):320-325.
    [97]付海涛,石荣,万群,朱波.基于HOCCs和SVM的单通道时频重叠信号调制识别[J].电子信息对抗技术,2009,24(6):14-18.
    [98]陆明泉,肖先赐.基于GAR的同信道多信号的调制识别[J].清华大学学报(自然科学版),2009,49(10):1676-1680.
    [99]杨旭霞.基于OFDM的数字电视地面广播系统中的载波同步方法[D].上海交通大学,2007.
    [100]赵妍妮.数字视频广播OFDM传输系统中的同步技术[D].西安电子科技大学,2002.
    [101]Li B S, Zhou S L, Stojanovic M, et al. Pilot-tone based ZP-OFDM Demodulation for an Underwater Acoustic Channel[C]. Proc. IEEE Ocean'06 Conference, Boston: IEEE,2006:1-5.
    [102]Sang E F, Xu X K, Qiao G, et al. Study on ZP-OFDM for Underwater Acoustic Communication[C]. IEEE Int. Conference Neural Networks & Signal Processing, Nanjing:IEEE,2008:299-302.
    [103]Waterschoot T V, Nir V L, Duplicy J, et al. Analytical Expressions for the Power Spectral Density of CP-OFDM and ZP-OFDM Signals[J]. IEEE Signal Processing Letters,2010,17(4):371-374.
    [104]Wang J, Song J, Yang Z X, et al. Frames Theoretic Analysis of Zero-Padding OFDM over Deep Fading Wireless Channels[J]. IEEE Transactions on Broadcasting,2006,52(2):252-260.
    [105]Muquet B, Wang Z D, Giannakis G B, et al. Cyclic Prefixing or Zero Padding for Wireless Multicarrier Transmissions?[J]. IEEE Transactions on Communication, 2002,50(6):2136-2148.
    [106]黄海,李长青,温志刚,等.一种零前缀OFDM系统的符号同步和载频估计算法[J].电路与系统学报,2009,14(3):82-86.
    [107]Wang J, Song J, Yang L. A Novel Equalization Scheme for ZP-OFDM System Over Deep Fading Channels [J]. IEEE Transactions on Broadcasting,2010,56(2): 249-252.
    [108]Boloix-Tortosa R, Payan-Somet F J, Murillo-Fuentes J J. Reduced complexity blind equalization schemes for ZP-OFDM OFDM systems[C]//2007 IEEE 8th Workshop on Signal Processing Advances in Wireless Communications, Helsinki: IEEE,2007:565-569.
    [109]Alayyan F O, Leung Y H, Zoubir A M. A fast blind channel estimation method for ZP-OFDM systems[C].2005 IEEE/SP 13th Workshop on Statistical Signal Processing, Piscataway,2005:610-614.
    [110]Wang L, Li Y F. A new semi-blind channel estimation for ZP-OFDM systems[C]. 2007 8th International Conference on Electronic Measurement and Instruments, Xi'an:IEEE,2007:2167-2171.
    [111]丁美玉,阔永红,高新波.数字信号处理——时域离散随机信号处理[M].西安:西安电子科技大学出版社,2002:137-140.
    [112]王宏禹.随机数字信号处理[M].北京:科学出版社,1988:255-261.
    [113]高军,杜修力,李立云.刚度突变MDOF体系动力损伤识别[J].震灾防御技术,2009,4(3):321-327.
    [114]徐文良.智能下肢假肢的多运动模式自适应控制[D].杭州电子科技大学, 2009.
    [115]江力,李长云.基于经验模分解的小波阈值滤波方法研究[J].信号处理,2005,21(6):659-662.
    [116]WANG K, ZHANG X D. Blind noise variance and SNR estimation for OFDM systems based on information theoretic criteria[J]. Signal Processing,2010,90 (9): 2766-2772.
    [117]CUI T, TELLAMBURA C. Power delay profile and noise variance estimation for OFDM[J]. IEEE Communication Letters,2006,10(1):25-27.
    [118]丁美玉,阔永红,高新波.数字信号处理—时域离散随机信号处理[M].西安:西安电子科技大学出版社,2002:152-160.
    [119]刘明骞,李兵兵,王婧舒.多径信道下的OFDM信号带宽盲估计[J].华中科技大学学报(自然科学版),2011,39(10):79-82.
    [120]Xi Jianhui, Han Wenlan. Application of High-order Cumulant in the Phase-space Reconstruction of Multivariate Chaotic Series[C].2010 International Conference on Intelligent Control and Information Processing. Dalian IEEE,2010:49-53.
    [121]Edfors O., Sandell M., Beek J., et al. OFDM Channel Estimation by singular Value Decomposition[J].IEEE Trans. On Comm.1998,46(7):931-939.
    [122]马文平,李兵兵,田红心,等.随机信号分析与应用[M].北京:科学出版社,2006:15-27.
    [123]孙蕾,谷德峰,罗建书.基于迭代方法的软阀值估计小波去噪[J].系统工程与电子技术,2009,31(1):36-39.
    [124]葛哲学,沙威.小波分析理论与MATLAB R2007实现[M].北京:电子工业出版社,2007:40-50.
