用户名: 密码: 验证码:
切向孔隙流动对大折转角压气机叶栅气动性能的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
现代先进航空发动机高效、高负荷设计指标对其主要气动部件—风扇/压气机的效率和负荷水平提出了越来越高的要求,而叶片负荷的大幅度增加将使得叶栅流道内部横向压力梯度和二次流动加强,附面层内的低能流体在强逆压力梯度下势必造成大尺度非定常流动分离,叶栅气动损失迅速增加,从而限制了叶片负荷水平的进一步提高,压气机失速裕度和效率急剧下降,工作稳定性无法得到保证。因此,在深入研究压气机/风扇叶栅流道、尤其是端部角区内复杂流场结构和损失产生机理的基础上,探索降低损失,特别是端部损失的方法和途径,开发利用弯曲叶片、孔隙流动等控制附面层流动分离的综合流动控制技术是改善压气机气动性能的关键。
     本论文对采用切向孔隙流动控制技术的大折转角直、弯扩压叶栅气动性能进行了数值研究,探索孔隙流动控制技术在降低大折转角扩压叶栅流动损失的流体动力学机理。切向孔隙流动控制技术是指在叶栅吸、压力面之间设计合适的切向削涡孔或缝,利用叶栅吸、压力面压差产生的射流来增加吸力面分离区内低能流体的动能及湍流度,使得分离区内的流体能够进一步克服强逆压力梯度而避免或推迟大尺度分离,从而顺利实现整个叶栅流道的扩压流动。文中首先数值模拟了不同孔径、不同轴向及径向位置的单孔型削涡孔对直叶栅气动性能的影响,然后开展了具有多孔组合型式的直叶栅气动性能及流动机理研究,并提出削涡缝的设计思想,在上述研究基础上,深入探索了削涡缝流动控制技术改善直、弯曲扩压叶栅流动特性的机理。
     数值研究结果表明,单孔型削涡孔的孔径及其径向、轴向位置对扩压叶栅气动性能有较大影响,存在着最佳孔径及径向、轴向位置。当这三个主要设计参数处于最佳匹配时,即孔径D=2~4mm,径向位置为10%~15%叶高,轴向倾斜角为30°,吸力面处位置为70%轴向弦长时,通流能力最大可增加1.4%,出口总压损失下降17%,叶栅气动负荷及扩压段长度也有所增加,流动分离显著减弱。采用多孔组合设计时叶栅流场特性强烈的依赖于孔径大小,孔径较小如D=2mm时,不同的多孔组合型式下栅内气动性能改善的程度差别较大,且组合孔的数目越多叶栅通流能力越强;大孔径如D=4mm时,任意的组合方式均能有效降低叶栅出口总压损失,组合孔越多效果越明显。组合式削涡孔能使叶栅0~15%H叶展叶栅出口扩压因子小于0.6,有效地改善吸力面/端区的气动性能,而25%H~50%H叶展的负荷增
The trend to reduce compressor size and weight by reducing the number of stages leads to higher amounts of diffusion per stage, which will cause large endwall loss in the compressor, or even largely reduce compressor efficiency and surge margin. Since the improvement in the aerodynamic performance of aero-engines depends on further increases in efficiency of each component, especially compressor and turbine, many researchers are addressing this issue through the use of varying flow control techniques, such as compound lean blade or air injection.
     In this paper, an extensive numerical study has been performed to investigate the effects of air injection on the performance of the straight blade compressor cascade and compound lean compressor cascade as well. Air injection was implemented via the hole/slot between the pressure and suction surfaces at appropriate locations. Injected air due to the pressure difference between the pressure and suction surfaces was used to energize the low energy fluid within the endwall/suction corner to increase its ability to overcome the adverse pressure gradient so as to avoid or delay flow separation. First, single-hole configurations with different hole diameters, at different axial or radial locations were simulated in the straight blade cascade. Second, the mechanism of multi-hole configurations were studied in the straight blade cascade, thus the concept of injection slot was developed. Third, the mechanism of injection slot on the performance improvement of straight blade cascade and compound lean blade cascade were discussed in detail.
