用户名: 密码: 验证码:
人脐带间充质干细胞治疗脊髓损伤的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
脊髓损伤(spinal cord injury,SCI)在全球呈高发生率、高致残率、高耗费、发病年轻化等特点。脊髓损伤后由于广泛的神经元死亡、大量的轴突变性、弥漫性的脱髓鞘造成患者劳动能力丧失、生活不能自理以及各种并发症,其后果是终身性和毁灭性的,不仅给病人造成极大的痛苦,也给家庭和社会带来沉重的负担。一个多世纪以来,医学界先后采用了手术、药物、物理、基因以及细胞治疗等多种方法来治疗脊髓损伤,但都不能有效地解决患者不同程度的瘫痪这一难题。因此,寻找有效而安全的脊髓损伤后的治疗方法仍然是困扰医学界的一个难题且具有非常重要的科学意义、经济意义和社会意义。外源性干细胞移植是近十几年来脊髓损伤治疗的研究热点,近些年来在胎儿附属物如脐带中发现有丰富的间充质干细胞,具有低免疫原性、高增殖能力以及来源更方便等独特的优越性,体外研究显示能够向骨、软骨、心肌、血管内皮以及神经系细胞等方向分化。因此,本研究利用人源性脐带间充质干细胞移植治疗大鼠脊髓损伤,探讨其疗效和机制。
     第一部分人脐带间充质干细胞的分离、培养与鉴定
     目的:
     探讨人源性脐带间充质干细胞的培养方法并研究其生物学特性。
     方法:
     1.获取健康、足月、剖腹产胎儿脐带,剥离脐带wharton’s jelly胶,充分剪碎,组织块贴壁培养法获得脐带间充质干细胞,体外传代、纯化、扩增,倒置显微镜下观察细胞形态。
     2.流式细胞仪检测细胞表面标志物CD73、CD90、CD105、CD14、CD34、CD45、HLA-DR。
     结果:
     1.人脐带wharton’s jelly胶组织块培养5-7 d后组织块周围即可见新生细胞,为长梭形或多角形,培养至16-20 d细胞明显增多,达90%以上融合,类似成纤维样细胞,放射状或漩涡状分布。传代后细胞增殖迅速,生长3-4d细胞即呈80%-90%以上融合。
     2.流式细胞仪检测人脐带间充质干细胞高表达CD73、CD90、CD105,不表达CD14、CD34、CD45、HLA-DR。
     结论:
     1.应用组织块贴壁培养法能够从脐带wharton’s jelly胶中培养出大量增殖能力较强的成纤维样细胞。
     2.流式细胞仪检测显示脐带来源间充质干细胞和骨髓、脐血、胎盘等其它组织来源的间充质干细胞具有相似的表面标志。
     3.脐带能为间充质干细胞移植提供充足的干细胞来源。
     第二部分人脐带间充质干细胞磁标记后生物学特性及磁共振信号研究
     目的:
     探讨人脐带间充质干细胞超顺磁性氧化铁(superparamagnetic iron oxide, SPIO)纳米颗粒标记及磁共振示踪的可行性。
     方法:
     1.细胞的SPIO标记共分为5个浓度组,分别为对照(0μg)、5.6μg、11.2μg、22.4μg和44.8μg Fe/ml,其中每个浓度有四个孵育条件,即12h-pll,24h-pll,12h+pll和24h+pll。
     2.普鲁士蓝染色计数SPIO标记细胞,计算标记阳性率,MTT法检测SPIO标记细胞生长和增殖活性。
     3.体外磁共振GRE T2*WI和SE T2WI成像检测标记细胞的磁共振信号。
     4.标记细胞大鼠脊髓内移植后,磁共振TSE T2WI成像追踪体内移植磁标记细胞。
    
     结果:
     1.细胞标记阳性率随着孵育浓度和时间的延长而升高,在22.4μg Fe/ml浓度、24h-pll条件下,细胞的标记率达到94.1%,提高浓度到44.8μg Fe/ml、24h-pll,阳性率不再升高;在5.6μg、11.2μg、22.4μgFe/ml三个浓度下(孵育12h),增加pll可以显著提高标记率;在24h+pll条件下,细胞生长受到明显影响,大部分细胞坏死脱落。
     2.低于22.4μgFe/ml浓度标记,细胞生长和增殖活性不受到明显影响,浓度达到44.8μgFe/ml(孵育24h),二者均显著减弱。
     3. 22.4μg Fe/ml SPIO标记24h后,体外磁共振检查示GRE T2*WI和SE T2WI上均呈低信号,且随着细胞数目的增加,信号不断降低,与未标记细胞组具有统计学差异,且信号强度与细胞数目呈直线相关。
     4.细胞移植3d后MRI检查发现标记细胞注射点呈明显的低信号,而未标记细胞注射点信号稍有减低。14d后标记细胞注射点仍然可以追踪到标记细胞低信号。脊髓标本普鲁士蓝和核固红染色,可见标记细胞注射点有大量SPIO阳性细胞,而未标记细胞注射点则见到少量阳性细胞。
     结论:
     1.超顺磁性氧化铁纳米颗粒能够有效标记人源性脐带间充质干细胞,且不影响细胞的生长和增殖活性。
     2.磁标记细胞体外磁共振GRE T2*WI和SE T2WI成像可以产生特征性低信号转变,其信号强度与细胞数量成直线相关。
     3.磁共振TSE T2WI成像可以追踪体内移植磁标记细胞,持续时间达2w以上。
     第三部分人脐带间充质干细胞移植治疗脊髓损伤疗效及机制研究
     目的:
     研究人脐带间充质干细胞移植治疗脊髓损伤的疗效并初步探讨其机制。
     方法:
     1. 36只SD健康成年雌性大鼠随机分为:假手术组12只,大鼠只行T9-T11椎板切开术,不行脊髓打击伤;对照组12只,行T10段脊髓打击伤,伤后第1d脊髓内注射DMEM/F12;实验组,行T10段脊髓打击伤,伤后第1d脊髓内注射第5代人源性脐带间充质干细胞。
     2.于伤后1d、1w、3w、5w、7w、8w进行行为学BBB运动功能评分;细胞免疫荧光染色观察GDNF、BDNF和NT-3的表达;于伤后3w采用ELISA检测大鼠脊髓标本GDNF、BDNF和NT-3的含量。
     3.于伤后1m、2m采用免疫荧光染色观察脐带间充质干细胞在宿主脊髓内的迁移和分化。
     4.于伤后2m采用免疫组织化学染色观察GAP-43、NF-200、GFAP在脊髓内的表达。
     结果:
     1.假手术组运动功能于1w后基本正常,对照组和实验组随着时间的延长,运动功能逐渐恢复,在伤后3w内恢复明显。第5w后实验组的BBB评分与对照组相比明显升高。
     2.细胞免疫荧光染色结果显示BDNF、nestin无表达,GDNF、NT-3弱表达。ELISA检测可见实验组GDNF、NT-3含量比对照组明显增多,而BDNF两组间无明显差别。
     3.移植后2m,人脐带间充质干细胞在宿主脊髓内存活并且呈纵向迁移,距离达到5mm,损伤区可见大量hNu染色阳性细胞汇集。移植后第1m、2m未见到脐带间充质干细胞向神经元、少突胶质细胞和星形胶质细胞方向分化。
     4.移植后2m,GFAP免疫组化染色结果显示对照组脊髓损伤区周围灰质和白质GFAP表达明显比实验组和假手术组增强,对照组脊髓损伤程度比实验组重,GFAP形成致密的胶质瘢痕;NF-200免疫组化染色结果显示对照组脊髓损伤区周围NF-200阳性神经纤维长度明显比实验组缩短;GAP-43免疫组化染色结果显示实验组脊髓损伤区周围GAP-43阳性细胞比对照组明显增多,并且有较多典型的再生轴突生长锥样结构,对照组未见到典型的生长锥。
     结论:
     1.脐带间充质干细胞移植后能够在宿主脊髓内存活,并且沿着脊髓纵轴迁移。但是不能见到其向神经元、少突胶质细胞和星形胶质细胞方向分化。
     2.脐带间充质干细胞移植后能够分泌GDNF和NT-3促进大鼠脊髓损伤后后肢运动功能评分增加,从而改善行为学功能。
     3.脐带间充质干细胞移植后能够抑制大鼠脊髓损伤后胶质瘢痕的形成,促进神经纤维再生。
Spinal cord injury (SCI) results in loss of neurons, degeneration of axons, formation of glial scar, and severe functional impairment. Human umbilical cord mesenchymal stem cells (hUC-MSCs) can be induced to form neural cells in vitro. Therefore, the stem cells may be a valuable source in the repair of spinal cord injury.