    [125]Fangming He, Yafeng Yin, Lei Zhou, Xingzhong Xu and Hong Man. Principal Component Analysis of Cyclic Spectrum Features in Automatic Modulation Recognition[C]. The 2010 Military Communications Conference-Unclassified Program-Waveforms and Signal Processing Track,2010:1-4.
    [126]黄知涛,周一宇,姜文利.循环平稳信号处理与应用[M].北京:科学出版社,2006:25-27.
    [127]Spooner CM, GardnerWA. The Cumulant Theory of Cyclostationary Time-Series Part II:Development and Application [J]. IEEE Transactions on Signal Processing,1994,42(12):3409-3429.
    [128]郑文秀,赵国庆,罗明.频率选择性衰落信道下的星形QAM信号载波盲估计[J].系统仿真学报,2008,20(21):5917-5919.
    [129]Recommendation ITU-R M.1225. Guidelines for evaluation of radio transmission technologies for IMT-2000,1997.
    [130]Hsiao-Chun Wu and Zhifeng Yun. Novel Automatic Modulation Classification Using Cumulant Features for Communications via Multipath Channels[J]. IEEE Transactions on Communications,2008,7(8):3098-3105.
    [131]O.Edfors, M.Sandell, J.Beek, S.K.Wilson, P.O.Borjesson. OFDM Channel Estimation by singular Value Decomposition[J]. IEEE Trans. On Comm.1998, 46(7):931-939.
    [132]Jianhui Xi, Wenlan Han. Application of High-order Cumulant in the Phase-space Reconstruction of Multivariate Chaotic Series[C].2010 International Conference on Intelligent Control and Information Processing. Dalian IEEE,2010:49-53.
    [133]李宴.基带PSK.QAM信号调制子类自动识别研究[D].电子科技大学,2008.
    [134]ETSI, Universal mobile telecommunications system (UMTS); selection procedures for the choice of the radio transmission technologies of the UMTS[S], ETSI,1998.
    [135]EN300744, Digital Video Broadcasting; Framing structure, channel coding and modulation for digital terrestrial television[S], ETSI,1997.
    [136]王雪.OFDM信号检测与调制识别[D].合肥:中国科学技术大学,2009.
    [137]黄奇珊,彭启琮,邵怀宗,路友荣.自适应调制OFDM系统的调制方式盲辨识新算法[C].第十一届全国青年通信学术会议,绵阳:中国通信学会,2006:216-222.
    [138]Tsihrintzis G A, Nikias C L. Fast estimation of the parameters of alpha-stable impulsive interference[J]. IEEE Transaction on Signal Processing,1996,44(6): 1492-1503.
    [139]Ma X Y, Nikias C L. Parameter estimation and blind channel identifications in impulsive signal environments[J]. IEEE Transaction on Signal Processing,1995, 43(12):2884-2997.
    [140]Cowell D M J, Freear S. Separation of overlapping linear frequency modulated (LFM) signals using the fractional Fourier transform[J]. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control,2010,57(10):2324-2333.
    [141]Bin Abdullah A R, Bin Sha'ameri A Z, Bin Jidin A. Classification of power quality signals using smooth-windowed Wigner-Ville distribution[C].2010 International Conference on Electrical Machines and Systems, Songdo Convensia, Incheon, Korea, Oct.10-13,2010,1981-1985.
    [142]邱天爽,张旭秀,李小兵,孙永梅.统计信号处理——非高斯信号处理及其应用[M].北京:电子工业出版社,2004:139-172.
    [143]Xu S W, Shui P L. Nonparametric detection of frequency modulated signals using fractional Fourier transform[J]. Electronics Letters,2010,46(9):649-650.
    [144]Wang J, Kuruoglu, E E, Zhou T. Alpha-stable channel capacity[J]. IEEE Communications Letters,2011,15(10):1107-1109.
    [145]王首勇,朱晓波,李旭涛,王永良.基于分数低阶协方差的AR SaS模型α谱估计[J].电子学报,2007 35(9):1637-1641.
    [146]王青红,彭华,王彬,滕波.基于循环累积量的共信道多信号检测和信号源个数估计算法[J].信息工程大学学报,201213(2):185-186.
    [147]张贤达,保铮.非平稳信号分析与处理[M].第3版.北京:国防工业出版社,1998:336-349.
    [148]Gardner W A, Spooner C M. The Cumulant Theory of Cyclostationary Time-Series, Part I:Foundation [J]. IEEE Transactions on communications,1994, 42(12):3387-3406.
    [149]付海涛.基于循环平稳的单信道时频重叠信号分析[D].成都,电子科技大学,2009.
    [150]Giannakisg B. Statistical signal processing section of digital signal processing handbook[M]. Boca Raton:CRC Press,1999:177-180.
    [151]张贤达.现代信号处理[M].第2版.北京:清华大学出版社,2002:263-271.
    [152]Gardner W A. Cyclostationarity in communication and signal processing[M]. New York:The Institute of Electrical and Electronics Engineers,1994:66-67.
    [153]Dobre O A, Abdi A, Bar-Ness Y, et al. Survey of automatic modulation classification techniques:classical approaches and mew trends. IET Commun., 2007,1(2):137-156.
    [154]Arslan.H, Molnar.K. Iterative co-channel interference cancellation in narrowband mobile radio systems[C].2000 IEEE Emerging Technologies Symposium on Broadband, Wireless Internet Access, April,2000:1-4.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700