     The numerical results show that the aerodynamic performance of compressor cascade changes significantly with the variation of the single-hole diameter, its axial and radial locations. The optimum hole diameter, or the optimum axial or radial hole location, therefore exists. When the three parameters are in a good match, for example, the hole with a diameter of 2~4mm placed at 70% of the axial chord between 10% and 15% of the blade height, the capacity of through-flow is increased 1.4%, and the outlet total pressure loss is reduced 17%. The blade loading and the axial diffusion range are also increased
引文
1 方昌德. 航空发动机的发展前景. 航空发动机. 2004, 30(1): 1-5
    2 刘大响. 对加快发展我国航空动力的思考. 航空动力学报. 2001. 16(1): 1-7
    3 钟兢军. 弯曲叶片控制扩压叶栅二次流动的实验研究. 哈尔滨工业大学博士论文.1995:1-150
    4 W.O.Hawthorne. Some Formulae for the Calculation of Secondary Flow in Cascades. 1955, ARC Report 17519
    5 O.E.Baliee. Axial Cascade Technology and Application to Flow Pat Design Part. ASME paper.1968, 68-GT-5
    6 叶大均, 王仲奇. 叶轮机械真实流动损失机理及控制方法的研究.国家自然科学基金会重大项目“工程热物理中关键性问题的研究”,第一部分——学术研究总结, 1992
    7 S.U.Ahmet, P.S.Raymond. A Viscous Axisymmetric Throughflow Prediction Method for Multi-Stage Compressor. ASME paper. 1992, 92-GT-293
    8 Yamamoto, R.Yanagi. Production and Development of Secondary Flows and Losses within a Three-Dimensional Turbine Stator Cascade. ASME paper.1985, 85-GT-217
    9 A.Yamamoto. Production and Development of Secondary Flows and Losses within Two Types of Straight Turbine Cascade. PartⅠ: A Stator Case. ASME paper.1986, 86-GT-184
    10 J.Moore, A.Ransmayr. Flow in a Turbine Cascade. PartⅠ: Losses and Leading Edge Effects. ASME paper.1983, 83-GT-68
    11 A.Betz. Uber die Vorgange an den Schaufelenden von Kaplan Turbinen. Hydraulishe Probleme,VDI-Verlag, Berlin.1926:161-179
    12 A.D.Carter, E.M.Cohen. Preliminary Investigation into the Three Dimensional Flow Through a Cascade of Aerofoils. Aeronautical Research Council Reports and Memoraanda.1946,No.2339
    13 D. G. Ainley. The Performance of Axial Flow Turbines. Proc. Institution of Mechanical Engineers. 1948, 159: 230-237
    14 L.H.Jr.Smith. Secondary Flow in Axial Flow Turbomachinery. Trans.of the ASME. 1955,77:1065-1076
    15 B.Lakshminarayana, J.G.Horlock.Review:Secondary Flows and Losses in Cascades and Axial-Flow Turbomachines. International J.of Mech.Sciences. 1963,5(3):21-30
    16 J.H.Horlock. Axial Flow Turbines. Butterworths Press,1966:1-70
    17 X.X.Moore, Y.Y.Richardson. Skewed Boundary Layer Flow near End Walls of a Compressor Cascade. ASME J.of Engineering for Gas Turbines and Power. 1957,79:1789-1800
    18 J.H.Horlock, J.F.Lewis, P.M.E.Percival, B.Lakshminarayana. Wall Stall in Compressor Cascade. ASME J.of Basic Engineering. 1966:637
    19 J.W.Salvage. Investigation of Secondary Flow-Behaviour an End Wall Boundary Layer Development through Compressor Cascades. Von Karman Institute for Fluid Dynamics,Technical Note.1974:107
    20 李宇红. 环形压气机叶栅三维分离流动的实验研究与数值计算. 清华大学博士学位论文.1992:1-50
    21 H.D.Joslyn, R.P.Dring. Axial Compressor Stator Aerodynamics. ASME J. of Engineering for Gas Turbines and Power.1985,107(4):485-493