     Part 1 Isolation, culture, and identification of human umbilical cord mesenchymal stem cells
     Objectives:
     To explore the isolation, culture, and expansion method of hUC-MSCs.
     Methods:
     1. Human umbilical cords were collected from full-term caesarian section births and processed within 3–6 h. Umbilical arteries and vein were removed, and the remaining tissue was diced into small fragments. The explants were transferred to culture flasks containing DMEM/F12 along with 10% fetal bovine serum. They were left undisturbed for 4–6 days to allow migration of cells from the explants. They were re-fed and passaged as necessary.
     2. The mesenchymal cells were trypsinized and suspended in DMEM/F12 at a concentration of 3×106/ml. A 100μl sample was incubated for 35 min at 48 oC with 15μl of various mouse anti-human antibodies against following surface markers: CD14, CD34, CD45, CD90, CD73, CD105, HLA-DR. Then, they were washed, centrifuged, and fixed in 1.5 ml of 4% paraformaldehyde. A FACScan machine was used to analyze antibody binding.
     Results:
     1. hUC-MSCs were successfully isolated from umbilical cord explants and expanded as primary cultures. The cells demonstrated a fibroblast-like or spindle-shaped morphology in confluent layers in culture.
     2. Flow cytometry showed that the cells expressed high levels of matrix markers (CD90) and mesenchymal stem cells (MSCs) markers (CD73, CD105) but did not express hematopoietic lineage markers (CD34, CD45, CD14) and HLA-DR.
     Conclusions:
     1. MSCs can be successfully isolated, cultured, and expanded from human umbilical cord Wharton’s jelly using routine technical approaches.
     2. hUC-MSCs express surface markers similar to MSCs derived from bone marrow, umbilical cord blood, and placenta.
     3. Wharton’s jelly of umbilical cord is a rich and easily attainable source of MSCs for cell therapy.
     Part 2 Biological characteristics and MRI of superparamagnetic iron oxide nanoparticles labeled human umbilical cord mesenchymal stem cells
     Objectives:
     The purpose of this study was to evaluate the influence of superparamagnetic iron oxide (SPIO) nanoparticles on hUC-MSCs and the feasibility of tracking for hUC-MSCs by noninvasive magnetic resonance imaging (MRI).
     Methods:
     1. The label (Feridex) was added to the cultures at concentrations equivalent to 5.6, 11.2, 22.4, and 44.8μg Fe/ml (diluted with DMEM/F12) and incubated for 12 or 24 h. Control cultures were incubated without SPIO.
     2. Prussian Blue staining was used to determinate the labeling efficiency (number of Prussian Blue labeled cells/total number of cells in the sample). Cell viability and growth curves were evaluated with tetrazolium dye 3-(4,5-dimethylthiazol-2)-2,5-diphenyl- 2H-tetrazolium bromide (MTT) assay.
     3. In vitro MRI Gradient echo T2-weighted (GRE T2*WI) images [repetition time (TR) 3,200 ms; echo time (TE) 354 ms; FOV=172.5×172.5; slice thickness=3 mm] and spin echo T2-weighted (SE T2WI) images (TR 6,000 ms; TE 98 ms; FOV=220×220; slice thickness=4 mm) were applied to examine SPIO-labeled hUC-MSCs.
     4. In vivo MRI was used to track SPIO-labeled hUC-MSCs transplanted in rat spinal cord.
     Results:
     1. A good correlation between SPIO uptake and the iron concentration in the culture medium was observed. As the concentration of SPIO and the incubation time increased, the amount of intracellular iron increased.
     2. The data show that neither survival nor proliferation potential was impaired in dealing with 22.4μg Fe/ml for 24 h. However, treatment with 44.8μg Fe/ml for 24 h impairs cell survival and proliferation significantly.
     3. GRE T2*WI and SE T2WI images revealed the presence of a hypointense signal. A good linear correlation between the number of labeled cells and intensity of the GRE T2*WI images was observed. Similar result was obtained in the SE T2WI images.
     4. In vivo MRI 3 days and 14 days after injection showed a large reduction in signal intensity in the region transplanted with SPIO-labeled hUC-MSCs. The images from unlabelled hUC-MSCs showed a smaller reduction in signal intensity. Prussian Blue co-stained with nuclear fast red confirmed the presence of SPIO-labeled cells in the region of transplant site with SPIO-labeled hUC-MSCs.
     Conclusions:
     1. hUC-MSCs can be labeled efficiently without cell toxicity using SPIO at optimized low dosages.
     2. Noninvasive imaging of transplanted hUC-MSCs is feasible. These results may be beneficial to cell-based therapies for clinical implementation.
     Part 3 Transplantation of human umbilical cord mesenchymal stem cells in rats traumatic spinal cord injury
     Objectives:
     To evaluate the effects of hUC-MSCs transplantation on functional recovery in rats traumatic spinal cord injury.
    
     Methods:
     1. Rats were randomly divided into 3 groups, sham operation group (n=12), control group (n=12), and hUC-MSCs group (PC, n=12). All groups were subjected to spinal cord injury by weight drop device except for the sham group. Control group received DMEM/F12 injections, but hUC-MSCs group undertook cells suspension treatments.
