用户名: 密码: 验证码:
秦岭地区土地利用/覆被变化及水热环境响应
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
秦岭山系是我国南北重要的地理分界线,处于亚热带和暖温带的过渡区域。本文选择陕西省境内的秦岭地区作为研究对象,通过查阅国内外相关文献和多次试验,设计了适合秦岭山地土地利用/覆被变化的以遥感与GIS技术结合为主线的研究方法。利用MODIS NDVI、TM影像、DEM、气温、降水、径流等数据,深入分析了秦岭地区LUCC (Land use and land cover change,土地利用/土地覆被变化)时空变化特征及气温、降水、径流的环境响应,对秦岭地区生态环境变化的定量研究具有重要意义,并获得如下主要成果与进展:
     (1)采用AG (Asymmetric Gaussians)算法对MODIS NDVI数据进行时间序列重建,结合DEM数据及变异系数、线性趋势线斜率方法,分析了2000-2011年秦岭地区植被覆盖时空变化情况,结果表明,①在水平空间上,区域内植被时序稳定性与其离人类聚集区远近呈逆向分布,山区森林和山间灌木林时序稳定性较高,居民地周边农田和山间沟谷农林混合植被年际波动较大。②2000-2011年秦岭地区植被生长状况,整体呈现改善趋势,山区腹地和远离城市的农田改善趋势明显,山区森林和沟谷灌木林相对稳定。③秦岭地区NDVI随海拔升高先增加后降低,最大值在海拔1500-2000m范围内,最小值在海拔<500m范围内,海拔>2000m的区域NDVI值较低。NDVI值除在海拔1500~2000m和>2700m范围内增加不明显外,其他海拔范围内均呈显著增加态势,且增加速率随海拔升高而减小。
     (2)利用AG算法重建后的MODIS NDVI数据,通过使用变化矢量法、决策树分类法、及分类后的土地利用数据,分析和揭示了中等尺度秦岭地区的土地利用/覆被变化情况,结果表明,①秦岭地区土地覆被变化较高的区域位于太白山周围、以及嘉陵江、汉江、丹江、洛河沿线,所占比例较小;农田和建设用地变化较高,但变化数量较小;低山区变化程度低,所占比例较大;高海拔区域的森林类型保持持续稳定状态。秦岭地区土地覆被变化稳定类型的面积占79.99%,呈增加趋势;土地覆被发生变化的区域主要分布在嘉陵江、丹江、洛河谷地及汉江盆地。②秦岭地区土地覆被分类决策树分类总体精度为81.92%,Kappa系数为0.79。2000~2011年,秦岭地区落叶林持续增长;农田和草地减少速率增加;建设用地增加迅速;常绿林先增加后减少。③2000~2011年,秦岭地区水域和建设用地面积增加,耕地和未利用地面积减少。水域、耕地、建设用地和未利用地在不同坡度条件下均表现出明显变化,林地、灌木林在坡度≥20°区域,才有明显变化。
     (3)以1970~2009年逐月气温数据为基础,并选择取2000~2009年MODIS NDVI时序重建数据,结合DEM数据,分析秦岭地区气温变化及NDVI在不同海拔、不同季节对气温变化的响应。结果表明:①年平均气温及春、冬季平均气温增加显著,分别于1994、1997和2000年出现增暖突变,春季增温速率高于冬季,且高于年平均增温速率。②年平均NDVI与年平均气温的相关性较小,而多年平均NDVI与多年平均气温的相关性在垂直方向上呈增加趋势。>2700m区域相关系数最高,表明高海拔区域对气温变化的高敏感性。在季节方面,春季平均NDVI在高程<500m区域增加显著,夏、秋季平均NDVI在高程<2000m区域增加显著,其他区域变化不明显。夏季平均NDVI随高程升高而增加的速率逐渐降低,即在高程<500m区域平均NDVI增加速率最高,1500~2000m区域最低。秋季平均NDVI增加速率最高值在500~1500m区域,增加速率最低值在1500~2000m区域。
     (4)选择位于秦岭地区南北坡的典型流域—金钱河和灞河流域,对比分析秦岭地区南北坡径流变化差异,并探寻金钱河流域径流对降水、LUCC的响应。结果表明,1960~2009年,金钱河和灞河年平均径流量呈减少趋势,金钱河的径流减少量多于灞河流域。从径流的季节变化来看,春、秋季金钱河与灞河流域平均径流量均显著减少,而金钱河流域在冬季也显著减少。金钱河流域年平均径流量减少主要受人类活动(LUCC过程)的影响,人类活动对季节平均径流量的影响程度表现为春季高于秋季。秋季平均径流量减少受到降水量变化与人类活动双重作用。
Qinling Mountains is the geographical boundaries of north and south in China and the transition zone between sub-tropical and warm temperate. This study selected the Qinling area located in Shaanxi province as a research object, and the research methods that Land Use and Land Cover Change of the Qinling area integrat remote sensing technique with GIS were designed by referring many literatures and many tests. This study analyzed spatial and temporal change of LUCC and the response of temperature, precipitation and runoff to environment on the basis of MODIS NDVI, TM images, DEM, temperature, precipitation and runoff data. The research has great significance to the quantitative study on ecological environment in Qinling area. The conclusion as follows:
     (1) AG (Asymmetric Gaussians) algorithm was selected to reconstruct the MODIS NDVI time series data. Spatial and temporal changes of Land Cover in Qinling area from2000to2011was analyzed by DEM, coefficient of variation, indication of the slope of trend line. Some results obationed:①the forest and shrub vegetation located in the hinterland of Qinling area showed a higher stability in the past12years, while the cropland and mosaic cropland/non-crop vegetation located in northern slope of the Qinling area, as well as those areas surrounded by mountain residents, showed dramatically inter-annual fluctuation under the impact of human activities.②the vegetation in the Qinling area, show and improved change trend in the past12years, and the arable land in mountainous hinterland and far away from the urban was improvement obviously.③NDVI change with elevation has the processes of first increases and then decreases in the Qinling area. The maximum value of NDVI located in the elevation of1500~2000m, while the minimum value located in the elevation of <500m, and the lower value of NDVI in the elevation of>2000m. In the elevation of1500-2000m and>2700m, NDVI increased trend was not obvious, while the increased trend was obviously in the other range of elevation. The rate of NDVI increased was decreased with elevation raised.
     (2) Based on the MODIS NDVI of250m resolution, TM images, and1:100000land use database, change vector analysis method and decision tree classification algorithms were used to analyzing the spatial and temporal change of Land Cover in Qinling area.①The analysis with change vector analysis methods show the high degree of land cover change with small area, nearby Taibai Mountain, Jialingjiang, Hanjiang, Danjiang, and Luohe river. Cultivated land and construction land have changed with high degree of land cover change, and smaller change area. The lower elevation area has the characteristic changes with lower degree of land cover change and bigger change area. Forest vegetation cover in the higher elevation area was stable. The area with stable land cover type in Qinling area accounted for79.99%, and with the increased trends, while the change area including increased and decreased area was mainly distributed in the valley of Jialingjiang basin, Danjiang, Luohe, and Hanjiang basin.②System of land cover classification and decision tree classification of land cover were constructed, and the overall accuracy was81.92%, Kappa coefficient was0.79. During2000-2010, land cover pattern analysis shows deciduous forest was increased continuously, while water area, grassland, arable land and unused land were decreased. The rate of decreased of arable land and grassland was increased. Building land increased quickly while evergreen forest first increased and then decreased.③In Qinling area, woodland, shrub and grassland area were stable, while water area and construction land increased, and cultivated land, unused land were decreased. In the different slope area, water area, cultivated land, construction land and unused land change obviously, while woodland and shrub only in the area of slope≥20℃were shown obvious change.