    22 Y.Dong, S.J.Gallimore, H.P.Hodson. Three-Dimension Flow and Loss Reduction in Axial Compressors. ASME J.of Turbomachinery.1987,109 (3):354-351
    23 R.P.Dring. Blockage in Axial Compressor. ASME J.of Engineering for Gas Turbines and Power.1984, 106(3):712-714
    24 W. R. Hawthorne, Rotational Flow Through Cascades. J.Mech. & Appl. Math., 1955,3
    25 A. Fritsche. Stromungsvorgange in Schaufelgittern. Techn. Rundachau sulzer, 1955,3
    26 A. Klein. Investigation of the Entry Boundary Layer on the Secondary Flows in the Blading of Axial Turbine. BHRA-T-1004,1966
    27 A. B?lecs. Flow Investigation in a Water Channel at Subsonic and Supersonic Velocities. Escher Wyss News, 1969, 4(1):220-224
    28 M. F. Blair. An Experimental Study of Heat Transfer and Film Cooling on Large-Scale Turbine Endwalls. ASME Journal of Heat Transfer, 1974, 96(4):524-529
    29 L. S. Langston, M. L. Nice, R. M. Hooper. Three-Dimensional Flow within aTurbine Blade Passage. ASME J. Engineering for Power, 1977,99(1):21-28
    30 S. A. Sjolander. The Endwall Boundary Layer in an Annular Cascade to Turbine Nozzle Guide Vanes. Carleton U, Canata, TR ME/A 75-4, 1975
    31 L. S. Langston. Crossflows in a Turbine Cascade Passage. ASME Journal of Engineering Power, 1980, 102(4):866-847
    32 P. Marchal, and C. H. Sieverding. Secondary Flows Within Turbomachinery Bladings, Secondary Flow in Turbomachines. AGARD CP214, 1977
    33 R. E. Gaugler, and L. M. Russell. Streamline Flow Visualization Study of a Horseshoe Vorex in a Large-Scale, Two-Dimensional Turbine Stator Cascade. ASME Paper No.80-GT-4
    34 J. Ishii, and S. Honami. A Three-Dimensional Turbulent Detached Flow with a Horseshoe Vortex. ASME Journal of Engineering for Gas Turbines and Power, 1986, 108(1):125-130
    35 J. Moore. Flow Trajectories, Mixing and Entropy Fluxes in a Turbine Cascade, Viscous Effects in Turbomachines. AGARD CP351, 1983
    36 C. H. Sieverding, and P. Van den Bosch. The Use of Coloured Smoke to Visualize Secondary Flows in a Turbine-Blade Cascade. Journal of Fluid Mechanics, 1983,134:85-89
    37 O. P. Sharama, T. L. Butler. Predictions of Endwall Losses and Secondary Flows in Axial Flow Turbines Cascades, ASME Journal of Turbomachinery, 1987,109(2):229-236
    38 R. J. Goldstein, R. A. Spaores. Turbulent Transport on the Endwall in the Region Between Adjacent Turbine Blades, ASME, J. of Heat Transfer, 1988,110:862-869
    39 H. P. Wang, S. J. Olson, et al. Flow Visualization in a Linear Turbine Cascade of High Performance Blades, ASME, J. of Turbomachinery, 1997,119:1-8
    40 M. Y. Jabbari, R. J. Goldstein, K. C. Marston, and E. R. G. Eckert. Three Dimensional Flow within Large Scale Turbine Cascades. Warme Und-Stoffubertragung, 1992, 27:51-59
    41 T. Sonoda. Experimental Investigation on Spatial Development of Streamwise Vortices in a Turbine Inlet Guide Vane Cascade. ASME Paper 85-GT-20
    42 R. J. Goldstein, H. P. Wang, and M. Y. Jabbari. The Influence of Secondary Flows Near the Endwall and Boundary Layer Disturbance on ConvectiveTransport From a Turbine Blade. ASME Paper 94-GT-165