     2. Rats from each group were examined for neurological function. Enzyme linked immunosorbent assay (Elisa) was used for evaluation of contents of brain-derived neurotrophic factor (BDNF), glial cell line-derived neurotrophic factor (GDNF), and neurotrophin-3 (NT-3).
     3. Survival, migration, and differentiation of hUC-MSCs was explored with immunofluorescence.
     4. The expression of GAP-43, NF-200, and GFAP was also assessed using immunohistochemistry and immunofluorescence.
     Results:
     1. Significant improvements in locomotion were observed in the hUC-MSCs groups. There is statistical significance compared with control group.
     2. Transplanted hUC-MSCs produced large amounts of GDNF and NT-3 in the host spinal cord, which may be beneficial to the repair of injured spinal cord.
     3. Transplanted hUC-MSCs survived for at least 8 weeks. However, they did not differentiate into neural cells.
     4. The functional recovery was accompanied by increased length of neurofilament positive fibers and increased numbers of growth cone around the lesion site. There were fewer reactive astrocytes in both the rostral and caudal stumps of the spinal cord in the hUC-MSCs group than in the control group.
     Conclusions:
     1. hUC-MSCs can survive and migrate in the host spinal cord after transplantation without differentiating into neural cells.
     2. hUC-MSCs can inhibit the formation of glial scar and enhance neuroregeneration, which promote the functional recovery after SCI.
     3. These data suggest that hUC-MSCs may possess therapeutic potential for traumatic spinal cord injury.
引文
1. Rossignol S, Schwab M, Schwartz M, et al. Spinal Cord Injury: Time to Move? J Neurosci, 2007; 27(44):11782-11792.
    2. Dietz V, Curt A. Neurological aspects of spinal-cord repair: promises and challenges. Lancet Neurol, 2006;5(8):688-694.
    3. Bradbury EJ, McMahon SB. Spinal cord repair strategies: why do they work? Nat Rev Neurosci, 2006;7(8):644-653.
    4.严烁,费智敏,王勇.脊髓损伤的治疗进展.中华神经外科疾病研究杂志, 2008;7(1):68-69.
    5.雷德强,赵洪洋,刘如恩,等.脊髓损伤的治疗进展.中国现代神经疾病杂志, 2008;8(1):71-74.
    6.万军,康意军.脊髓损伤治疗的现状与进展.脊柱外科杂志, 2008; 6(5):304-307.
    7. Hill MD. Stroke: the dashed hopes of neuroprotection. Lancet Neurol, 2007; 6(1):2-3.
    8. Keirstead HS, Nistor G, Bernal G, et al. Human embryonic stem cell-derived oligodendrocyte progenitor cell transplants remyelinate and restore locomotion after spinal cord injury. J Neurosci, 2005;25(19):4694-4705.
    9. Karimi-Abdolrezaee S, Eftekharpour E, Wang J, et al. Delayed transplantation of adult neural precursor cells promotes remyelination and functional neurological recovery after spinal cord injury. J Neurosci, 2006;26(13):3377-3389.
    10. Hofstetter CP, Schwarz EJ, Hess D, et al. Marrow stromal cells from gaiding strands in the injured spinal cord and promote recovery. Prac Natl Acad Sci USA, 2002; 99(4):2199-2204.
    11. Reubinoff BE, Pera MF, Fong CY et al. Embryonic stem cell lines from human blastocysts: somatic differentiation in vitro. Nat Biotechnol, 2000;18:399-404.
    12. Civin CI. Commitment to biomedical research: clearing unnecessary impediments to progress. Stem Cells, 2002;20:482-484.
    13. Freed CR. Will embryonic stem cells be a useful source of dopamine neurons for transplant into patients with Parkinson’s disease? Proc Natl Acad Sci USA,2002;99:1755-1757.
    14. Wright LS, Prowse KR, Wallace K, et al. Human progenitor cells isolated from the developing cortex undergo decreased neurogenesis and eventual senescence following expansion in vitro. Exp Cell Res, 2006;312(11):2107-2120.
    15. Pittenger MF, Mackay AM, Beck SC et al. Multilineage potential of adult human mesenchymal stem cells. Science, 1999;284:143-147.
    16. Rao MS, Mattson MP. Stem cells and aging: expanding the possibilities. Mech Ageing Dev, 2001;122;713-734.
    17. Marcus AJ, Coyne TM, Rauch J, et al. Isolation, characterization, and differentiation of stem cells derived from the rat amniotic membrane. Differentiation, 2008;76 (2): 130-144.
    18. De Coppi P, Bartsch G Jr, Siddiqui MM, et al. Isolation of amniotic stem cell lines with potential for therapy. Nature Biotechnol, 2007; 25 (1):100-106.
    19. Mitchell KE, Weiss ML, Mitchell BM, etal. Matrix cells from Wharton’s jelly form neurons and glia. Stem Cells, 2003;21:50-60.
    20.范存刚,张庆俊,韩忠朝.人脐带间充质干细胞向神经细胞分化的研究.中华神经外科杂志, 2005;21(7):388-392.
    21.孙洪涛,刘晓智,张赛.脐带间充质干细胞分离、鉴定与神经分化.中华神经外科疾病研究杂志, 2008;7(2):132-135.
    22.袁源,杨树源,韩忠朝,等.人脐带间充质干细胞分离纯化及基本生物学特性研究.中华实验外科杂志, 2006; 23(1):118.
    23.马廉,崔冰琳,冯学永,等.人脐带间充质干细胞的生物学特性及向神经样细胞分化的研究.中华儿科杂志, 2006;44(7):513-517.
    24. Lee OK, Kuo TK, Chen WM, et al. Isolation of multipotent mesenchymal stem cells from umbilical cord blood. Blood, 2004;103(5):1669-1675.
    25. Kadner A, Zund G, Maurus C, et al. Human umbilical cord cells for cardiova scular tissue engineering: acomparative study. Eur J Cardiothorac Surg, 2004; 25:635-641.
    26. Troyer DL, Weiss ML. Concise review: wharton’s jelly-derived cells are a primitive stromal cell population. Stem cells, 2008;26:591-599.
    27. Kadner A, Hoerstrup SP, Tracy J, et al. Human umbilical cord cells: a new cell source for cardiovascular tissue engineering. Ann Thorac Surg, 2002;74(4):S1422-1428.
    28. Romanov YA, Svintsitskaya VA, Smirnov VN. Searching for alternative sources of postnatal human mesenchymal stem cells: Candidate MSC-like cells from umbilical cord. Stem Cells, 2003;21:105-110.
    29. Wang HS, Hung SC, Peng ST, et al. Mesenchymal stem cells in the Wharton′s jelly of the human umbilical cord. Stem Cells, 2004;22:1330-1337.
    30. Lu LL, Liu YJ, Yang SG, et al. Isolation and characterization of human umbilical cord mesenchymal stem cells with hematopoiesis-supportive function and other potentials. Haematologica, 2006; 91:1017-1026.
    31. Sarugaser R, Lickorish D, Baksh D, et al. Human umbilical cord perivascular (HUCPV) cells: a source of mesenchymal progenitors. Stem Cells, 2005;23:220-229.