     (3) Temperature change characteristic in the annual and season and its effects on vegetation NDVI change were analyzed on the basis of monthly temperature and precipitation data from1970to2009, MODIS NDVI from2000to2009and DEM of30m resolution. Results show that average temperature in spring and winter were increased obviously and the abrupt change of temperature increased in1997,2000and1994, respectively. The rate of temperature increased in spring was higher than winter, and the spring and winter were higher than annual temperature. The response of vegetation NDVI to temperature analysis shows that the correlation between annual average NDVI and temperature was small (P<0.001), while the correlation between10years average NDVI and temperature was increased with the elevation increased, which reflected that, vegetation NDVI change in the higher elevation area was sensitive to climate change, and the area need to focus on.
     (4) Difference of runoff change between south and north slope in Qinling area and the response of runoff to precipitation and LUCC change were analyzed based on runoff data from1960to2009, meteorological data and MODIS NDVI data, in the selected typical basin of Jinqian river and Bahe river, located in the south and north slope area of Qinling area, respectively. During1960-2009, annual average runoff in Jinqian rivere and Bahe River showed decreased trends and the rate of decreased in Jinqian river was higher than Bahe River. Jinqian River was decreased obviously, while average runoff in spring and autumn of Bahe River was decreased obviously. The decreased of average runoff in the two basins was higher than annual average runoff. The analyzed in response of runoff to precipitation and LUCC change of Jinqian river show that, annual average runoff decreased was mainly by the influence of human activities, such as LUCC processes. The influence of human activities on average runoff in spring was bigger than autumn, while the decreased of average runoff in autumn was influenced by precipitation change and human activities.
引文
[1]Anyamba A., Tucker C.J. Analysis of Sahelian vegetation dynamics using NOAA-AVHRR NDVI data from 1981-2003 [J]. Journal of Arid Environments,2005,63(3):596-614.
    [2]Arora V.K. The use of the aridity index to assess climate change effect on annual runoff[J]. Journal of hydrology,2002,265(1-4):164-177.
    [3]Arora V.K., Boer G. Effects of simulated climate change on the hydrology of major river basins[J]. Journal of geophysical research,2001,106(4):3335-3348.
    [4]Bajracharya B., Uddin K., Chettri N. Understanding land cover change using a Harmonized Classification System in the Himalaya[J]. Mountain Research and Development,2010,30(2): 143-156.
    [5]Bartholome E., Belward A.S., Achard F., et al. GLC 2000: Global Land Cover Mapping for the Year 2000:Project Status November 2002[M]. Institute for Environment and Sustainability,2002.
    [6]Barnett T.P, Pierce D.W., Hidalgo H.G., et al. Human-induced changes in the hydrology of the western United States[J]. Science,2008,319(2):1080-1083.
    [7]Bartholome E., Belward A.S. GLC2000:a new approach to global land cover mapping from Earth observation data[J]. International Journal of Remote Sensing,2005,26(9):1959-1977.
    [8]Beck P.S.A., Atzberger C., Hegda K.A., et al. Improved monitoring of vegetation dynamics at very high latitudes:A new method using MODIS NDVI[J]. Remote Sensing of Environment,2006,100(3): 321-334.
    [9]Borak J.S., Strahler A.H. Feature selection and land cover classification of a MODIS-like data set for a semiarid environment[J]. International Journal Remote Sensing,1999,20(1):919-938.
    [10]Boyer C., Chaumont D., Chartier I., et al. Impact of climate change on the hydrology of St.Lawrence tributaries[J]. Journal of hydrology,2010,384(1-2):65-83.
    [11]Bradley R.S., Keimig F.T., Diaz H.F. Projected temperature changes along American cordillera and planned GCOS network[J]. Geophysical Research Letters,2004,31:L16210.
    [12]Bradley R.S., Vuille M., Diaz H.F, et al. Threats to water supplies in the tropical Andes[J]. Science, 2006,312(5781):1755-1756.
    [13]Breuer L., Huisman J.A., Willems P., et al. Assessing the impact of land use change on hydrology by ensemble modeling(LUCHEM), I: model intercomparison with current land use[J]. Advances in water resources,2009,32(2):129-146.
    [14]Burgheimer J., Wilske B., Maseyk K., et al. Relationships between Normalized Difference Vegetation Index (NDVI) and carbon fluxes of biologic soil crusts assessed by ground measurements[J]. Journal of Arid Environments,2006,64(4):651-669.
    [15]Carlson T,N., Arthur S.T. The impact of land use-land cover changes due to urbanization on surface microclimate and hydrology: a satellite perspective[J]. Global and planetary of change,2000,25(1-2): 49-65.
    [16]Carreiras, J., Pereira, J., Shimabukuro, Y., Stroppiana, D.. Evaluation of compositing algorithms over the Brazilian Amazon using SPOT-4 VEGETATION data[J]. International Journal of Remote Sensing, 2003,24(2003):3427-3440.
    [17]Chen J M, Pavlic G, Brown L, et al. Derivation and validation of Canada-wide coarse-resolution leaf area index maps using high-resolution satellite imagery and ground measurements[J]. Remote sensing of environment,2002,80(1):165-184.
    [18]Chen L, Wang J, Fu B, et al. Land-use change in a small catchment of northern Loess Plateau, China[J]. Agriculture, Ecosystems & Environment,2001,86(2):163-172.
    [19]Christensen N.S., Wood A.W., Voison N., et al. The effects of climate change on the hydrology and water resources of the Colorado River basin[J]. Climate change,2004,62:337-363.
    [20]Christopher S R, Neigh B, et al. North American Vegetation Dynamics Observed with Multiresolution Satellite Data[J]. Remote Sensing of Environment,2008,112(4):1749-1772.
    [21]Civco D L. Artificial neural networks for land-cover classification and mapping[J]. International Journal of Geographical Information Science,1993,7(2):173-186.
    [22]Cihlar J., Ly H., Xiao Q. Land cover classficaiton with AVHRR mulitchannel composites in northern enviornments[J]. Remote Sensing of Enviornment,1996,58(1):36-51.
    [23]Costa M.H., Botta A., Cardille J.A. Effects of large-scale changes in land cover on the discharge of the Tocantins River, southeastern Amazonia[J]. Journal of hydrology,2003,283(1-4):206-217.
    [24]Cuo L., Lettenmaier D.P., Alberti M., et al. Effects of a century of land cover and climate change on the hydrology of the Puget Sound basin[J]. Hydrological processes,2009,23(6):907-933.
    [25]Deering D.W. Rangeland reflectance characteristics measured by aircraft and spacecraft sensors.Texas A&M University, College Station, TX,1978,338.
    [26]DeFries R.S., Townshend J.R.G. NDVI-derived land cover classifications at a global scale[J]. International Journal of Remote Sensing,1994,15(17):3567-3586.
    [27]DeFries R.S., Hansen M., Townshend J.R.G, et al.Global land cover classifications at 8 km spatial esolution:the use of training data derived from Landsat imagery in decision tree classifiers[J]. International Journal of Remote Sensing,1998,19(16):3141-3168.
    [28]DeFries R., Eshleman K.N. Land-use change and hydrologic processes: a major focus for the future[J]. Hydrological processes,2004,18(11):2183-2186.
    [29]Di Gregorio A., Jansen L.J.M. Land cover classification system(LCCS):classification concepts and user manual [M]. Rome: Food and Agriculture Organization of the United Nations,2000.