    43 S.Kang. Investigation of the Three Dimensional Flow within a Compressor Cascade with and without Tip Clearance. Ph.D.Thesis.Dept.of Fluid Mechanics,Vrije Universiteit Brussel.1993:Ⅰ-1~Ⅴ-44
    44 苏杰先, 冯国泰, 闻洁等. 弯曲叶片在压气机中的应用.工程热物理学报. 1990, 11(4): 404-407
    45 Wang Zhongqi, Lai Shengkai, Xu Wenyuan. Aerodynamic Calculation of Turbine Stator Cascades with Curvilinear Leaned Blades and Some Experimental Results. Symposium paper of 5-ty ISABE, India, 1981
    46 王仲奇, 韩万今, 徐文远, 赵桂林. 在低展弦双透平静叶栅中叶片的弯曲作用. 工程热物理学报. 1990, 11(3): 255-262
    47 F. A. H. Breugelmans, Y. Carels. Influence of Dihedral on the Secondary Flow in Two Dimensional Compressor Cascade. ASME Journal of Engineering for Gas Turbine and Power. 1984, 106(3): 578-584
    48 肖柳. 系列化发展的 PW4084 型发动机. 国际航空. 1992, 6
    49 横跨三大洲的国际合作计划-V2500 涡扇发动机. 国外航空技术. 1986, (1):23-29
    50 H. Tubbs, A. J. Raew. Aerodynamic Development of the High Pressure Compressor for the IAE V2500 Aeroengine. 1991, Imech EC423/032
    51 蔡娜. 轴流式弯掠动叶的气动-声学性能的计算和设计方法的研究. 上海交通大学工学博士学位论文. 1994
    52 钟芳源. 节能低噪声轴流离心风机理论计算设计实验研究文集. 机械工业出版社, 1994
    53 R. Howells, B. Lakshiminarayana. Three Dimensional Potential Flow and Effect of Blade Dihedral in Axial Flow Propeller Pumps. ASME Journal of Fluid Engineering. 1977, 99: 167-175
    54 M. E. Deich, A. E. Zaryankin, G. A. Eilippov, M. F. Zatsepin. “Method of Increasing the Efficiency of Turbine Stages With Short Blade” A.E.I.Translation. No. 2816, 1960
    55 B. Lakshminarayana. “End-Wall and Profile Losses in a Low-Speed Axial Flow Compressor Rotor”. ASME Paper. No. 85-GT-174, 1985
    56 F. C. Kopper, R. Milano, M. Vanco. Experimental Investigation of Endwall Profiling in a Turbine Vane Cascade. AIAA J..1981,19(8):1033-1040
    57 E.H. Jeffrey. Analytical and Experimental Investigation of Stator Endwall Contouring in a Small Axial- Flow Turbine. 1982, NASA-TP-2023
    58 E. Boletis. Effects of Tip Endwall Contouring on the Three-Dimensional Flow Field in an Annular Turbine Nozzle Guide Vane: Part 1 – Experimental Investigation. ASME paper. 1985, 85-GT-71
    59 M.H. Tran. Recent Developments in Blading to Improve Turbine Efficiency. ASME paper. 1986, 86-JPGC-pwr-35
    60 R. E. Warner, M. H. Tran. Recent Developments to Improve High Pressure and Intermediate-Pressure Turbine Efficiency. IMech.E. Turbo-Conference. 1987, C278/87
    61 蒋洪德等. 国产优化 300/600MW 汽轮机通流部分气动设计,第一部分—设计体系与设计特点. 工程热物理学报. 1994, 15(2):153-157
    62 韩万金, 谭春青, 王仲奇. 端壁收敛与倾斜叶片的综合作用. 工程热物理学报. 1991, 12(1):38-41
    63 IO.M.特雷申科. 压气机叶栅的空气动力学. 机械工业出版社, 1985
    64 吴介之, 马辉扬, 周明德. 涡动力学引论. 高等教育出版社.1993:1-576
    65 徐大懋. 轴流压气机弦向割缝叶栅的研究. 工程热物理学会第三届年会论文集. 1980, No.801047
    66 陈芳, 陈矛章, 蒋浩康. 平面叶栅端壁流的实验研究. 工程热物理学报.1988,9(2)125-130
    67 P. Meherwan, Ph.D Boyce. Secondary Flows in Axial Flow compressors with Treated Blades. 1977, AGARD-CP-214
    68 T. Kawai, T. Adachi. Effects of Blade Boundary Layer Fences on Secondary Flow and Losses in a Turbine Cascade. Tokyo International Gas Turbine Congress. 1987, 87-TOKYO-IGTC-16:Ⅱ-115-Ⅱ-122
    69 T. Kawai, S. Shinoki, T. Adachi. Optimization of Endwall Boundary Layer Fence in Controlling Secondary Flow in a Turbine Cascade. 日本机械学会论文集(B 篇). 1988, 54:3432-3439
    70 杜辉. 新型机匣处理结构研究. 航空发动机. 1997,(4):20-24
