用户名: 密码: 验证码:
基于双折射原理共焦系统超分辨性能及轴向扫描技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着现代科技的高速发展和制造技术不断进步,使得系统零件的特征尺寸越来越小,精度越来越高。特别是随着微细加工技术的发展,如何对微电路等各种微零件的微观轮廓进行快速准确的检测成为现代测试方法和仪器研究的重要课题。
     本课题在研究光瞳滤波理论和共焦显微成像原理的基础上,研究了一种具有三维超分辨成像性能的共焦检测方法和技术,为超分辨光瞳滤波技术及三维超分辨光学测量传感系统的研究提供了理论基础及先期的实验验证。针对共焦扫描系统无轴向移动部件扫描方式问题,初步探索了利用液晶透镜和普通显微透镜结合的轴向扫描技术,提供了一种新颖的轴向驱动思路。本课题可以广泛的应用于微电子及生物工程等领域。本课题主要研究内容如下:
     首先,针对改善光学探测系统分辨力的问题,设计了径向双折射光瞳滤波器。本文详细的建立了双折射光瞳滤波器的理论模型,根据超分辨的重要特征参数第一零点比和斯托克斯比,设计分析了径向双折射光瞳滤波器的尺寸和位置参数,并讨论了该元件的横向和轴向的分辨性能;
     其后,针对由于双折射滤波器的引入而带来的轴向分辨力的损失以及旁瓣增加的问题,利用差动共焦系统能够有效的抑制旁瓣和有较高轴向分辨力的特性,将所设计的径向双折射光瞳滤波器加入到差动共焦显微系统中,以使系统达到了三维超分辨的效果。研究了双折射光瞳滤波式三维超分辨差动共焦显微系统的成像特性并经实验初步验证,在NA=0.75、λ=632.8nm条件下,轴向分辨率达3nm,横向分辨率达到0.19μm;
     最后,针对共焦显微系统的扫描方式问题,对基于双折射原理的液晶变焦式轴向扫描技术做了初步的探索工作。液晶变焦式共焦系统与传统共焦系统的主要区别在于轴向扫描方式的不同,大量工作集中在所使用的液晶变焦透镜的设计上,因此,本文对液晶变焦透镜的设计流程进行了初步分析,建立了相关模型并进行了仿真计算。仿真结果表明,该扫描方式具有可行性,并通过实验做了初步的效果验证,达到了变焦效果,但此方法的深入研究仍然需要大量的后续工作。
With the significant development of modern technology and the high improvement of manufacturing technology, the feature size of the element in system is more and more small and the precision is increasing improved. Especially as the development of micro-fabrication technology, rapid and accurate measurement for the micro-outlines of Microcircuit and other micro elements has become important subject of morden test and instrument research.
     Based on the study of pupil filtering theory and confocal microscopy image theory, a novel superreslution confocal measurement approach and technology with 3-D superresolution capability is studied in this paper, which provides theoretical foundation and experimental verification for superresultion pupil filtering technology and 3-D superresolution optical measurement system. To solve the problem of axial no-moving-parts in scanning confocal microscope system, a new manner about axial scanning technology was provided, which explores the confoucal system of axial scanning manner using a combination of a large diameter liquid crystal lens and a classical microscope objective lens. The investigated contents of the subject can be widely applied in the fields of microelectronics and bioengineering. The primary contents in this paper are as follows: Firstly, to improve the spatial resolution of the confocal system, the method and technology of introducing birefringent pupil filter into differential confocal system has been presented in the project. The exactly analytic medels of the lateral birefringent pupil filter is built in detail and size and position parameter of lateral birefringent pupil filter is designed, based on important feature parameters G of superresolution.
     Additionally, aimed at the problem of increased side lobe and decreased resolution because of introducing birefringent pupil filter, using the characteristics of differential confocal system which can restrain side lobe and have higher lateral resolution, a differential confocal microscope system combined with lateral birefringent pupil filter obtained the 3-D supperresolution results. And the 3-D image property of proposed 3-D superresolution confocal microscopy system is analyzed. In the condition of NA=0.75 andλ=632.8nm, preliminary comparisons in experimental results indicate that the experimental system can achieve 3nm of an axial resolution and 0.19μm of a lateral resolution.