    [30]Du H S, Liu Z M, Zhu F. The influence of changbai Mountain area land utilization change to ecosystem service value. In:Luo Qi ed.2008 International Workshop on Education Technology and Training and 2008 International Workshop on Geoscience and Remote Sensing, Vol 1, Proceedings. Los Alamitos: IEEE Computer Soc.,2009,819-822.
    [31]Duchemin B., Guyon D., Lagouarde J.P. Potential and limits of NOAA -AVHRR temporal composite data for phenology and water stress monitoring of temperate forest ecosystems [J]. International Journal of Remote Sensing,1999,20(5):895-917.
    [32]Fischer G. Simulating the socio-economic and biogeophysical driving forces of land-use and land-cover change:The IIASA land-use change model[M]. International Institute for Applied Systems Analysis,1996.
    [33]FungT. Ledrew E. Application of Principal Components Analysis to Change Detection[J]. Photogrammetry Engineering & Remote Sensing,1987,53(12):1649-1658.
    [34]Fung T., Ledrew E. The determination of optimal threshold levels for change detection using various accuracy indices[J]. Photogrammetric Engineering and Remote Sensing,1988,54:1449-1454.
    [35]GLP.Science plan and implementation strategy[M]. IGBP Report No.53 and IHDP Report No.19,2005.
    [36]Goward S., Markham B., Dye D. Normalized difference vegetation index measurements from the advanced very high resolution radiometer [J]. Remote Sensing of Environment,1991,35(2-3): 257-277.
    [37]Guo Z.H., Peng S.L., Wang B.S. Combing multi-temporal NOAA-AVHRR NDVI and ground auxiliary data for estimating terrestrial net primary production in Guangdong[J]. Acta Ecologica Sinica,2001,21(9):1444-1449.
    [38]Gutman G. Vegetation indices from AVHRR:An update and future prospects[J]. Remote Sensing of Environment,1991,35(2-3):121-136.
    [39]Hall C.A.S., Tian H., Qi Y., et al. Spatially explicit models of land use change and their application to the tropics[J]. DOE Research Summary,1995,31.
    [40]Hansen M.C., DeFries R.S.,Townshend J.R.G, et al. Global land cover classification at 1 km spatial resolution using a classification tree approach[J]. International Journal of Remote Sensing,2000, 21(6-7):1331-1364.
    [41]Holben B.N. Characteristics of Maximum-value Composite Images for Temporal AVHRR Data[J]. International Journal of Remote Sensing,1986,7(11):1435-1445.
    [42]Holling C.S. Cross-scale morphology, geometry, and dynamics of ecosystems[J]. Ecological monographs,1992,62(4):447-502.
    [43]Huete A.R., Justice C., Leeuwen V. MODIS vegetation index algorithm theoretical basis document, Version 3[EB/OL]. http: //modis.gsfc.nasa.gov/data/atbd/land_atbd.html,1999.
    [44]Huete A.R., Didan K., Leeuwen Wim Van, et al. MODIS Vegetation Index (MOD13) Algorithm Theoretical Basis Document Version 3.1[R]. April,1999.
    [45]Huisman J.A., Breuer L., Bormann H., et al. Assessing the impact of land use change on hydrology by ensemble modeling (LUCHEM) Ⅲ:scenario analysis[J]. Advances in water resources,2009, 32(2):159-170.
    [46]IPCC.Summary for policymakers.Climate change 2007.The physical sciences basis.Contribution of working group Ⅰ to the forth assessment report of the intergovernmental panel on climate change[M]. Cambridge, United Kingdom and New York, NY, USA: Cambridge university press,2007.
    [47]Jackson R.D., Huete A.R. Interpreting vegetation indices [J]. Preventive Veterinary Medicine,1991, 11(3):185-200.
    [48]Jacqueline G.F., Antoine G., Niklaus E.Z. Tree line shifts in the Swiss Alps:climate change or land abandonment [J]. Journal of vegetation science,2007,18:571-582.
    [49]Jenkins M. Prospects for biodiversity[J]. Science,2003,302:1175-1177.
    [50]Jensen J.R., Cowen D.J., Narumalan I.S., et al. An evaluation of coast watch change detection protocol in South Carolina[J]. Photogrammetric Engineering and Remote Sensing,1993,59(6): 1039-1046.
    [51]Jensen J.R. Introductory Digital Image Processing,a Remote Sensing Perspective[C]. Prentice Hass Saddle River, New Jersey,2nd ED,1996.
    [52]Johnson R.D., Kasischke E.S. Change vector analysis: a technique for the multispectral monitoring of land cover and condition[J]. International Journal of Remote Sensing,1998,19(3):411-426.
    [53]Jones K.B., Ritters K.H., Wickham J.D., et al. An ecological assessment of the United States Mid-Atlantic Region:A landscape atlas. U.S. Environmental Protection Agency, Report No. EPA/600/R-97/130,1997. U.S.Printing Office, Washington, DC,104p.
    [54]Jonsson P., Eklundh L. Seasonality extraction by function-fitting to time series of satellite sensor data [J]. IEEE Transactions on Geoscience and Remote Sensing,2002,40(8):1824-1832.
    [55]Jonsson P., Eklundh L. TIMESAT:A program for analyzing time-series of satellite sensor data[J]. Computers and Geoscience,2004,30 (8),833-845.
    [56]Jonsson P., Eklundh L. TIMESAT: A program for analyzing time-series of satellite sensor data:User's Guide for TIMESAT 2.3 [Z]. Sweden: Malmo and Lund,2006.
    [57]Jordan C.F. Derivation of leaf-area index from quality of light on the forest floor[J]. Ecology,1969: 663-666.
    [58]Kalnay E., Cai M. Impact of urbanization and land-use change on climate[J]. Nature,2003,423: 528-531.
    [59]Kirsten M., De B., et al. Trend Analysis of the Pathfinder AVHRR Land (PAL) NDVI Data for the Deserts of Central Asia[J]. IEEE Geoscience and Remote Sensing Letters,2004,1(4):282-287.
    [60]Kobayashi H., Dye D. Atmospheric conditions for monitoring the long-term dynamics in the Amazon using normalized difference vegetation index[J]. Remote Sensing of Environment,2005,97(4): 519-525.
    [61]Lambin E.F., Strahler. A.H. Change-vector Analysis in Multitern poral Space:a Tool to Detect and Categorize Land-cover Change Processing Using High Temporal resolution Satellite Data[J]. Remote Sensing of Environment,1994,48(2):231-244.
    [62]Lambin E.F., Ehrlich D. Combining vegetation indices and surface temperature for land-cover mapping at broad spatial scales[J]. Remote Sensing,1995,16(3):573-579.
    [63]Lin Y.P., Hong N.M., Wu P.J., et al. Impacts of land use change scenarios on hydrology and land use patterns in the Wu-Tu watershed in northern Taiwan[J]. Landscape and urban planning,2007,80(1-2): 111-126.
    [64]Liu J.Y., Zhan J.Y., Deng X.Z. Spatio-temporal patterns and driving forces of urban land expansion in China during the economic reform era[J]. AMBIO,2005,34(6):450-455.
    [65]Liu X.D., Chen B.D. Climatic warming in the Tibetan Plateau during recent decades[J]. International Journal of Climatology,2000,20:1729-1742.
    [66]Lopez E, Bocco G, Mendoza M, et al. Predicting land-cover and land-use change in the urban fringe: A case in Morelia city, Mexico[J]. Landscape and urban planning,2001,55(4):271-285.
    [67]Loveland T., Merchant J., Brown J., et al. Development of a land-cover characteristics database for the conterminous U.S.[J]. Photogrammetric engineering and remote sensing,1991,57(11):1453-1463.