    32.何红燕,崔冰琳,冯学永,等.人脐带间充质干细胞分化为神经细胞的形态学改变.国际输血及血液学杂志, 2006;29(6):483-488.
    33. Conconi MT, Burra P, Di Liddo R, et al. CD105(+) cells from Wharton's jelly show in vitro and in vivo myogenic differentiative potential. Int J Mol Med, 2006;18:1089-1096.
    34. Panepucci RA, Siufi JL, Silva WA Jr, et al. Comparison of gene expression of umbilical cord vein and bone marrow–derived mesenchymal stem cells. Stem Cells, 2004;22(7):1263-1278.
    35. Weiss ML, Medicetty S, Bledsoe AR, et al. Human umbilical cord matrix stem cells: Preliminary characterization and effect of transplantation in a rodent model of Parkinson’s disease. Stem Cells, 2006;24:781-792.
    36.郑志娟,庄文欣,付文玉.人脐带间充质干细胞的研究进展.解剖科学进展, 2008;14(1):100-104.
    37. Denker H. Embryonic stem cells: An exciting field for basic research and tissue engineering, but also an ethical dilemma? Cells Tissues Organs, 1999;165(3-4): 246-249.
    38. Dominici M, Le Blanc K, Mueller I et al. Minimal criteria for defining multipotentmesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy, 2006;8:315-317.
    39. Parolini O, Alviano F, Bagnara GP, et al. Concise review: isolation and characterization of cells from human term placenta: outcome of the first international workshop on placenta derived stem cells. Stem Cells, 2008;26:300-311.
    40.张浪辉,刘拥军,吕璐璐,等.脐带源间充质干细胞对异源性脐带血淋巴细胞激活与增殖的抑制作用.中国肿瘤生物治疗杂志, 2006;13(3):191-195.
    41.张颢,龚伟,孟磊,等.脐带间充质干细胞对T细胞的免疫调控研究.中国免疫学杂志, 2007;23(12):1102-1105.
    42.吕璐璐.人脐带来源间充质干细胞生物学特性的研究及其对移植物抗宿主病作用的初步探讨.福建医科大学,博士研究生毕业论文.
    43. Medicetty S, Bledsoe A, Fahrenholtz CB et al. Transplantation of pig stem cells into rat brain: Proliferation during the first 8 weeks. Exp Neurol, 2004;190:32-40.
    44. Weiss ML, Mitchell KE, Hix JE et al. Transplantation of porcine umbilical cord matrix cells into the rat brain. Exp Neurol, 2003;182:288-299.
    45. Zipori D. The stem state: plasticity is essential, whereas self-renewal and hierarchy are optional. Stem Cells, 2005;23:719-726.
    46. Baksh D, Yao R, Tuan RS. Comparison of proliferative and multilineage differentiation potential of human mesenchymal stem cells derived from umbilical cord and bone marrow. Stem cells, 2007;25:1384-1392.
    47. Karahuseyinoglu S, Cinar O, Kilic E, et al. Biology of stem cells in human umbilical cord stroma: in situ and in vitro surveys. Stem Cells, 2007;25(2):319-331.
    48.袁源,杨树源,韩忠朝,等.人脐带间充质干细胞体外扩增和向神经元样细胞定向诱导分化的研究.中华神经医学杂志, 2006;5(3):230-236.
    49.闫俊卿,韩涛,朱争艳.人脐带间充质干细胞生物学特性及向类肝细胞的分化.世界华人消化杂志, 2008;16(15):1639-1644.
    50.李俊林,李德华,赵宝东,等.人脐带间充质干细胞体外向胰岛样细胞诱导分化及其治疗糖尿病效果.中国组织工程研究与临床康复, 2009;13(14):2636-2640.
    51. Chao KC, Chao KF, Fu YS, et al. Islet-like clusters derived from mesenchymal stemcells in wharton’s jelly of the human umbilical cord for transplantation to control type 1 diabetes. PLoS One, 2008;3(1):e1451.
    52. Ben-Hur T, van Heeswijk RB, Einstein O, et al. Serial in vivo MR tracking of magnetically labeled neural spheres transplanted in chronic EAE mice. Magn Reson Med, 2007;57:164-171.
    53. Politi LS, Bacigaluppi M, Brambilla E, et al. Magnetic resonance-based tracking and quantification of intravenously-injected neural stem cell accumulation in the brain of mice with experimental multiple sclerosis. Stem Cells, 2007;25:2583-2592.
    54. Heymer A, Haddad D, Weber M, et al. Iron oxide labelling of human mesenchymal stem cells in collagen hydrogels for articular cartilage repair. Biomaterials, 2008;29(10):1473-1483.
    55.邓学峰,高长青.干细胞的磁标记与磁共振成像活体示踪.中国胸心血管外科临床杂志, 2009;16(1):59-62.
    56. Weissleder R. Molecular imaging: exploring the next frontier. Radiology, 1999;212(3):609-614.
    57. Aieher A, Brenner W, Zuhayra M, et al. Assessment of the tissue distribution of transplanted human endothelial progenitor cells by radioactive labeling. Circulation, 2003;107(16):2134-2139.
    58. Hofmann M, Wollert KC, Meyer GP, et al. Monitoring of bone marrow cell homing into the infarcted human myocardium. Circulation, 2005;111(17):2198-2202.
    59. Arai T, Kofidis T, Bulte JW,et al. Dual in vivo magnetic resonance evaluation of magnetically labeled mouse embryonic stem cells and cardiac function at 1.5t. Magn Reson Med, 2006;55(l):203-209.
    60. Modo M, Mellodew K, Cash D, et al. Mapping transplanted stem cell migration after a stroke:a serial, in vivo magnetic resonance imaging study. NeuroImage, 2004;21:311-317.
    61.柯以铨,修俊刚,杨志军,等.超顺磁性氧化铁颗粒用于分子成像和神经细胞成像的研究进展.中华神经医学杂志, 2006;5(3):308-311.
    62. 62 Sun R, Dittrich J, Le-Huu M, et al. Physical and biological characterization ofsuperparamagnetic iron oxide and ultrasmall superparamagnetic iron oxide-labeled cells: a comparison. Invest Radiol, 2005;40(8):504-513.
    63. Josephson L, Tung CH, Moore A, et al. High-efficiency intracellular magnetic labeling with novel superparamagnetic-Tat peptide conjugates. Bioconjug Chem, 1999;10(2):186-191.
    64. Lewin M, Carlesso N, Tung CH, et al.Tat peptide-derivatized magnetic nanoparticles allow in vivo tracking and recovery of progenitor cells. Nat Biotechnol, 2000;18(4):410-414.
    65. Bulte JW, Zhang S, van Gelderen P, et al. Neurotransplantation of magnetically labeled oligodendrocyte progenitors:magnetic resonance tracking of cell migration and myelination. Proc Natl Acad Sci USA, 1999;96(26):15256-15261.