    71 J. E. Moss. Effects of Slotted Casing Treatment on Performance of a Multistage Compressor. 1976, NASA TX-X-3360
    72 E. E. Bailey. Effects of Grooved Casing Treatment on the Flow RangeCapability of a Single Stage Axial Flow Compressor. 1972, NASA TM-X-2459
    73 D. C. Wisler and B. F. Beacher. Improved Compressor Performance Using Recessed Clearance(Trenches) over the Rotor. AIAA-86-1745
    74 B.Lakshminarayana ,M.Pouagare, R.Davino. Three-Dimensuional Flow Field in the Tip Region of Compressor Rotor Passage,Part I:Mean Velocity Profiles and Annulus Wall Boundary. ASME Paper. 1982, No. 82-GT-11
    75 吴国华, 彭泽琰, 严明, 任丽芸. 压气机‘修型’叶栅的实验研究. 航空动力学报. 1993, 8(4)155-157
    76 Zeyan Peng, Guohua Wu, Ming Yan, Liyun Ren. An Experimental Investigation of Technologies of Endwall Flow Control in a Compressor Plane Cascade. 1991, AIAA 91-2005-CP
    77 苗厚武,蔡晓钟,高金满. 端削技术在跨音速压气机上的应用. 中国航空学会第七届叶轮机学术会议论文集. 成都, 1994, CSAA94-PT-05
    78 李喜宏,吴国华,彭泽琰. 压气机叶栅端壁流动控制的试验研究.航空动力学报.1993,8(2)31-34
    79 鲍秀珍.端弯技术在压气机上的应用.中国航空学会第七届叶轮机学术会议论文集. 成都, 1994, CSAA94-PT-42
    80 王春雨,孙茂.多喷口高效能厚翼的研究.力学学报. 1999,31(5)
    81 程永卓,李宇红,唐进.振荡射流提高翼型升力的机理研究.工程热物理学报. 2003,24(1)
    82 黄达,吴根兴.翼面吹气对过失速非定常翼面涡的影响.南京航空航天学学报. 1997,29(3)
    83 舒桃,杨国伟,陆夕云,庄礼贤. 三维机翼大迎角低速绕流及其涡控制的数值模拟.空气动力学学报. 2002,20(0)
    84 霍福鹏,刘红,陈佐一.提高水平轴风力机叶型升力的试验研究. 工程热物理学报. 2003,24(2)
    85 方昌德.流动控制技术在航空涡轮推进系统上的应用.燃气涡轮试验与研究.2003,16(2)
    86 E.Dennis, M.Culley,M.Bright. Activective Flow Separation Control of a Stator Vane Using Surface Injection in a Multistage Compressor Experiment. ASME Paper. 2003, 2003-GT-38863
    87 Chaoqun Nie, Gang Xu, Xiaobin Cheng, Jingyi Chen. Micro Air Injection and Its Unsteady Response in a Low-Speed Axial Compressor. ASME Paper. 2002, 2002-GT-30361
    88 K.R. Kirtley, P. Graziosi, P. Wood, B. Beacher, H.-W. Shin. Design and Test of an Ultra-Low Solidity Flow Controlled Compressor Stator. ASME Paper. 2004, 2004-GT-53012
    89 Bhaskar Roy, Manish Chouhan, Kota Venkata Kaundinya. Experimental Study of Boundary Layer Control through Tip Injection on Straight and Swept Compressor Blades. ASME Paper. 2005, 2005-GT-68304
    90 Gang Xu, Hongwu Zhang, Chaoqun Nie, Weiguang Huang, Jingyi Chen. Numerical Simulation of Stall Suppression by Micro Air Injection in a Low-Speed Axial Compressor. IGTC2003. Tokyo,TS-027
    91 高峰,汪亮,任继业. 微射流改变绕流圆柱气动性能的数值模拟. 空军工程大学学报(自然科学版). 2003,4(6)
    92 是勋刚. 湍流. 天津大学出版社, 1994
    93 梁在潮. 工程湍流. 华中理工大学出版社, 1999
    94 T. H. Shih, W. W. Liou, A. Shabbir, et al. A New k-ε Eddy Viscosity Model for High-Reynolds Number Turbulent Flows Model Development and Validation. Computers Fluids. 1995, 24(3): 227-238
    95 G. R. Gosterlow. Cascade Aerodynamics. Pergamon Press, 1984:153-315
    96 L. Reid, R. D. Moore. Experimental Study of Low Aspect Ratio Compressor Blading. ASME Paper. 1980, 80-GT-16
    97 A. J. Wennerstrom. Highly Loaded Axial Flow Compressor: History and Current Development. Trans. of the ASME, J. of Turbomachinery. 1990, Vol.112,pp.567-578
    98 轴流压气机气动设计.国防工业出版社,1975
    99 J. L. Kerrebrock, D. P. Reijnen, W. S. Ziminsky et al. Aspirated Compressor. ASME Paper. 1997, 97-GT-525

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700