    [68]Lucht W., Prentice C., Myneni R.B., et al. Climatic Control of the High-Latitude Vegetation Greening Trend and Pinatubo Effect[J]. Science,2002,296(31):1687-1689.
    [69]Lunetta R.S., Elvidge C.D. Remote Sensing Change Detection Environment Monitoring Methods and Application[M]. London:Taylor & Francis Ltd.,1999.
    [70]Lunetta R.S., Ediriwickrema J., Johnson D.M., et al. Impacts of vegetation dynamics on the identification of land-cover change in a biologically complex community in North Carolina, USA[J]. Remote Sensing of Environment,2002,82(2):258-270.
    [71]Lunetta R.S., Johnson D.M., Lyon J.G., et al. Impacts of imagery temporal frequency on land-cover change detection monitoring[J]. Remote Sensing of Environment,2004,89(4):444-454.
    [72]Lunetta R.S., Knight J.F., Ediriwickrema J., et al. Land-cover change detection using multi-temporal MODIS NDVI data[J]. Remote Sensing of Environment,2006,105(2):142-154.
    [73]Macleod R.D., Congalton R.G. A quantitative comparison of change-detection algorithms for monitoring eelgrass from remotely sensed data[J]. Photogrammetric Engineering and Remote Sensing,1998,64(3):207-216.
    [74]Malila W.A., Change vector analysis:An approach for detecting forest change winl Landsat[A].Procedings Machine Processing of Remote Sensed Data Symposium[C]. Purdue University, West Lafayette, Indiana, (Ann Arbor, ERIM),1980.
    [75]Mas J.F., Monitoring land-cover changes, a comparison of change detection techniques[J]. International Journal of Remote Sensing,1999,20(1):139-152.
    [76]Matson P.A., Parton W.J., Power A.G. Agriculture intensification and ecosystem properties[J]. Science, 1997,277(5325):504-509.
    [77]McCloy K.R., Los S., Lucht W., Hojsgaard S. A comparative analysis of three long-term NDVI datasets derived from AVHRR satellite data[J]. EARSeL eProceedings,2005,4(1):52-69.
    [78]McConnell W.J. Agent-based models of land-use and land-cover change[M]. LUCC Report No.6, 2001.
    [79]Messerli B. The global mountain problematique. In: Price Martin Fed.Global Change in the Mountains[J]. London:The Parthenon Publishing Group,1999: 1-3.
    [80]Michalek J.L., Wagner T.W., Luczkovich J.J., et al. Multispectral Change Vector Analysis for Monitoring Coastal Marine Environments[J]. Photogrammetric Engineering and Remote Sensing, 1993,59(3):381-384.
    [81]Milich L., Weiss E. Characterization of the Sahel:Implications of Correctly Calculating Inter-annual Coefficients of Variation (CoVs) from GAC NDVI Values[J]. International Journal of Remote Sensing, 1997,18:349-359.
    [82]Moran E.F., Brondizio E., Mausel P., et al. Integrating Amazonian vegetation, land-use, and satellite data[J]. BioScience,1994,44(5):329-338.
    [83]Myneni R B, Hall F G, Sellers P J, et al. The interpretation of spectral vegetation indexes[J]. Geoscience and Remote Sensing, IEEE Transactions on,1995,33(2):481-486.
    [84]National Climate Data Center. NOAA Global Vegetation Index Guide[M]. NOAA National Climatic Data Center, Ashville, North Carolina, USA,2003.
    [85]Neigh C.S.R., Tucker C.J., Townshend J.R.G. North American vegetation dynamics observed with multi-resolution satellite data[J]. Remote Sensing of Environment,2008,112(4):1749-1772.
    [86]Nogues-Bravo D., Araujo M.B., Errea M.P., et al. Exposure of global mountain system to climate warming during 21st Century[J]. Global Environmental Change,2007,17(3-4):420-428.
    [87]Ojima D., Lavorel S., Graumlich L., et al. Terrestrial human-environment systems: The future of land research in IGBP Ⅱ[J]. IGBP Global Change Newsletter,2002,50:31-34.
    [88]Olsson L, Eklundh L.Fourier series for analysis of temporal sequences of satellite sensor imagery[J].International Journal of Remote Sensing,1994,15(18):3735-3741.
    [89]Otsubo, K.LU/GEC Project Report Ⅴ-Study on the Processes and Impacts of Land-use Change in China (In Japanese), CGER-REPORT,1999, CGER-1038-99:pp167.
    [90]Otsubo, K. LU/GEC Project Report Ⅵ-Study on the Processes and Impacts of Land-use Change in China (In Japanese), CGER-REPORT,2000, CGER-I042-2000:pp305.
    [91]Paola C., Foufoula-Georgiou E., Dietrich W.E., et al. Toward a unified science of the Earth's surface: Opportunities for synthesis among hydrology, geomorphology, geochemistry and ecology[J]. Water Reasources Research,2006,42:W03S10,doi:10.1029/2005WR004336.
    [92]Pearson R.L., Miller L.D. Remote mapping of standing crop biomass for estimation of the productivity of the short-grass Prairie[C]. In: Proceedings of the Eighth International Symposum on Remote Sensing of Environment,1972:1357-1381.
    [93]Peng G. From static biogeographical model to dynamic global vegetation model:a global perspective on modelling vegetation dynamics[J]. Ecological Modelling,2000,135(1):33-54.
    [94]Price J.C. Comparing MODIS and ETM+ data for regional and global land classification[J]. Remote Sensing of Environment,2003,86(4):491-499.
    [95]Qian Junping, Li Yan, Liao Qifang, et al. Applying vegetation index in the mapping of NPP pattern along the NSTEC[J]. Chinese Journal of Ecology,2001,20(6):46-49.
    [96]Quan Bin, Romkens M.J.M., Tao Jianjun, Li Bicheng. Spatial-temporal pattern and population driving force of land use change in Liupan Mountains region,Southern Ningxia,China[J]. Chinese Geographical Science,2008,18(4):323-330.
    [97]Reasoner M., Becker A., Bugmann H., et al. The mountain research initiative and past global changes[J]. PAGES Newsletter,2001,9(3):4-6Ruiz D., Moreno H.A., Gutierrez M.E., et al. Changing climate and endangered high mountain ecosystems in Colombia[J]. Science of the Total Environment, 2008,398(1-3):122-132.
    [98]Rumelhart D E, Hintont G E, Williams R J. Learning representations by back-propagating errors[J]. Nature,1986,323(6088):533-536.
    [99]Running S.W., Loveland T.R., et al. A Remote Sensing Based Vegetation Classification Logic for Global Land Cover Analysis[J]. Remote Sensing of Environment,1995,51(1):9-48.
    [100]Sala O.E., Chapin S.F., Armesto J.J., et al. Biodiversity: Global biodiversity scenarios for the year 2100[J]. Science,2000,287(5459):1770-1774.
    [101]Savitzky A, Golay M J E. Smoothing and differentiation of data by simplified least squares procedures[J]. Analytical Chemistry,1964,36:1627-1639.
    [102]Singh A. Review Article Digital change detection techniques using remotely-sensed data[J]. International journal of remote sensing,1989,10(6):989-1003.
    [103]Skole D., Tucker C. Evidence for tropical deforestation, fragmented habitat, and adversely affected habitat in the Brazilian Amazon:1978-1988[J]. Science,1993,260:1905-1910.
    [104]Sliva L., Williams D.D. Buffer zone versus whole catchment approaches to studying land use impact on river water quality[J]. Water Res,2001,35(14):3462-3472.