     Finally, aimed at the problem of scanning manner of confocal microscope, introducing liquid crystal zoom lens in the optical system, axial non-mechanical scanning manner of liquid crystal zoom system is explored in this paper. The significant difference between liquid crystal zoom confocal system and traditional confocal system is the different manner of axial scanning. The designing method of liquid crystal zoom lens is studied, a kind of liquid crystal zoom lens is designed according to related materials, the related model is built and the simulation computation is analyzed. The simulation results indicate that the studied scanning manner is feasible, and the experimental results test and verify the zooming effects.
引文
1 D. Popovici, M. Meunier. Focusing Method and Apparatus for High-resolution Projection Patterning. Rev. Sci. Instrum. 2001, 72(2): 1435~1437
    2 S. Ledesma, J. Campos, et al.. Symmetry Properties with Pupil Phase-filters. Opt. Express. 2004, 12(11): 2548~2559
    3 D. Mugnai, A. Ranfagni, et al.. Pupil with Super-resolution. Physics Lett A. 2003, 311: 77~81
    4 S. Zhou, C. Zhou. Discrete Continuous-phase Superresolution Filters. Opt. Lett. 2004, 29: 2746~2748
    5 LIN Lie, Wang Xiang-Hui, et al.. Improvement of Axial Resolution in Confocal Microscopy by an Optical Pupil Filter with Two Zones Phase-shifted byπ. CHIN.PHYS.LETT. 2003, 20(9): 1641~1643
    6 H. J. Tiziani, M. Wegner, D. Steudie. Confocal Principle for Macro-and Microscopic Surface and Defect Analysis. Opt. Eng. 2000, 39(1): 32~39
    7 Vicente Mico, Zeev Zalevsky, et.al.. Single-step Superresolution by Interferometric Imaging. Optics Express. 2004, 12(12): 2589~2596
    8 M.顾著.共焦显微术的三维成像原理.王桂英,陈侦,杨莉松译.新时代出版社, 2000: 1~2 3~5 112~114
    9 G. Q. Xiao, T. R. Corel. Real-time Confocal Scanning Optical Microscope. Appl. Phys. Lett, 1998, 53: 716~718
    10 H. J. Tiziani, T. Haist, S. Renter. Optical Inspection and Characterization of Microoptics Using Confocal Microscopy. Optics and Lasers in Engineering. 2001, 36(4): 403~415
    11 Paul C. Lin, Pang-Chen Sun, Lijun Zhu. Single-shot Depth-section Imaging Through Chromatic Slit-scan Confocal Microscopy. Applied Optics, 1998, 37(10): 6764~6770
    12 Mcutchen C W. Superresolution in Microscopy and the Abbe Resolution Limit. J. Opt. Soc. Am. A. 1967, 56(11): 1463~1472
    13 G. Toraldo di Francia. Super-gain Antennas and Optical Resolving Power. Nuovo Cimento Suppl. 1952, 9: 426~435
    14 Lukosz W. Optical Systems with Resolving Powers Exceeing the Classical Limit. Opt. Soc. Am. 1966, 56: 1463~1472
    15 C. J. R. Sheppard. Fundamentals of Superresolution. Micron. 2007, 38(2): 165~169
    16邱丽荣.超分辨光瞳滤波理论及其共焦传感方法与技术研究.哈尔滨工业大学博士学位论文. 2005: 5~30 89~115 120~132
    17 B. J. Thompson. Diffraction by Semitransparent and Phase Annuli. J. Opt. Soc. Am. A. 1965, 55: 145~149
