用户名: 密码: 验证码:
水电站机组及厂房结构耦合振动特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着经济与社会的发展,水力发电作为一种可再生的清洁能源日益得到重视和开发。水电机组单机容量和引用水头的急剧增大,厂房结构相应巨型化和复杂化,机组振动及其诱发的水电站厂房结构振动已成为其运行和设计的重要问题。目前水电站机组及厂房结构在电磁、水力、机械三方面振源耦合以及机组-厂房之间的耦合、机组与厂房的振动模态参数识别等方面的研究尚显不足。因此,本文通过有限元数值模拟,多种因素耦合建模,原型观测,识别反分析等多种方法,致力于水电站机组轴系统及厂房结构在各种振源作用下的动特性等方面的研究,所建立的模型及分析方法以及取得的研究成果,为今后机组轴系统及厂房结构的动力优化设计和安全稳定运行、各种动特性的研究和分析提供技术依据和参考。
     第一章绪论部分介绍了水电站机组及其支承结构-水电站厂房的振动问题和研究现状,并对有关现场振动测试和参数识别方法进行了归纳和总结。
     第二章用有限元法计算导轴承和推力轴承的动特性系数,建立了由两种轴承共同支承的立式水电机组轴系统的有限元模型,考虑导轴承和推力轴承动特性系数随轴系统相关参量变化而变化的非线性特征,分析了轴系统横向和纵向动力特性通过推力轴承的耦合关系和相互影响程度。
     第三章分析机组轴系统在电磁刚度、密封刚度共同作用下的动力稳定性。通过非线性振动稳定性理论研究了电磁刚度和弹性支承对水轮发电机偏心转子振动稳定性的影响,并综合考虑电磁、密封刚度建立有限元模型,分析相关参数对机组稳定性的影响。
     第四章考虑导轴承动力特性系数的非线性特性,研究机组与厂房耦合系统的动力学问题。通过不同计算模型的比较,对考虑厂房基础耦联作用的机组轴系统的动力特性进行了研究;进一步分析了机组振动作为厂房振动的振源,其动荷载的合理模拟和施加方式及其对厂房结构振动的影响。
     第五章根据水电站机组及厂房联合现场振动测试数据,分析机组及厂房的振动规律,探讨了振源的幅值和频率等特性及其振动传递途径。根据国内外相关标准对机组及厂房的振动水平进行了评价,并对厂房结构动力响应进行了有限元数值反馈计算。
     第六章采用多信号分类法定阶,将模态参数时域识别引入到水电机组轴系统振动特性研究中。针对传统油膜动特性系数参数识别方法的不足,提出了可以不受测点少,工况少等实际情况限制的遗传识别方法。利用机组轴系统的有限元数值模拟验证了模态参数和物理参数别方法与识别结果的正确性。
With the development of the economy and society, people pay more and more attention to the hydropower. And it has been developed rapidly as a regenerated energy source. The unit capacity has been sharply increasing. The hydropower house is becoming larger and more complex correspondingly. As a result, the vibration problem of water turbine generator set and hydropower house is standing out gradually, which become an important issue during the design and operation. Presently, the coupling among the magnetic, hydraulic and mechanical vibration sources, the coupling vibration between the generator set and the hydropower house and the parameters identification method of the generator set should be improved. Thus this paper studies on the dynamic characteristic of the generator set the vibration of hydropower house under all kinds of vibration sources loads. The methods of numerical simulation through finite element, model test and parameters identification according to prototype test are used in this paper. The analytical model, methods and conclusion provide a reliable technical support and reference for the structure dynamic design and study of generator set and power house.
     Chapter one simply introduces the vibration of water turbine generator set and hydropower house and its study situation. This part also simply summarizes the dynamic characteristic of connecting structures such as journal bearing and thrust bearing, some vibration sources loads, the vibration of the hydropower house and some parameters identification methods.
     In chapter two, the model of the generator set shaft system is constructed including the journal bearing and thrust bearing. The finite element method is used to calculate the dynamic characteristic coefficients of the bearings. The dynamic behaviors of the fluid supports are considered as nonlinear with the corresponding parameters. The influence of the axial thrust bearing is presented on the response of the shaft. The coupling effect is studied in particular between the bending vibrations and the axial dynamic behavior of the shaft.