    [105]Solomon D., Lehmann J., Zech W. Land use effects on soil organic matter properties of chromic luvisols in semi-arid northern Tanzania: Carbon, nitrogen, lignin and carbohydrates[J]. Agriculture, Ecosystems & Environment,2000,78(3):203-213.
    [106]Sun R., Zhu Q.J. Distribution and seasonal change of net primary productivity in China from April 1992 to March 1993[J]. Acta Geographic Sinica,2000,55(1):36-45.
    [107]Thomson C.N., Hardin P. Remote sensing/GIS integration to identify potential low-income housing sites[J]. Cities,2000,17(2):97-109.
    [108]Tilman D., Fargione J., Wolff B., et al. Forecasting agriculturally driven global environment change[J]. Science,2001,292(5515):281-284.
    [109]Tomer M.D., Schilling K.E. A simple approach to distinguish land-use and climate-change effects on watershed hydrology[J]. Journal of hydrology,2009,376(1-2):24-33.
    [110]Townshend J.R.G Global data sets for land applications from the Advanced Very High Resolution Radiometer and introduction[J]. International Journal of Remote Sensing,1994,15(17):3319-3332.
    [111]Trimble S.W., Crosson P. U.S. Soil erosion rates-myth and reality[J]. Science,2000,289(5477): 248-250.
    [112]Tucker C.J., Townshend J.R.G, Goff T.E. African land-cover classification using satellite data[J]. Science,1985,227(4685):369-375.
    [113]Tucker C.J., Newcomb W.W., Los S.O., et al. Mean and Inter-year Variation of Growing Season Normalized Difference Vegetation Index for the Sahel 1981-1989[J]. International Journal of Remote Sensing,1991,12(6):1133-1135.
    [114]Tucker, C.J, Pinzon J.E., Brown, M.E, Slayback, D., Pak E., Mahoney R, Vermote E, El Saleous, N. An Extended AVHRR 8-km NDVI Data Set Compatible with MODIS and SPOT Vegetation NDVI Data[J]. International Journal of Remote Sensing,2005,26 (20):4485-4498.
    [115]Turner B.L., Meywr W.B., Skole D.L. Global land-use/land cover change: Towards an integrated program of study[J]. Ambio,1994,23 (1):91-95.
    [116]Turner B.L., Skole D., Sanderson S., et al. Land use and land cover change[J]. The front of geosciences,1997,4(1):26-33.
    [117]Veldkamp A., Lambin E.F. Predicting land-use change[J]. Agriculture, Ecosystems & Environment, 2001,85(1):1-6.
    [118]Viney N.R., Bormann H., Breuer L., et al. Assessing the impact of land use change on hydrology by ensemble modeling (LUCHEM) Ⅱ:ensemble combinations and predictions[J]. Advances in water resources,2009,32(2):147-158.
    [119]Viovy N., Arino O., Belward A.S. The Best Index Slope Extraction (BISE):a method for reducing noise in NDVI time-series[J]. International Journal of Remote Sensing,1992,13(8):1585-1590.
    [120]Vorosmarty C.J., Green P., Salisbury J., et al. Global water resources:vulnerability from climate change and population growth[J]. Science,2000,289(14):284-288.
    [121]Walsh S.J., Evans T.P., Welsh W.F., et al. Scale-dependent relationships between population and environment in northeastern Thailand[J]. Photogrammetric Engineering and Remote Sensing,1999, 65(1):97-105.
    [122]Wang Genxu, Wang Yibo, Qian Ju. Land cover change and its impacts on soil C and N in two watersheds in the center of the Qinghai-Tibetan Plateau[J]. Mountain Research and Development, 2006,26(2):153-162.
    [123]Wang Q, Otsubo K, Ichinose T. Estimation of potential and convertible arable land in China determined by natural conditions [J]. Journal of Global Environment Engineering,2002,8:67-78.
    [124]Wardlow B. D., Egbert S. L. Large-area crop mapping using time-series MODIS 250m NDVI data: An assessment for the US Central Great Plains [J]. Remote Sensing of Environment,2008,112(3): 1096-1116.
    [125]Weiss J.L., Gutzler D.S., Coonrod J.E.A, et al. Long-term vegetation monitoring with NDVI in a diverse semi-arid setting,central New Mexico, USA[J]. Journal of Arid Environments,2004,58(2): 249-272.
    [126]Willem J.D.Van Leeuwen, Barron J.Orr, et al. Multi-sensor NDVI data continuity: Uncertainties and implications for vegetation monitoring applications [J]. Remote Sensing of Environment, 2006, 100(1):67-81.
    [127]Yong S.S., Harris R.. Changing patterns of global-scale vegetation photosynthesis,1982-1999[J]. International Journal of Remote Sensing, 2005,26(20): 4537-4563.
    [128]Zheng Y.R., Zhou GS. A forest vegetation NPP model based on NDVI[J]. Acta Phytoecologica Sinica,2000,24 (1):9-12.
    [129]白红英,候钦磊,马新萍,等.50年来秦岭金钱河流域水文特征及其对降水变化的响应[J].地理科学,2012,32(10):1229-1236.
    [130]白红英,马新萍,高翔,等.基于DEM的秦岭山地1月气温及0℃等温线变化[J].地理学报,2012,67(11):1443-1450.
    [131]白晶,延军平,苏坤慧.1958-2007年秦岭南北气候变化的差异性分析[J].陕西师范大学学报(自然科学版),2010,38(6):98-105.
    [132]毕宝贵,刘月巍,李泽椿.秦岭大巴山地形对陕南强降水的影响研究[J].高原气象,2006,25(3):485-494.
    [133]布仁仓,常禹,胡远满,等.基于Kappa系数的景观变化测度[J].生态学报,2005,25(4):778-784.
    [134]曹云锋,王正兴,邓芳萍.3种滤波算法对NDVI高质量数据保真性研究[J].遥感技术与应用,2010,25(1):118-125.
    [135]陈健飞.“3S”技术与资源可持续利用[J].资源科学,1998,20(6):20-26.
    [136]陈军锋,李秀彬.森林植被变化对流域水文影响的争论[J].自然资源学报,2001,16(5):474-450.
    [137]陈晋,何春阳,卓莉.基于变化向量分析(CVA)的土地利用/覆盖变化动态监测(Ⅱ)—变化类型的确定方法[J].遥感学报,2001,5(5):346-352.
    [138]陈曦.塔里木河干流植被遥感监测时空多尺度协同分析方法[J].干旱区地理,2008,31(1):1-9.
    [139]陈佑启.论农村生态系统与经济的可持续发展[J].中国软科学,2000,(8):24-30.
    [140]陈佑启,何英彬.论土地利用/覆盖变化研究中的尺度问题[J].经济地理,2005,25(2):152-155.
    [141]陈佑启,Verburg P H中国土地利用/土地覆盖的多尺度空间分布特征分析[J].地理科学,2000,20(3):197-202.
    [142]陈佑启,Verburg P H,徐斌.中国土地利用变化及其影响的空间建模分析[J].地球科学进展,2000,19(2):116-127.
    [143]陈云浩,李晓兵,陈晋,等.1983-1992年中国陆地植被NDVI演变特征的变化矢量分析[J].遥感学报,2002,6(1):12-19.
    [144]陈云浩,李晓兵,等.1983-1992年中国陆地植被NDVI演变特征的变化矢量分析[J].遥感学报,2002,6(1):12-20.
    [145]程昌秀,严泰来,朱德海,张玮.土地利用动态监测中GIS与RS一体化的变更地块判别方法[J].自然资源学报,2001,16(4):386-389.