    66. Jefferies WA, Brandon MR, Hunt SV, et al.Transferrin receptor on endothelium of brain capillaries. Nature, 1984;312(5990):162-163.
    67. Bulte JW, Douglas T, Witwer B, et al. Magnetodendrimers allow endosomal magnetic labeling and in vivo tracking of stem cells. Nat Biotechnol, 2001;19 (12):1141-1147.
    68. Kostura L, Kraitchman DL, Mackay AM, et al. Feridex labeling of mesenchymal stem cells inhibits chondrogenesis but not adipogenesis or osteogenesis. NMR Biomed, 2004; 17(7):513-517.
    69. Arbab AS, Yocum GT, Kalish H, et al. Efficient magnetic cell labeling with protamine sulfate complexed to ferumoxides for cellular MRI. Blood, 2004;104 (4):1217-1223.
    70. Sch?fer R, Kehlbach R, Wiskirchen J, et al. Transferrin receptor upregulation: in vitro labeling of rat mesenchymal stem cells with superparamagnetic iron oxide. Radiology, 2007;244(2):514-523.
    71. Rice HE, Hsu EW, Sheng H, et al. Superparamagnetic iron oxide labeling and transplantation of adipose-derived stem cells in middle cerebral arteryocclusion–injured mice. Am J Roentgenol, 2007;188(4):1101-1108.
    72. Neri M, Maderna C, Cavazzin C, et al. Efficient in vitro labelingof human neural precursor cells with superparamagnetic iron oxide particles:Relevance for in vivo cell tracking. Stem Cells, 2008;26:505–516.
    73. Dunning MD, Lakatos A, Loizou L, et al. Superparamagnetic iron oxidelabeled Schwann cells and olfactory ensheathing cells can be traced in vivo by magnetic resonance imaging and retain functional properties after transplantation into the CNS. J Neurosci, 2004;24:9799–9810.
    74. Frank JA, Miller BR, Arbab AS, et al. Clinically applicable labeling of mammalian and stem cells by combining superparamagnetic iron oxides and transfection agents. Radiology, 2003;228(2):480-487.
    75. Arbab AS, Bashaw LA, Miller BR, et al. Characterization of biophysical and metabolic properties of cells labeled with superparamagnetic iron oxide nanoparticles and transfection agent for cellular MR Imaging. Radiology, 2003;229(3):838-846.
    76. Bulte JW, Kraitchman DL, Mackay AM, et al. Chondrogenic differentiation of mesenchymal stem cells is inhibited after magnetic labeling with ferumoxides. Blood, 2004;104(10):3410-3412.
    77. Arbab AS, Yocum GT, Rad AM, et al. Labeling of cells with ferumoxides–protamine sulfate complexes does not inhibit function or differentiation capacity of hematopoietic or mesenchymal stem cells. NMR Biomed, 2005;18(8):553-559.
    78. Arbab AS, Yocum GT, Kalish H,et al. Feride–protamine sulfate labeling does not alter differentiation of mesenchymal stem cells. Blood, 2004;104(10):3412-3413.
    79. Guzman R, Uchida N, Bliss TM, et al. Long-term monitoring of transplanted human neural stem cells in developmental and pathological contexts with MRI. Proc Natl Acad Sci USA, 2007;104(24):10211-10216.
    80. Lee IH, Bulte JW, Schweinhardt P, et al. In vivo magnetic resonance tracking of olfactory ensheathing glia grafted into the rat spinal cord. Exp Neurol, 2004;187:509-516.
    81. Lim PAC, Tow AM. Recovery and regeneration after spinal cord injury: a review and summary of recent literature. Ann Acad Med Singapore, 2007;36:49-57.
    82. De-Vivo MJ. Causes and cost of spinal cord injury in the United States. Spinal Cord, 1997, 35:809-813
    83. Thuret S, Moon LD, Gage FH. Therapeutic interventions after spinal cord injury. NatRev Neurosci, 2006;7(8):628-643.
    84. Wamil AW, Wamil BD, Hellerqvist CG. CM101-mediated recovery of walking ability in adult mice paralyzed by spinal cord injury. Proc Natl Acad Sci USA, 1998;95(22):13188-13193.
    85. Basso DM, Beattie MS, Bresnahan JC. Graded histological and locomotor outcomes after spinal cord contusion using the NYU Weight-Drop device versus transection. Exp Neurol, 1996;139:244-256.
    86. Xu XM, Guenard V, Kleitman N, et al. Axonal regeneration into Schwann cell-seeded guidance channels grafted into transected adult rat spinal cord. J Comp Neurol, 1995;351(l):145-160.
    87. Talae R, Friedman JA, Moore MJ, et al. Animal models of spinal cord injury for evaluation of tissue engineering treatment strategies. Biomaterials, 2004;25(9):1505-1510.
    88. Kwon BK, Oxland TR, Tetzlaff W. Animal models used in spinal cord regeneration researeh. Spine, 2002;27(14):1504-1510.
    89. Metz GA, Curt A, van de Meent H, et al. Validation of the weight-drop contusion model in rats: a comparative study of human spinal cord injury. J Neurotrauma, 2000;17(1):l-17.
    90. Basso DM, Beattie MS, Bresnahan JC. A sensitive and reliable locomotor rating scale for open field testing in rats. J Neurotrauma, 1995;12(l):l-21.
    91. Inman DM, Steward O. Physical size does not determine the unique histopathological response seen in the injured mouse spinal cord. J Neurotrauma, 2003;20:33-42.
    92. Nakamura T, Hua Y, Keep R, et al. Estrogen therapy for experimental intracerebral hemorrhage. J Neurosurg, 2005;103:97-103.
    93. Murphy SJ, Littleton Kearney MT, Hurn PD. Progesterone administra-tion during reperfusion, but not preischemia alone, reduces injury in ovariectomized rats. J Cereb Blood Flow Metab, 2002;22:1181-1188.
    94. Roof RL, Duvdevani R, Stein DG. Gender influences outcome of brain injury progesterone plays a protective role. Brain Res, 1993;606:333-336.
    95. Regan RF, Guo Y. Estrogens attenuate neuronal injury due to hemoglobin, chemical hypoxia, and excitatory amino acids in murine cortical cultures. Brain Res, 1997;764:133-140.
    96. Culmsee C, Vedder H, Ravati A, et al. Neuroprotection by estrogens in a mouse model of focal cerebral ischemia and in cultured neurons:evidence for a receptor-independent antioxidative mechanism. J Cereb Blood Flow Metab, 1999;19:1263-1269.
    97. Khan M, Griebel R. Acure spinal cord injury in the rats: comparsion of three experiment techniques. Can Neurol Sci, 1983;10(2):161-163.
    98. Rosenzweiga ES, McDonalda JW. Rodent models for treatment of spinal cord injury: research trends and progress toward useful repair. Curr Opin Neurol, 2004;17:121-131.
    99. Qi ML, Wakabayashi Y, Enomoto M, et a1. Changes in neurocan expression in the distal spinal cord stump following complete cord transaction: a comparison between infant and adult rats. Neuroscience Res, 2003;45:181-188.