     In chapter three, the dynamic stability of the generator set shaft system is investigated considering the influence of the magnetic and seal stiffness. First, the dynamic equations are established including the magnetic stiffness and elastic support. The Liapunov nonlinear vibration stability theory is used to analyze the shaft system stability. Second, the model of the shaft system is constructed considering the magnetic and hydraulic seal vibration source. The influence of all kinds of system parameters is studied to the critical speed of the shaft system.
     In chapter four, the coupling vibration is studied between the generator set and the hydropower house considering the constantly change characteristic of the journal bearings coefficients. The coupling vibration model is constructed. The dynamic characteristic and interaction between the generator set and the power house are analyzed. According to the comparison of different calculation models, the influence of the power house is studied as the supporting structures to the shaft system dynamic characteristic. Otherwise, the effect of the generator set vibration sources is also presented to the power house vibration.
     In chapter five, the vibration mechanism is analyzed according to the prototype test. The characteristic of the vibration sources and its transmission routes are investigated. The vibration of the generator set and power house is evaluated according to the corresponding rules. The finite elements method is used to calculate the dynamic response of the power house.
     In chapter six, the multiple signal classification method is used to determine the order of the vibration, the time domain identification is introuduced to the study of the generator set shaft system dynamic characteristics. Because of the deficiency of the classical identification methods for the bearing characteristic coefficients, the genetic method is presented which has few limits of actual conditions such as measuring points or operation cases. The identification coefficients are used to calculate the self-vibration characteristic of the shaft system. The results are in accordance with that of modal parameters identification.
引文
[1]李定中.中国水电工程的机电技术的发展概况[C].第十六次中国水电设备学术讨论会文集,2006.
    [2]潘家铮.中国水利建设的成就、问题和展望[J].中国工程科学,2002,4(2):42-51.
    [3]马善定,汪如泽.水电站建筑物[M].北京:中国水利水电出版社,2007.
    [4]马震岳,董毓新.水电站机组及厂房振动的研究与治理[M].北京:中国水利水电出版社,2004.
    [5]Viliam Biela,Hector Beltran.Draft Tube Fins.Hydraulic Machinery and Cavitation[C],Proceedings of the ⅩⅨ IAHR Symposium,World Scientific,Sigapore.1998:454-461.
    [6]胡瑞林,陈韩禄,刘全保.铜街子电站11号机组异常振动试验及处理[J].水电站机电技术,2000,(4):22-28.
    [7]裴大雄,赵正洪.高坝州水电站3号机组振动分析及处理[J].水力发电,2002,(3):61-62.
    [8]马震岳,王溢波,董毓新.红石水电站机组振动及诱发厂坝振动分析[J].水力发电,2000,(9):52-54.
    [9]Gastao Rocha,Ailton Sillo.Power Swing Produced by Hydropower Unite[C],Proceedings of IAHR 11~(th) Symposium,Amesterdam,1982.
    [10]Erikkson.S,Erikkson.K.Advanced systems detect turbine vibrations[J],Modern Power System,1991.
    [11]杨晓明,马震岳.水轮发电机组横向振动的敏感性分析[J].振动工程学报,2004,17(s):206-209.
    [12]卜华仁,范素兰,胡汉卿,等.水力机械[M].大连:大连理工大学出版社,1988.
    [13]姜培林,虞烈.推力轴承轴承-转子系统的耦合作用研究[J].应用力学学报,1996,13(4):46-52.
    [14]中国水利水电科学研究院.轮机水力振动译文集[M].北京:水利电力出版社,1979.
    [15]王珂崙.水力机组振动[M].北京:水利电力出版社,1987.
    [16]钟一諤,何衍宗,王正,等.转子动力学[M].北京:清华大学出版社,1987.
    [17]闻邦椿,顾家柳,夏松波,等.高等转子动力学-理论、技术与应用[M].北京:机械工业出版社,2000.
    [18]郭丹,何永勇,褚福磊.不平衡磁拉力对偏心转子系统振动的影响[J].工程力学,2003,20(2):116-121.
    [19]徐进友,刘建平,宋轶民,等.考虑电磁激励的水轮发电机组扭转振动分析[J].天津大学学报,2008,41(12):1411-1416.
    [20]党小建,梁武科,廖伟丽.水力机组流固耦合的数学模型[J].机械强度,2005,27(6):864-866.
    [21]R.Jiyavan.装在挠性轴承上的水轮发电机组转子由电磁不平衡引起的振动特性[J].国外大电机,1984,2.