    [146]邓慧平,李秀彬,张明,等.气候与地表覆被变化对梭磨河流域水文影响的分析[J].地理科学,2001,21(6):493-497.
    [147]邓慧平,唐来华.沱江流域水文对全球气候变化的响应[J].地理学报,1998,53(1):42-48.
    [148]邓小炼.基于变化矢量分析的土地利用变化检测方法研究[D].北京:中国科学院遥感应用研究所,2006
    [149]董元华,杨林章.长江三角洲耕地资源态势与保护对策[J].长江流域资源与环境,1998,7(2):148:154.
    [150]符淙斌,王强.气候突变的定义和检测方法[J].大气科学.1992,16(4):482-493.
    [151]付新峰,杨胜天,刘昌明.雅鲁藏布江流域NDVI时空分布及与降水量的关系[J].北京师范大学学报(自然科学版)2006,42(5):539-542.
    [152]付新峰,杨胜天,刘昌明.雅鲁藏布江流域NDVI变化与主要气候因子的关系[J].地理研究,2007,26(1):60-66.
    [153]付新峰,杨胜天,刘昌明.雅鲁藏布江流域NDVI时空分布及与站点气候因子的关系[J].水土保持研究,2006,13(3):229-232.
    [154]高翔,白红英,张善红,等.1959-2009年秦岭山地气候变化趋势研究[J].水土保持通报,2012,32(1):207-211.
    [155]宫攀.中国土地分类研究[M].北京:经济科学出版社,2012:39-40.
    [156]宫攀,陈仲新,唐华俊,等.基于MODIS温度/植被指数的东北地区十地覆盖分类[J].农业工程学报,2006,22(9):94-99.
    [157]顾朝林.北京土地利用/覆盖变化机制研究[J].自然资源学报,1999,14(4):307-312.
    [158]郭广猛,谢高地,甄霖.泾河上游固原地区的NDVI变化与降水的相关性研究[J].资源科学,2007,29(2):178-182.
    [159]辜智慧,中国农业复种指数的遥感估算方法研究[D].北京:北京师范大学,2003.
    [160]郭庆华,喻红,等.北方森林草原生态过渡带的遥感研究[J].北京大学学报(自然科学版),1999,35(4):550-558.
    [161]何春阳,陈晋,陈云浩,史培军.土地利用/覆盖变化混合动态监测方法研究[J].自然资源学报,2001,16(3):255-262.
    [162]何书金,李秀彬,朱会义.环渤海地区耕地变化及动因分析[J].自然资源学报,2002,17(3):345-353.
    [163]侯钦磊,白红英,任园园等.50年来渭河干流径流变化及其驱动力分析[J].资源科学,2011,33(8):1505-1512.
    [164]侯钦磊.气候变化和LUCC对金钱河流域径流变化的影响[D].西安:西北大学,2012,44-45.
    [165]侯英雨,张佳华,何延波.利用遥感信息研究西藏地区主要植被年内和年际变化规律[J].生态学杂志,2005,24(11):1273-1276.
    [166]胡和平,田富强.物理性流域水文模型研究新进展[J].水利学报,2007,38(5):511-517.
    [167]胡珊珊,郑红星,刘昌明,等.气候变化和人类活动对白洋淀上游水源区径流的影响[J].地理学报,2012,67(1):62-70.
    [168]金翠,张柏,宋开山.基于MODIS数据的三江平原土地覆盖分类[J].资源科学,2009,31(3):515-522.
    [169]John Durkin,蔡竞峰,蔡自兴.决策树技术及其当前研究方向[J].控制工程,2005,(1):15-18.
    [170]康慕谊,朱源.秦岭山地生态分界线的论证[J].生态学报,2007,27(7):2774-2784.
    [171]雷明德.陕西植被[M].北京:科学出版社.1999,421-438.
    [172]雷明德.陕西省植被志[M].西安:西安地图出版,2011.
    [173]梁四海,陈江,金晓媒等.近21年青藏高原植被覆盖变化规律[J].地球科学进展,2007,22(1):33-40.
    [174]梁天刚,崔霞,冯琦胜,等.2001-2008年甘南牧区草地地上生物量与载畜量遥感动态监测[J].草业学报,2009,18(6):12-22.
    [175]李登科,范建忠,王娟.陕西省植被覆盖变化特征及其成因[J].应用生态学报,2010,21(11):2896-2903.
    [176]李丽娟,姜德娟,杨俊伟,等.陕西大理河流域土地利用/覆被变化的水文效应[J].地理研究,2010,29(7):1233-1243.
    [177]李儒,张霞,刘波,张兵.遥感时间序列数据滤波重建算法发展综述[J].遥感学报,2009,13(2):335-340.
    [178]李双成,蔡运龙.地理尺度转换若干问题的初步探讨[J].地理研究,2005,24(1):11-18.
    [179]李双双,延军平,万佳.全球气候变化下秦岭南北气温变化特征[J].地理科学,2012,32(7):853-858.
    [180]李晓兵.多空间分辨率遥感数据监测土地覆盖特征的比较研究[J].第四纪研究,2001,21(6):566-566.
    [181]李晓兵,等.多尺度遥感综合监测我国北方典型草原区植被盖度[J].植物学报,2003,45(10):1146-1156.
    [182]李晓兵,陈云浩,王宏,史培军.中国土地覆盖动态变化幅度的区域分异规律[J].地理科学,2004,24(3):270-274.
    [183]李晓兵,史培军.基于NOAA/AVHRR数据的中国主要植被类型NDVI变化规律研究[J].植物学报,1999,41(3):314-324.
    [184]李艳红,楚新正,金海龙.新疆艾比湖流域水文特征分析[J].水文,2006,26(5):68-71.
    [185]李亚云,杨秀春,朱晓华,等.遥感技术在中国土地荒漠化监测中的应用进展[J].地理科学进展,2009,28(1):55-62.
    [186]李月臣,陈晋,宫鹏,岳天祥.基于NDVI时间序列数据的土地覆盖变化检测指标设计[J].应用基础与工程科学学报,2005,13(3):261-275.
    [187]黎夏,叶嘉安.利用主成分分析改善土地利用变化的遥感监测精度-以珠江三角洲城市用地扩展为例[J].遥感学报,1997,1(4):282-289.
    [188]林文芳,汪权方,蒋芳.秦岭地区土地利用/土地覆被变化趋势分析[J].湖北大学学报(自然科学版),2011,3:011.
    [189]刘爱霞,王长耀,刘正军,牛铮.基于NOAA时间序列数据分析的中国西部荒漠化检测[J].武汉大学学报-自然科学版,2004,29(10):925-929.
    [190]刘闯,葛成辉.美国对地观测系统EOS中分辨率成像光谱仪(MODIS)遥感数据的特点与应用[J].遥感信息,2000,3:45-48.
    [191]刘红玉,刘兆富.三江平原典型湿地流域水文情势变化过程及其影响因素分析[J].自然资源学报,2005,20(4):493-501.
    [192]刘慧平,朱启疆.应用高分辨率遥感数据进行土地利用/覆盖变化监测的方法及其研究进展[J].资源科学,1999,21(3):23-27.
    [193]刘纪远.应用遥感和GIS技术开展中国土地利用变化研究[J].遥感-新进展与发展战略,1996,1:c3,
    [194]刘良明,梁益同,等.MODIS和AVHRR植被指数关系的研究[J].武汉大学学报,2004.29(4):307-311.
    [195]刘盛和,吴传钧,沈洪泉.基于GIS的北京城市土地利用扩展模式[J].地理学报,2000,55(4):407-416.