    100. Purdy PD, Dong RT, White CL, et a1. Percutaneous translumbar spinal cord compression injury in a dog model that uses angioplasty balloons: MR imaging and histopathologic findings. AJNR Am J Neuroradiol, 2003;24(2):177-184.
    101. Hendricks WA, Pak ES, Owensby JP, et al. Predifferentiated embryonic stem cells prevent chronic pain behaviors and restore sensory function following spinal cord injury in mice. Mol Med, 2006;12(1-3):34-46.
    102. Cao Q, Xu XM, Devries WH, et al. Functional recovery in traumatic spinal cord injury after transplantation of multineurotrophin-expressing glial-restricted precursor cells. J Neurosci, 2005;25(30):6947-6957.
    103. Lu P, Jones LL, Tuszynski MH, et al. Axon regeneration through scars and into sites of chronic spinal cord injury. Exp Neurol, 2007;203(1):8-21.
    104. Hofstetter CP, Holmstrom NA, Lilja JA, et al. Allodynia limits the usefulness of intraspinal neural stem cell grafts; directed differentiation improves outcome. Nat Neurosci, 2005;8(3):346-353.
    105. Hamada M, Yoshikawa H, Ueda Y, et al. Introduction of the MASH1 gene into mouseembryonic stem cells leads to differentiation of motoneuron precursors lacking Nogo receptor expression that can be applicable for transplantation to spinal cord injury. Neurobiol Dis, 2006;22(3):509-522.
    106. Teng YD, Lavik EB, Qu X, et al. Functional recovery following traumatic spinal cord injury mediated by a unique polymer scaffold seeded with neural stem cells. Proc Natl Acad Sci USA, 2002;99(5):3024-3029.
    107. Feron F, Perry C, Cochrane J, et al. Autologous olfactory ensheathing cell transplantation in human spinal cord injury.Brain, 2005;128(Pt 12):2951-60.
    108. Ao Q, Wang AJ, Chen GQ, et al. Combined transplantation of neural stem cells and olfactory ensheathing cells for the repair of spinal cord injuries. Med Hypotheses, 2007;69(6):1234-1237.
    109. Zeng YS, Ding Y, Wu LZ, et al. Co-transplantation of schwann cells promotes the survival and differentiation of neural stem cells transplanted into the injured spinal cord. Dev Neurosci, 2005;27(1):20-26.
    110. Guo JS, Zeng YS, Li HB, et al. Cotransplant of neural stem cells and NT-3 gene modified Schwann cells promote the recovery of transected spinal cord injury. Spinal Cord, 2007;45(1):15-24.
    111. Zhang X, Zeng Y, Zhang W, et al. Co-transplantation of neural stem cells and NT-3- overexpressing Schwann cells in transected spinal cord. J Neurotrauma, 2007;24(12):1863-1877.
    112. Fu YS, Shih YT, Cheng YC, et al. Transformation of human umbilical mesenchymal cells into neurons in vitro. J Biomed Sci, 2004;11:652-660.
    113. Ma L, Feng XY, Cui BL, et al. Human umbilical cord Wharton’s Jelly-derived mesenchymal stem cells differentiation into nerve-like cells. Chin Med J (Engl), 2005;118:1987-1993.
    114. Fu YS, Cheng YC, Lin MY, et al. Conversion of human umbilical cord mesenchymal stem cells in wharton’s jelly to dopaminergic neurons in vitro: Potential therapeutic application for parkinsonism. Stem Cells, 2006;24:115-124.
    115. Lund RD, Wang S, Lu B, et al. Cells isolated from umbilical cord tissue rescuephotoreceptors and visual functions in a rodent model of retinal disease. Stem Cells, 2007;25(3):602-611.
    116. Ding DC, Shyu WC, Chiang MF, et al. Enhancement of neuroplasticity through up regulation of beta1-integrin in human umbilical cord-derived stromal cell implanted stroke model. Neurobiol Dis, 2007;27(3):339-353.
    117. Jomura S, Uy M, Mitchell K, et al. Potential treatment of cerebral global ischemia with Oct-4+ umbilical cord matrix cells. Stem Cells, 2007;25:98-106.
    118. Akiyama Y, Radtke C, Kocsis JD. Remyelination of the rat spinal cord by transplantation of identified bone marrow stromal cells. J Neurosci, 2002;22(15):6623-6630.
    119. Akiyama Y, Radtke C, Honmou O, et al. Remyelination of the spinal cord following intravenous delivery of bone marrow cells. Glia, 2002;39:229-236.
    120. Koda M, Okada S, Nakayama T, et al. Hematopoietic stem cell and marrow stromal cell for spinal cord injury in mice. Neuroreport, 2005;16(16):1763-1767.
    121. Yang CC, Shih YH, Ko MH, et al. Transplantation of human umbilical mesenchymal stem cells from wharton’s jelly after complete transection of the rat spinal cord. PLoS ONE, 2008;3:e3336.
    122. Koh SH, Kim KS, Choi MR, et al. Implantation of human umbilical cord-derived mesenchymal stem cells as a neuroprotective therapy for ischemic stroke in rats. Brain Res, 2008;1229:233-248.
    123. Aggarwal S, Pittenger MF. Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood, 2005;105:1815-1822.
    124. Noel D, Djouad F, Bouffi C, et al. Multipotent mesenchymal stromal cells and immune tolerance. Leuk Lymphoma, 2007;48:1283-1289.
    125. Song S, Kamath S, Mosquera D, et al. Expression of brain natriuretic peptide by human bone marrow stromal cells. Exp Neurol, 2004;185:191-197.
    126. Keirstead HS, Coutts M. Stem cells for the treatment of spinal cord injury. Exp Neurol, 2008; 209:368-377.
    127. Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonicand adult fibroblast cultures by defined factors. Cell, 2006; 126(4):663-676.
    128. Yu J, Vodyanik MA, Smuga-Otto K, et al. Induced pluripotent stem cell lines derived from human somatic cells. Science, 2007;318(5858):1917-1920.
    129. Takahashi K, Tanabe K, Ohnuki M, et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell, 2007;131(5):861-872.
    130. Lin T, Ambasudhan R, Yuan X, et al. A chemical platform for improved induction of human iPSCs. Nat Methods, 2009;6(11):805-808.
    1. KEIRSTEAD HS, NISTOR G, BERNAL G, et al. Human embryonic stem cell-derived oligodendrocyte progenitor cell transplants remyelinate and restore locomotion after spinalcord injury [J]. J Neurosci, 2005, 25(19):4694–4705.
    2. KARIMI-ABDOLREZAEE S, EFTEKHARPOUR E, WANG J, et al. Delayed transplantation of adult neural precursor cells promotes remyelination and functional neurological recovery after spinal cord injury [J]. J Neurosci,2006,26(13):3377-3389.