    [22]马震岳,董毓新.水轮发电机组动力学[M].大连:大连理工大学出版社,2003.
    [23]孟光.转子动力学的回顾与展望[J].振动工程学报,2002,15(1):1-9.
    [24]马震岳,董毓新.基础、导轴承刚度和磁拉力对机组自振特性的影响[J].大电机技术,1986(6).
    [25]马震岳,董毓新.水轮发电机组轴系统的动力反应[J].大电机技术,1988(5).
    [26]荣吉利,邹经湘,张嘉钟,等.水电机组轴系横向自振特性的有限元计算方法与结果分析[J].中国电机工程学报,1997,17(1):33-36.
    [27]荣吉利,李瑞英.水轮发电机组轴系横向振动响应的时间有限元法[J].北京理工大学学报,2001,21(5):553-557.
    [28]肖黎.水轮发电机组横向振动研究[J].长江科学院院报,2005,22(5):78-80.
    [29]王正伟,喻疆,方源,等.大型水轮发电机组转子动力特性分析[J].水力发电学报,2005,24(4):62-66.
    [30]屈文忠,江汶.利用ANSYS进行转子动力特性计算[C].ANSYS中国用户论文集,2004.
    [31]王宁峰,王桂红.基于ANSYS的转子临界转速计算[J].青海大学学报,2007,25(10):18-21.
    [32]谢逸泉.利用有限元软件ANSYS计算轴的刚度[J].现代机械,2005,(1):55-56.
    [33]李克雷,谢振宇.基于ANSYS的磁悬浮转子的模态分析[J].机电工程,2008,25(1):1-3.
    [34]尚礼.圆弧瓦径向动压轴承动态特性系数计算(矩阵法)[J].浙江大学学报,1984,18(5):125-134.
    [35]马震岳,董毓新.水电机组可倾瓦导轴承动力特性系数[J].动力工程,1990,10(6):6-11.
    [36]Earlesl.L,Palazzolo A.B,Armentroutr.W.A finite element approach to pad flexibility in title pad journal bearings parts Ⅰ and Ⅱ[J].ASME Journal of Tribology,1990,112(2):169-182.
    [37]陈予恕.非线性转子-轴承系统的分叉[J].振动工程学报,1996,9(3):266-275.
    [38]张文,郑铁生,马建敏,等.油膜轴承瞬态非线性油膜力的力学建模及表达式[J].自然科学进展,2002,12(3):255-260.
    [39]杨金福,杨昆,于达仁,等.滑动轴承非线性油膜力研究[J].振动工程学报,2005,18(1):118-123.
    [40]王文,张直明.油叶型轴承非线性油膜力数据库[J].上海工业大学学报,1993,4:299-305.
    [41]JIAO Yinghou,CHEN Zhaobo.Nonlinear dynamics analysis of unbalanced rotor system with arc pad journal bearings[J].Advances in Vibration Engineering,2005,4(1):23-37.
    [42]陈龙,郑铁生,张文,等.轴承非线性油膜力的一种变分近似解[J].应用力学学报,2002,19(3):90-96.
    [43]孟志强,徐华,朱均.基于Poincare变换的滑动轴承非线性油膜力数据库方法[J].摩擦学报,2001,21(3):223-227.
    [44]陈照波,焦映厚,夏松波,等.求解有限长圆柱型滑动轴承中非线性油膜力的近似解析方法[J].中国电机工程学报,2001,21:6-9.
    [45]徐小峰,张文.一种非稳态油膜力模型下刚性转子的分岔和混沌特性[J].振动工程学报,2000,13(2):247-253.
    [46]张新江,武新华,夏松波,等.弹性转子-轴承-基础系统的非线性振动研究[J].振动工程学报,2001,4(2):228-232.
    [47]杨建刚,蔡霆,高亹.转子-轴承耦合系统动力响应问题研究[J].中国机电工程学报,2003,3(5):94-97.
    [48]袁振伟,褚福磊,林言丽,等.考虑流体作用的转子动力学有限元模型[J].动力工程,2005,25(4):457-461.
    [49]Keith E.Rouch,Tim H.McMains,Robert W.Stephenson,Mark F,Emerick.Modeling of complex rotor systems by combining rotor and substructure models[J].Finite Elements in Analysis and Design,1991,(10):89-100.