    [196]刘湘南,许红梅,曹文.吉林省前郭县土地利用变化空间差异的机制分析[J].地理科学进展,2001,20(1):60-66.
    [197]刘新卫,陈百明,史学正.国内LUCC研究进展综述[J].土壤,2004,36(2):132-135.
    [198]刘彦随.山地土地类型的结构分析与优化利用[J].地理学报,2001,56(4):426-436.
    [199]刘亚玲,潘志华,范锦龙,等.阴山北麓地区植被覆盖动态时空分析[J].资源科学,2005,27(4): 168-174.
    [200]刘勇洪,牛铮,王长耀.基于MODIS数据的决策树分类方法研究与应用[J].遥感学报,2005,9(4):405-412.
    [201]刘宇峰,孙虎,原志华.1960年至2007年汾河流域气温年际和季节性变化特征分析[J].资源科学,2011,33(3):489-496.
    [202]龙花楼,李秀彬.长江沿线样带土地利用格局及其影响因子分析[J].地理学报,2001,56(4):417-425.
    [203]鲁奇,战金艳,任国柱.北京近百年城市用地变化与相关社会人文因素简论[J].地理研究,2001,20(6):688-696.
    [204]骆剑承,周成虎,梁怡,裴韬.时空数据智能化处理与分析的理论和方法探讨[J].中国图象图形学报A辑,2001,6(9):836-841.
    [205]雒新萍.近25年来秦巴山区植被NDVI时空变化及对区域气候的响应[D].西安:西北大学,2009.
    [206]马明国,角媛梅,程国栋.利用NOAA-CHAIN监测近10a来中国西北土地覆盖的变化[J].冰川冻土,2002,24(1):68-72.
    [207]马明国,王建,王雪梅.基于遥感的植被年际变化及其与气候关系研究进展[J].遥感学报,2006,10(3):421-431.
    [208]马新萍,白红英,侯钦磊,等.1959年至2010年秦岭灞河流域径流量变化及其影响因素分析[J].资源科学,2012,34(7):1298-1305.
    [209]毛飞,侯英雨,唐世浩等.基于近20年遥感数据的藏北草地分类及其动态变化[J].应用生态学报,2007,18(8):1745-1750.
    [210]莫申国.GIS支持下的秦岭植被景观梯度分析[J].环境科学研究,2008,21(2):105-108.
    [211]莫申国,张百平.基于DEM的秦岭温度场模拟[J].山地学报,2007,25(4):406-411.
    [212]慕建利,李泽椿,李耀辉.高原东侧特大暴雨过程中秦岭山脉的作用[J].高原气象,2009,28(6):1282-1290.
    [213]倪健,李宜垠.从生态地理特征论中国东北样带(NECT)在全球变化研究中的科学意义[J].生态学报,1999,19(5):622-629.
    [214]倪绍祥.土地利用分类系统与士地利用遥感解译[J].南京大学学报(地理学专集)1989,(10):16-23.
    [215]倪绍祥.土地利用/覆被变化研究的几个问题[J].自然资源学报,2005,20(6):932-936.
    [216]聂树人.陕西自然地理[M],西安:陕西人民出版社,1981.
    [217]佘之祥.长江三角洲水土资源与区域发展[M].中国科学技术大学出版社,1997.
    [218]潘琛,杜培军,张海荣.决策树分类法及其在遥感图像处理中的应用[J].测绘科学,2008,33(1):208-211.
    [219]钱乐祥.遥感数字影像处理与地理特征提取[M].北京:科学出版社,2004,168-169.
    [220]任园园,张哲,侯钦磊,等.大巴山地区植被覆盖变化及其气候变化的响应[J].水土保持通报,2012,32(2):56-59.
    [221]沙志刚.数字遥感技术在土地利用动态监测中的应用概述[J].国土资源遥感,1999(2):7-11.
    [222]史海萍.山西气候变化及植被生态系统的响应研究[D].兰州:兰州大学,2006.
    [223]史培军,陈晋,潘耀忠.深圳市土地利用变化机制分析[J].地理学报,2000,55:151-160.
    [224]术洪磊,毛赞猷.GIS辅助下的基于知识的遥感影像分类方法研究[J].测绘学报,1997,26(4):329-336.
    [225]宋佃星.秦岭南北气候变化响应与适应研究[D].西安:陕西师范大学,2012.
    [226]宋杨,万幼川,中绍洪,等.基于傅立叶变换的混合分类模型用于NDVI时序影像分析[J].武汉大学学报,2007,32(5):406-409.
    [227]宋怡,马明国.基于SPOT VEGETATION数据的中国西北植被覆盖变化分析[J].中国沙漠,2007,27(1):89-93.
    [228]索玉霞.中亚五国植被覆盖变化与气候因子相关性分析[D].北京:中国科学院地理科学与资源研究所,2009.
    [229]孙丹峰,杨冀红,刘顺喜.高分辨率遥感卫星影像在土地利用分类及其变化监测的应用研究[J].农业工程学部,2002,18(2):160-164.
    [230]孙丹峰,杨冀红,刘顺喜.高分辨率遥感卫星影像在土地利用分类及其变化监测的应用研究[J].农业工程学报,2002,18(2):160-164.
    [231]孙华,白红英,张清雨,等.基于SPOT VEGETATION的秦岭南坡近10年来植被覆盖变化及其对温度的响应[J].环境科学学报,2010,30(3):649-654.
    [232]孙艳玲,杨小唤,王新生,等.基于决策树和MODIS数据的土地利用分类[J].资源科学,2007,29(5):169-174.
    [233]田庆久,闵祥军.植被指数研究进展[J].地球科学进展,1998,13(4):327-333.
    [234]唐海萍,陈玉福.中国东北样带NDVI的季节变化及其与气候因子的关系[J].第四季研究,2003,23(3):318-326.
    [235]王长耀,骆成凤,齐述华,等NDVI-Ts空间全国土地覆盖分类方法研究[J].遥感学报,2005,9(1):93-99.
    [236]王宏,李晓兵,莺歌,等.基于NOAA-NDVI的植被生长季模拟方法研究[J].地理科学进展,2006,25(6):21-32.
    [237]王宏,李霞,李晓兵,等.中国东北森林气象因子与NDVI的相关关系[J].北京师范大学学报(自然科学版),2005,41(4):425-430.
    [238]王宏,李晓兵,李霞,等.基于NOAA NDVI和MSAVI研究中国北方植被生长季变化[J].生态学报,2007,27(2):504-515.
    [239]王宏,李晓兵,余弘婧.基于NOAA/AVHRR NDVI监测中国北方典型草原的生长季及变化[J].植物生态学报,2006,30(3):365-374.
    [240]王红说,黄敬峰.基于MODIS NDVI时间序列的植被覆盖变化特征研究[J].浙江大学学报:农业与生命科学版,2009,35(1):105-110.
    [241]王军邦,陶健,李贵才,等.内蒙古中部MODIS植被动态监测分析[J].地球信息科学学报,2010,12(6):835-842.
    [242]王莉雯,牛铮,卫亚星.基于MODIS NDVI的新疆土地覆盖类型划分与潜在荒漠化区域探测[J].干旱区地理,2007,30(4):573-578.
    [243]王顺德,陈洪伟,张雄文,等.气候变化利人类活动在塔里木河流域水文要素中的反映[J].干旱区研究,2006,23(2):195-202.
    [244]王思远,刘纪远,张增祥等.中国土地利用时空特征分析[J].地理学报,2001,56(6):631-639.