    3. HOFSTETTER CP, SCHWARZ EJ, HESS D, et al. Marrow stromal cells from gaiding strands in the injured spinal cord and promote recovery [J]. Prac Natl Acad Sci USA, 2002, 99(4): 2199-2204.
    4. WRIGHT LS, PROWSE KR, WALLACE K, et al. Human progenitor cells isolated from the developing cortex undergo decreased neurogenesis and eventual senescence following expansion in vitro [J]. Exp Cell Res,2006,312(11):2107–2120.
    5. AKIYAMA Y, RADTKE C, KOCSIS JD. Remyelination of the rat spinal cord by transplantation of identified bone marrow stromal cells [J]. J Neurosci, 2002,22(15):6623–6630.
    6. KODA M, OKADA S, NAKAYAMA T, et al. Hematopoietic stem cell and marrow stromal cell for spinal cord injury in mice [J]. Neuroreport, 2005,16(16):1763–1767.
    7. HENDRICKS WA, PAK ES, OWENSBY JP, et al. Predifferentiated embryonic stem cells prevent chronic pain behaviors and restore sensory function following spinal cord injury in mice [J]. Mol Med,2006,12(1-3):34–46.
    8. CAO Q, XU XM, DEVRIES WH, et al. Functional recovery in traumatic spinal cord injury after transplantation of multineurotrophin-expressing glial-restricted precursor cells [J]. J Neurosci, 2005,25(30):6947–6957.
    9. LU P, JONES LL, TUSZYNSKI MH, et al. Axon regeneration through scars and into sites of chronic spinal cord injury [J]. Exp Neurol, 2007,203(1):8–21.
    10. SETOGUCHI T, NAKASHIMA K, TAKIZAWA T, et al. Treatment of spinal cord injury by transplantation of fetal neural precursor cells engineered to express BMP inhibitor [J]. Exp Neurol, 2004,189(1):33–44.
    11. HOFSTETTER CP, HOLMSTROM NA, LILJA JA, et al. Allodynia limits theusefulness of intraspinal neural stem cell grafts; directed differentiation improves outcome [J]. Nat Neurosci, 2005,8(3):346–353.
    12. HAMADA M, YOSHIKAWA H, UEDA Y, et al. Introduction of the MASH1 gene into mouse embryonic stem cells leads to differentiation of motoneuron precursors lacking Nogo receptor expression that can be applicable for transplantation to spinal cord injury [J]. Neurobiol Dis, 2006,22(3):509–522.
    13. TENG YD, LAVIK EB, QU X, et al. Functional recovery following traumatic spinal cord injury mediated by a unique polymer scaffold seeded with neural stem cells [J]. Proc Natl Acad Sci USA,2002,99(5):3024–3029.
    14. FLEMING JC, NORENBERG MD, RAMSAY DA, et al. The cellular inflammatory response in human spinal cords after injury [J]. Brain,2006,129(Pt 12):3249–3269.
    15. FERON F, PERRY C, COCHRANE J, et al. Autologous olfactory ensheathing cell transplantation in human spinal cord injury [J].Brain,2005,128(Pt 12):2951–60.
    16. AO Q, WANG AJ, CHEN GQ, et al. Combined transplantation of neural stem cells and olfactory ensheathing cells for the repair of spinal cord injuries [J]. Med Hypotheses,2007,69(6):1234-1237.
    17. ZENG YS, DING Y, WU LZ, et al. Co-transplantation of schwann cells promotes the survival and differentiation of neural stem cells transplanted into the injured spinal cord [J]. Dev Neurosci,2005,27(1):20-26.
    18. GUO JS, ZENG YS, LI HB, et al. Cotransplant of neural stem cells and NT-3 gene modified Schwann cells promote the recovery of transected spinal cord injury [J]. Spinal Cord,2007,45(1):15-24.
    19. ZHANG X, ZENG Y, ZHANG W, et al. Co-transplantation of neural stem cells and NT-3- overexpressing Schwann cells in transected spinal cord [J]. J Neurotrauma,2007, 24(12):1863-1877.
    20. KIM BG, DAI HN, LYNSKEY JV, et al. Degradation of chondroitin sulfate proteoglycans potentiates transplant-mediated axonal remodeling and functional recovery after spinal cord injury in adult rats [J]. J Comp Neurol,2006,497(2):182–198.
    1. Reubinoff BE, Pera MF, Fong CY et al. Embryonic stem cell lines from human blastocysts: somatic differentiation in vitro. Nat Biotechnol,2000,18(4):399–404.
    2. Civin CI. Commitment to biomedical research: clearing unnecessary impediments to progress. Stem Cells,2002,20(6):482–484.
    3. Freed CR. Will embryonic stem cells be a useful source of dopamine neurons for transplant into patients with Parkinson’s disease? Proc Natl Acad Sci USA,2002,99(4):1755–1757.
    4. Pittenger MF, Mackay AM, Beck SC et al. Multilineage potential of adult human mesenchymal stem cells. Science,1999,284(5411):143–147.
    5. Rao MS, Mattson MP. Stem cells and aging: expanding the possibilities. Mech Ageing Dev,2001,122 (7):713–734.
    6. Smith S, Neaves W, Teitelbaum S. Adult stem cell treatments for diseases? Science, 2006,313 (5786):439-439.
    7. in‘t Anker PS, Scherjon SA, Kleijburg-van der Keur C, et al. Isolation of mesenchymal stem cells of fetal or maternal origin from human placenta. Stem Cells, 2004,22(7):1338-1345.
    8. Trelford JD, Trelford-Sauder M. The amnion in surgery, past and present. Am J Obstet Gynecol,1979,134 (7):833–845.
    9. Davis G, Blakev E, Engvall S, et al. Human amnion membrane serve as a substratum for growing axons in vitro and in vivo. Science,1987,236(4805):1106-1109.
    10. Alviano F, Fossati V, Marchionni C, et al. Term amniotic membrane is a high throughput source for multipotent mesenchymal stem cells with the ability to differentiate into endothelial cells in vitro. BMC Developmental Biology, 2007, (7):11-24.
    11. Toda A, Okabe M, Yoshida T, et al. The potential of amniotic membrane/ amnion-derived cells for regeneration of various tissues. J Pharmacol Sci,2007,105(3):215-228.
    12. Zhao P, Ise H, Hongo M, et al. Human amniotic mesenchymal cells have somecharacteristics of cardiomyocytes. Transplantation,2005,79(5):528–535.
    13. Kim J, Kang HM, Kim H, et al. Ex vivo characteristics of human amniotic membrane-derived stem cells. Cloning Stem Cells,2007,9(4):581-594.
    14. Marcus AJ, Coyne TM, Rauch J, et al. Isolation, characterization, and differentiation of stem cells derived from the rat amniotic membrane. Differentiation, 2008, 76(2):130–144.
    15. De Coppi P, Bartsch GJ, Siddiqui MM, et al. Isolation of amniotic stem cell lines with potential for therapy. Nat Biotechnol, 2007,25(1):100-106.