    [50]S.Edwards,A.W.Lees,M.I.Friswell.Experimental Identification of excitation and support parameters of flexible rotor-bearings-foundation system from a single run down[J].Journal of Sound and Vibration,2000,232(5):963-992.
    [51]K.L.Cavalca,P.F.Cavalcante,E.P.Okabe.An investigation on the influence of the supporting structure on the dynamics of the rotor system[J].Mechanical Systems and Signal Processing,2005,19:157-174.
    [52]张宇,陈予恕,毕勤胜.转子-轴承-基础非线性动力学研究[J].振动工程学报,1998,1(1):24-30.
    [53]沈松,郑兆昌.大型转子-基础-地基系统的非线性动力分析[J].应用力学学报,2004,1(3):9-12.
    [54]Y.Kang,Y.-P.Chang,J.-W.Tsai,etal.An Investigation in stiffness effects on dynamics of rotor-bearing-foundation systems[J].Journal of Sound and Vibration,2000,231(2):343-374.
    [55]陈渭.流体动力润滑推力轴承动力特性及其对转子横向振动状态的影响[D].西安:西安交通大学工程与科学研究院,1991.
    [56]姜培林,虞烈.弹性横梁支承的可倾瓦推力轴承的静态分析[J].西安交通大学学报,1997,31(7):74-78.
    [57]Chin S Chu.A Nonlinear Dynamic Model with Confidence Bounds for Hydrodynamic bearing [J].Journal of Tribology,1998,(7):595-604.
    [58]李忠,袁小阳,朱均.可倾瓦推力轴承的线性和非线性动特性研究[J].中国机械工程,2000,(5):560-562.
    [59]邱家俊,段文会.推力轴承油膜刚度和阻尼的解析解[J].大电机技术,2002,(2):5-8.
    [60]Kenneth H.hueber.The Finite Element Method for the engineers.1982.
    [61]Kenneth H.hueber.A Three-dimensional Thermo-hydrodynamic Analysis of Sector Thrust Bearing[J].ASME Transactions,1974.
    [62]Kenneth H.hueber.Application of Finite Element Methods to Thermo-hydrodynamic Lubrication[J].International Journal for Numerical Methods in Engineering,1974.
    [63]赵红梅,董毓新,马震岳.水轮发电机托瓦支承推力轴承的润滑计算[J].大电机技术,1994,(1):8-12.
    [64]赵红梅,董毓新,马震岳.油膜温度呈三维分布的推力轴承润滑计算[J].大连理工大学学报,1994,34(5):589-594.
    [65]陈贵清.推力轴承油膜刚度对发电机转子轴系固有频率的影响[J].河北理工学院学报,2000,22(4):48-53.
    [66]姜培林,虞烈.电机不平衡磁拉力及其刚度的计算[J].大电机技术,1998,(4):32-34.
    [67]陈贵清.某水轮发电机组不平衡电磁力的计算[J].唐山高等专科学校学报,2001,12(4):4-7.
    [68]周理兵,马志云.大型水轮发电机组不同工况下不平衡磁拉力[J].大电机技术,2002,2:26-29.
    [69]邱家俊,段文会.水轮发电机转子轴向位移与轴向电磁力[J].机械强度,2003,25(3):285-289.
    [70]邱宇,邱家俊,张德栋.水轮发电机组短路故障时机电耦联的扭振问题研究[J].机械强度,2004,26(2):142-148.
    [71]杨志安,李文兰,邱家俊.水轮发电机定子磁固耦合激发的分岔与混沌[J].天津大学学报,2005,38(11):986-990.
    [72]郭丹,何永勇,褚福磊.不平衡磁拉力及对偏心转子系统振动的影响[J].工程力学,2003,20(2):116-120.
    [73]马震岳.水轮发电机组及压力管道的动力分析[D].大连:大连理工大学,1988.
    [74][瑞士]W 特劳佩尔(郑松宇等译).热力透平机.北京:机械工业出版社,1988,603-609.
    [75]Vance JM,Murphy BT.Labyrinth seal effects on rotor whirl stability[J].Inst.of Mechanical Engineer,1980:369-373.
    [76]Nordmann R,Dietzen F J.Calculating rotor dynamic coefficients of seals by finite difference techniques[C].The 4th Workshop in Rotor Dynamic Instability Problems in High Performance Turbo Machinery,Taxas,A&M University,1986,77-98.