    [245]王耀南.小波神经网络的遥感图象分类[J].中国图象图形学报:A辑,1999,4(5):368-371.
    [246]王正兴,刘闯.植被指数研究进展:从AVHRR-NDV(?)MODIS-EVI[J]生态学报,2003,23(5):979-987.
    [247]王正兴,刘闯,HUET E Alfredo,等.植被指数研究进展:从AVHRR-NDVI到MODIS-EVI[J].生态学报,2003,23(5):978-987.
    [248]王正兴,刘闯,陈文波,林听,等.MODIS增强型植被指数EVI与NDVI初步比较[J].武汉大学学报#信息科学版,2006,31(5):407-427.
    [249]王正兴,索玉霞,林昕,等.AVHRR全球时间序列研究进展:PAL-GMMS-LTDR[J].资源科学,2008,30(8):1252-1259.
    [250]王中根,郑红星,刘昌明,等.基于GIS/RS的流域水文过程分布式模拟——Ⅰ模型的原理与结构[J].水科学进展,2004,15(4):501-505.
    [251]邬建国.景观生态学—格局、过程尺度与等级[M].北京:高等教育出版社,2007:112-115.
    [252]吴连喜,严泰来,张玮.基于多层感知器神经网络对遥感融合图像和TM影像进行土地覆盖分类的研究[J].土壤通报,2001,32(1):133-136.
    [253]吴险峰,刘昌明.流域水文模型研究的若干进展[J].地理科学进展,2002,21(4):341-348.
    [254]吴艳宏,周俊.山地环境与全球变化研究的进展与展望[J].第四纪研究,2011,31(5):909-916.
    [255]吴云,曾源,赵炎,等.基于MODIS数据的海河流域植被覆盖度估算及动态变化分析[J].资源科学,2010,32(7),1417-1424.
    [256]郗敏,吕宪国,姜明.人工沟渠对流域水文格局的影响研究[J].湿地科学,2005,3(4):310-314.
    [257]胥彦玲,刘康,秦耀民,等.秦岭地区近20年来土地利用/土地覆盖变化及分析[J].水土保持学报,2006,20(2):144-148.
    [258]徐勇,Sidle R C黄土丘陵区燕沟流域土地利用变化与优化调控[J].地理学报,2001,56(6):657-666.
    [259]夏照华,张克斌,李瑞,等.基于NDVI的农牧交错区植被覆盖度变化研究-以宁夏盐池县为例[J].水土保持研究,2006(6):178-181.
    [260]杨桂山.长江三角洲耕地数量变化趋势及总量动态平衡前景分析[J].自然资源学报,2002,17(5):525-533.
    [261]杨建平,丁永建,陈仁升.长江黄河源区高寒植被变化的NDVI记录[J].地理学报,2005,60(3):467-478.
    [262]杨英.基于DEM的秦岭山区景观格局特征变化分析[D].西安:陕西师范大学,2008.
    [263]阎福礼,李震,等.基于NOAA/AVHRR数据的地表覆盖变化检测方法与检测[J].理论研究2003:15-20.
    [264]延昊,王长耀,等.多时相NOAA-AVHRR数据主成分分析生物学意义[J].遥感技术与应用,2001,16(4):209-214.
    [265]闫军辉,延军平,曹小星.厄尔尼诺对秦岭南北降水影响及致灾效应研究[J].陕西师范大学学报(自然科学版),2009,37(5):92-96.
    [266]叶嘉安,黎夏.珠江三角洲经济发展、城市扩张与农田流失研究—以东莞市为例[J].经济地理,1999,19(1):67-72.
    [267]于嵘.基于遥感时序数据的中国陆地植被覆盖变化分析研究[D].北京:中国科学院遥感应用研究所,2006.
    [268]喻锋,李晓兵,王宏,等.基于NDVI-Ts特征空间的中国土地覆盖分类研究[J].植物生态学报, 2006,29(6):934-944.
    [269]袁飞,谢正辉,任立良,等.气候变化对海河流域水文特性的影响[J].水利学报,2005,36(3):274-279.
    [270]张翀,任志远,袁鑫.西北地区NDVI对水热条件年内变化的响应及其空间特征[J].资源科学,2011,33(12):2356-2361.
    [271]张峰,吴炳方,刘成林,罗治敏.利用时序植被指数监测作物物候的方法研究[J].农业工程学报,2004,20(1):155一160.
    [272]张惠远,赵昕奕,蔡运龙,殷静.喀斯特山区土地利用变化的人类驱动机制研究-以贵州省为例[J].地理研究,1999,18(2):136-142.
    [273]张建军,纳磊,董煌标,等.黄土高原不同植被覆盖对流域水文的影响[J].生态学报,2008,28(8):3597-3605.
    [274]张军.中国东北地区主要植被类型NDVI变化与气候因子的关系[J].生态学报,2001,21(4):522-527.
    [275]张立伟,宋春英,延军平.秦岭南北年极端气温的时空变化趋势研究[J].地理科学,2011,31(8):1007-1011.
    [276]张清雨,白红英,孙华,等.近30年秦岭山地商洛段林地类型时空变化及其驱动力[J].环境科学学报,2010a,30(2):424430.
    [277]张清雨,白红英,孙华,等.近30年秦岭东西两县区森林景观类型的时空变化[J].环境科学学报,2010b,30(5):1101-1106.
    [278]张善红,白红英,高翔,等.太白山植被指数时空变化及其对区域温度的响应[J].自然资源学报,2011,26(8):1377-1386.
    [279]张新时,杨奠安.中国全球变化样带的设置与研究[J].第四纪研究,1995,1(4):43-53.
    [280]张新时,高琼,杨奠安等.中国东北样带的梯度分析及其预测[J].植物学报,1997,39(9):785-799.
    [281]张雪艳,胡云锋,等.蒙古高原NDVI的空间格局及空间分异[J].地理研究,2009,28(1):10-18.
    [282]张寅生,姚檀栋,蒲健辰,等.青藏高原唐古拉山冬克玛底河流域水文过程特征分析[J].冰川冻,1997,19(3):214-222.
    [283]张远东,徐应涛,顾峰雪.荒漠绿洲NDVI与气候、水文因子的相关分析[J].植物生态学报,2003,27(6):816-821.
    [284]张月丛,赵志强,李双成,等.基于SPOT NDVI的华北北部地表植被覆盖变化趋势[J].地理研 究,2008,27(4):745-755.
    [285]张云霞,等.草地植被盖度的多尺度遥感与实地测量方法综述[J].地球科学进展,2003,18(1):85-93.
    [286]张文忠,王传胜,吕昕,等.珠江三角洲土地利用变化与工业化和城市化的耦合关系[J].地理学报,2003,58(5):677-685
    [287]赵英时.遥感应用分析原理与方法[M].北京:科学出版社,2003,1490.
    [288]郑红星,王中根,刘昌明,等.基于GIS/RS的流域水文过程分布式模拟—Ⅲ模型的校验与应用[J].水科学进展,2004,15(4):506-510.
    [289]郑元润,周广胜.基于NDVI的中国天然森林植被净第-性生产力模型[J].植物生态学报,2000,4(1):9-12.
    [290]周旗,卞娟娟,郑景云.秦岭南北1951-2009年的气温与热量资源变化[J].地理学报,2011,66(9):1211-1218.
    [291]朱会义,李秀彬,何书金.环渤海地区士地利用的时空变化分析[J].地理学报,2001,56(3):253-260.
    [292]朱晓勤,刘康,秦耀民.基于GIS的秦岭山地植被类型与环境梯度的关系分析[J].水土保持学,2006,20(5):192-196.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700