    16. Trounson A. A fluid means of stem cell generation. Nat Biotechnol, 2007,25(1):62-63.
    17. Holden C. Stem cells. Versatile stem cells without the ethical baggage? Science, 2007, 315(5809):170.
    18. Pasquinelli G, Tazzari P, Ricci F, et al. Ultrastructural characteristics of human mesenchymal stromal (stem) cells derived from bone marrow and term placenta. Ultrastruct Pathol, 2007, 31(1):23-31.
    19. Miki T, Mitamura K, Ross MA, et al. Identification of stem cell marker positive cells by immunofluorescence in term human amnion. J Reprod Immunol, 2007, 75(2):91–96.
    20. Portmann-Lanz CB, Schoeberlein A, Huber A, et al. Placental mesenchymal stem cells as potential autologous graft for pre- and perinatal neuroregeneration. Am J Obstet Gynecol, 2006, 194(3):664-673.
    21. Reyes M, Lund T, Lenvik T, et al. Purification and ex vivo expansion of postnatal human marrow mesodermal progenitor cells. Blood, 2001, 98(9):2615–2625.
    22. Zipori D. The stem state: plasticity is essential, whereas self-renewal and hierarchy are optional. Stem Cells, 2005, 23(6):719-726.
    23. Sakuragawa N, Kakinuma K, Kikuchi A, et al. Human amnion mesenchyme cells express phenotypes of neuroglial progenitor cells. J Neurosci Res,2004,78(2):208-214.
    24. Tamagawa T, Oi S, Ishiwata I, et al. Differentiation of mesenchymal cells derived from human amniotic membranes into hepatocyte-like cells in vitro. Hum Cell,2007,20(3):77-84.
    25. Wolbank S, Peterbauer A, Fahrner M et al. Dose-dependent immunomodulatory effect of human stem cells from amniotic membrane: A comparison with humanmesenchymal stem cells from adipose tissue. Tissue Eng,2007,13(6):1173–1183.
    26. Li H, Niederkorn JY, Neelam S et al. Immunosuppressive factors secreted by human amniotic epithelial cells. Invest Ophthalmol Vis Sci, 2005, 46(3):900–907.
    27. Bailo M, SonciniM, Vertua E, et al. Engraftment potential of human amnion and chorion cells derived from term placenta. Transplantation,2004,78(10):1439-1448.
    28. Magatti M, De Munari S, Vertua E, et al. Human amnion mesenchyme harbors cells with allogeneic T-cell suppression and stimulation capabilities. Stem Cells, 2008, 26(1):182-92.
    29. Dominici M, Le Blanc K, Mueller I et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy, 2006, 8(4):315–317.
    30. Parolini O, Alviano F, Bagnara GP, et al. Concise Review: isolation and characterization of cells from human term placenta: outcome of the first international workshop on placenta derived stem cells. Stem Cells, 2008, 26(2):300-311.
    1. Lubec G, Krapfenbauer K, Fountoulakis M. Proteomics in brain research: potentials and limitations [J]. Prog Neurobiol, 2003, 69:193(3)-211.
    2. Leimgruber RM, Malone JP, Radabaugh MR, et al. Development of improved cell lysis, solubilization and imaging approaches for proteomic analyses [J]. Proteomics, 2002, 2(2):135–144.
    3. Davidsson P, Folkesson S, Christiansson M, et al. Identification of proteins in human cerebrospinal fluid using liquid-phase isoelectric focusing as a prefractionation step followed by two-dimensional gel electrophoresis and matrix-assisted laser desorption/ionisation mass spectrometry [J]. Rapid Commun Mass Spectrom, 2002, 16(22):2083–2088.
    4. Petricoin EF, Ardekani AM, Hitt BA, et al. Use of proteomic patterns in serum to identify ovarian cancer [J]. Lancet, 2002, 359(9306):572–577.
    5. Masland RH. Neuronal cell types [J]. Curr Biol, 2004, 14(13):R497–R500.
    6. International Human Genome Sequencing Consortium. Finishing the euchromatic sequence of the human genome. [J]. Nature, 2004, 431(7011):931–945.
    7. Carninci P, Kasukawa T, Katayama S, et al. The transcriptional landscape of the mammalian genome [J]. Science, 2005, 309(5740): 1559–1563.
    8. Cheng J, Kapranov P, Drenkow J, et al. Transcriptional maps of 10 human chromosomes at 5-nucleotide resolution [J]. Science, 2005, 308(5725):1149–1154.
    9. Garavelli JS. The RESID Database of Protein Modifications as a resource and annotation tool [J]. Proteomics, 2004, 4(6):1527–1533.
    10. Manning G, Whyte DB, Martinez R, et al. The protein kinase complement of the human genome [J]. Science, 2002, 298(5600):1912–1934.
    11. Fountoulakis M. Application of proteomics technologies in the investigation of the brain [J]. Mass Spectrom Rev, 2004, 23(4): 231-258.
    12. Illing RB, Jung C, Hirschmüller-Ohmes I. The developmental dynamics of the brain is reflected by a regionally specific rise and fall of molecular complexity [J]. Eur J Neurosci, 2004, 19(5):1417-1420.
    13. Emes RD, Pocklington AJ, Anderson CN, et al. Evolutionary expansion and anatomical specialization of synapse proteome complexity [J]. Nat Neurosci, 2008, 11(7):799-806.
    14. Maurer MH, Feldmann RE Jr, Bürgers HF, et al. Protein expression differs between neural progenitor cells from the adult rat brain subventricular zone and olfactory bulb [J]. BMC Neurosci, 2008, 9:7-17.
    15. Ricardo-Dukelow M, Kadiu I, Rozek W, et al. HIV-1 infected monocyte-derived macrophages affect the human brain microvascular endothelial cell proteome: new insights into blood-brain barrier dysfunction for HIV-1-associated dementia [J]. J Neuroimmunol, 2007, 185(1-2):37-46.
    16. Laspiur JP, Anderson ER, Ciborowski P, et al. CSF proteomic fingerprints for HIV-associated cognitive impairment [J]. J Neuroimmunol, 2007, 192(1-2):157-170.
    17. Allan DB, Debra BK, Alessandra C. Proteomics in Alzheimer’s disease: insights into potential mechanisms of neurodegeneration [J]. J Neurochem, 2003, 86(6): 1313-1327.
    18. Rite I, Argüelles S, Venero JL, et al. Proteomic identification of biomarkers in the cerebrospinal fluid in a rat model of nigrostriatal dopaminergic degeneration [J]. J Neurosci Res, 2007, 85(16):3607-3618.
    19. Johnston-Wilson NL, Sims CD, Hofmann JP, et al. Disease-specific alterations in frontal cortex brain proteins in schizophrenia, bipolar disorder, and major depressive disorder [J]. Mol Psychiatry, 2000, 5(2): 142-149.
    20. Vinay KD, Kurt AS, Kellie KB, et al. Putative endogenousmediators of preconditioning-induced ischemic tolerance in rat brain identified by genomic and proteomic analysis [J]. J Neurochem, 2004, 89(1): 73-89.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700