    [77]任兴民,顾家柳,秦卫阳.具有封严篦齿转子系统的动力稳定性分析[J].应用力学学报,1996,13(2):77-83.
    [78]沈庆根,李烈容,郑水英.迷宫密封的两控制体模型与动力特性研究[J].振动工程学报,1996,9(1):24-30.
    [79]Muszynska A,Bently DE.Frequency swept rotating input perturbation techniques and identification of the fluid force models in rotor /bearing/seal system and fluid handling machines[J].Journal of Sound and Vibration,1990,143(1):103-124.
    [80]Muszynska A.Model testing of Rotor/Bearing/systems[J].The International Journal of Analytical and Experimental Modal Analysis,1996,1(3):15-34.
    [81]李松涛,许庆余,万方义.迷宫密封转子系统非线性动力稳定性的研究[J].应用力学学报,2002,19(2):27-30.
    [82]陈予恕,丁千.非线性转子-密封系统的稳定性和Hopf分岔研究[J].振动工程学报,1997,10(3):368-374.
    [83]金琰,袁新.转子密封系统流体激振问题的流固耦合数值研究[J].工程热物理学报,2003,524(3):395-398.
    [84]董毓新,李彦硕.水电站建筑物结构分析[M].大连:大连理工大学出版社,1995.
    [85]练继建,王海军,秦亮.水电站厂房结构研究[M].北京:中国水利水电出版社,2007.
    [86]沈可.水电站厂房结构振动研究[D].南宁:广西大学,2002.
    [87]王俊红,黄勇.广蓄二期工程地下厂房结构振动研究及减振措施[J].水力发电,2001,(11):32-34.
    [88]李振富,赵小娜,王日宣.万家寨水电站机墩组合结构动力分析[J].水力水电技术,2004,23(2):61-64.
    [89]练继建,秦亮,王日宣,等.双排机水电站厂房结构动力特性研究[J].水力发电学报,2004,23(2):55-60.
    [90]熊卫,史仁杰,毛文然.回龙抽水蓄能电站地下厂房整体结构振动研究[J].人民黄河,2004,26(7):40-43.
    [91]李炎.当前我国水电站(混流式机组)厂房结构振动的主要问题和研究现状[J].水利水运工程学报,2006,(1):74-77.
    [92]练继建,秦亮,何成连.基于原型观测的水电站厂房结构振动分析[J].天津大学学报,2006,39(2):176-180.
    [93]陈静,马震岳,刘志明,等.三峡水电站主厂房振动分析[J].水力发电学报,2004,23(5):36-39.
    [94]欧阳金惠,陈厚群,李德玉.三峡电站厂房结构振动计算与试验研究[J].水利学报,2005,36(4):484-490.
    [95]彭新民,郑伟,秦亮.水电站厂房结构振动规律探讨[J].水利水电技术,2005,36(11):62-64.
    [96]郑源,汪宝罗,屈波.混流式水轮机尾水管压力脉动研究综述[J].水力发电,2007,33(2):64-69.
    [97]欧阳金惠,陈厚群,李德玉.三峡电站发电厂房动力特性与低水头振动问题研究[J].中国水利水电科学研究院学报,2004,2(3):215-220.
    [98]中华人们共和国水利部.水电站厂房设计规范(SL266-2001).北京:中国水利水电出版社,2001.
    [99]孙万泉,马震岳,赵凤遥.抽水蓄能电站振源特性分析研究[J].水电能源科学,2003,21(4):78-80.
    [100]王桂平,肖明.周宁水电站地下厂房结构振动与结构形式研究[J].长江科学院院报,2004,21(1):36-39.
    [101]陈婧,马震岳,刘志明,等.水轮机压力脉动诱发厂房振动分析[J].水力发电,2004,30(5):24-27.
    [102]毛汉领,熊焕庭,沈炜良.偏相干分析在水电站振动传递路径识别的应用[J].广西大学学报(自然科学版),1998,(5):6-9.
    [103]曹伟,张运良,马震岳,等.厂顶溢流式水电站厂房振动分析[J].水利学报,2007,38(9):1090-1095.
    [104]林循泓.振动模态参数识别及其应用[M].南京:东南大学出版社,1990.
    [105]王济,胡晓.MATLAB在振动信号处理中的应用[M].北京:中国水利水电出版社,2006.
    [106]王建有.测试信息不完备下结构物理参数识别方法研究[D].大连:大连理工大学,2005.
    [107]李国强,李杰.工程结构动力检测理论与分析应用[M].北京:科学出版社,2002.
    [108]夏天长,熊光楞.系统辨识-最小二乘法[M].北京:清华大学出版社,1983.
    [109]刘文光,李大华.线性结构物理参数识别[J].华南建设学院西院学报,1995,(4):1-6.
    [110]徐张明,高天明,沈荣瀛,等.一种改进的利用频响函数进行有限元模型修正的方法[J].振动与冲击,2002,21(3):43-45.
    [111]张德文,李应明.元素性摄动迭代法-动力模型修正与广义故障诊断[J].振动与冲击,1989,8(3):23-31.
    [112]Chanem R.,Shinozuka M.Structural system identification Ⅰ:theory[J].Journal of Engineering Mechanics,1995,121(2):255-264.
    [113]陶星明,刘光宁.关于混流式水轮机水力稳定性的几点建议[J].大电机技术,2002,(2):40-49.
    [114]孙万泉.水电站厂房结构振动分析及动态识别[D].大连:大连理工大学,2004.
    [115]赵凤遥.水电站厂房结构及水力机械动力反分析[D].大连:大连理工大学,2006.
    [116]王海军.水电站厂房组合结构分析及动态识别[D].天津:天津大学,2005.
    [117]秦亮.双排机水电站厂房结构动力分析与识别[D].天津:天津大学,2005.
    [118]张辉东.水电站厂房结构的非线性和耦联振动分析与模态参数识别[D].天津:天津大学,2006.
    [119]杨晓明.水电站机组振动及其与厂房的耦联振动研究[D].大连:大连理工大学,2006.
    [120]张信志,马利锋.计算大型水轮发电机组导轴承非线性油膜力的一种准非线性简化方法[J].水力发电学报,1999,(2):92-100.
    [121]乔卫东.水轮发电机组轴系动力特性分析及轴线精度检测方法[D].西安:西安理工大学,2006.
    [122]焦映厚,李明章,陈照波.不同油膜力模型下转子-圆柱轴承系统的动力学分析[J].哈尔滨工业大学学报,2007,39(1):46-50.
    [123]白延年.水轮发电机设计与计算[M].北京:机械工业出版社,1982.
    [124]姚大坤,李至昭,曲大庄.混流式水轮机自激振动分析[J].大电机技术,1998,(5):43-47.
    [125]周建旭,索丽生,胡明.抽水蓄能电站水力-机械系统自激振动特性研究[J].水利学报,2007,38(9):1080-1084.
    [126]李兆军,蔡敢为,杨旭娟,等.混流式水轮发电机组主轴系统非线性全局耦合动力模型[J].机械强度,2008,30(2):175-183.
    [127]朱因远,周纪卿.非线性振动和运动稳定性[M].西安:西安交通大学出版社,1992.
    [128]乔卫东,马薇,刘宏昭.基于非线性模型的水轮发电机组轴系耦合动力特性分析[J].机械强度,2005,27(3):312-315.
    [129]哈尔滨大电机研究所.大电机水轮机标准汇编.水轮机卷[S].中国标准出版社,2006.
    [130]顾鹏飞,喻远光.水电站厂房设计[M].北京:水利水电出版社,1987.
    [131]吴少忠.丰满发电厂9#发电机组上机架振动敏感性分析[D].大连:大连理工大学,2005.
    [132]杨静,马震岳,陈靖等.张河湾抽水蓄能电站厂房机墩组合刚度复核[J].水力发电,2006,32(12):33-35.
    [133]电力行业水电站水轮发电机标准化技术委员会.水轮发电机组启动试验规程-DL/T507-2002[S].北京:中国电力出版社,2002.
    [134]中国水轮机标准化技术委员会.水轮机基本技术条件-GB/T 15468-2006[S].北京:中国标准出版社,2006.
    [135]楼向明.运行状态下转子不平衡识别方法的研究[D].浙江:浙江大学,1998.
    [136]李松辉,练继建.水电站厂房结构模态参数的遗传识别方法[J].天津大学学报,2009,42(1):11-16.
    [137]陆光华,彭学愚,张林让,等.随进信号处理[M].西安:西安电子科技大学出版社,2002.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700