    18 Michael L. Melocchi. Phase Apodization for Resolution Enhancement. University of Rochester. Ph. D. Dissertation. 2003: 9~12 80~83
    19 C. J. R. Sheppard. The Use of Lens with Annular Aperture in Scanning Optical Microscopy. Optik. 1977, 48: 329~334
    20 Z. S. Hegedus. Annular Pupil Arrays-Applications to Confocal Scanning. Opt. Acta. 1985, 32: 815~826
    21 T. R. M. Sales, G.M.Morris. Diffractive Superresolution Elements. J. Opt. Soc. Am. A. 1997, 14: 1637~1646
    22 Tasso R. M. Sales, G. Michael Morris. Axial Superresolution with Phase-only Pupil Filters. Opt. Commun. 1998, 156: 227~230
    23 M. Martínez-Corral, P. Andres, et. al.. Improvement of Three-dimensional Resolution in Confocal Scanning Microscopy by Combination of Two Pupil Filters. Optik. 1998, 107: 145~148
    24 M. R. Wang, X. G. Huang. Subwavelength-resovable Focused Non Gaussian Beam Shaped with a Binary Diffractive Optical Element. Appl. Opt. 1999, 38: 2171~2176
    25 I. Leiserson, S. Lipson, V. Sarafis. Superresolution in Far-field Imaging. Opt. Lett. 2000, 25: 209~211
    26 M. Martínez-Corral, M. T. Caballero, et al.. Tailoring the Axial Shape of the Point Spread Function Using the Toraldo Concept. Opt. Express. 2002, 10(1): 98~103
    27 Zhao Weiqian, Tan Jiubin, Qiu Lirong. SABCMS, A New Approach to Higher Lateral Resolution of Laser Probe Measurement. Sensors and Actors A. 2005, 120(1): 17~25
    28 S. F. Pereira, A. S. van de Nes. Superresolution by Means of Polarization, Phase and Amplitude Pupil Masks. Opt. Commun. 2004, 234(1-6): 119~124
    29云茂金,刘立人,孙建锋,刘德安.复振幅光瞳滤波器的三维超分辨性能研究.光学学报. 2005, 25(4): 476~478
    30 M. D. Egger, M.Petráň. New Reflected Light Microscope for Viewing Unstained Brain and Ganglion Cells. Science. 1967, 157: 305~309
    31 T. Wilson, C. R. J. Shepperd. Theory and Practice of Scanning Optical Microscopy. Academic in Press. London. 1984: 12~36 42~78 123~139
    32 T. Dabbs and M. Glass. Fiber-optic Confocal Microscope: FOCON. Appl. Opt. 1992, 31(6): 3030~3035
    33唐志列,梁瑞生,常鸿森.双光子和多光子共焦显微镜的成像理论.物理学报.2000, 49(6): 1076~1080
    34杨莉松.光纤共焦扫描显微术和时间分辨多光子荧光光谱技术的研究.中国科学院上海光学精密机械研究所博士论文. 2000: 1~26 68~86 55~67
    35王永红.基于全场并行共焦的检测技术与系统研究.合肥工业大学博士学位论文. 2004: 5~11
    36 Kebin Shi, Peng Li, Shizhuo Yin, and Zhiwen Liu. Surface Profile Measurement Using Chromatic Confocal Microscopy. Proc. SPIE. 2004, 5606: 124~130
    37 M. Neil, R. Juskaitis, et. al.. Optimized Pupil-plane Filters for Confocal Microscope Point-spread Function Engineering. Opt. Lett. 2000, 25: 245~247
    38 Carlo Mar Blanca, Stefan W. Hell. Axial Superresolution with Ultrahigh Aperture Lens. Optics Express. 2002, 10(17): 893~898
    39 Manuel Martynez-Corral, Amparo Pons, Maria-Teresa Caballero. Axial Apodization in 4Pi-confocal Microscopy by Annular Binary Filters. J. Opt. Soc. Am. A. 2002, 19(8): 1532~1536
    40王湘晖,林列等.用滤波器提高共焦系统轴向分辨率的实验研究.光电子激光. 2004, 15(4): 420~422
    41 Ngoc Diep Lai, Jian Hung Lin, Po Wen Chen, Jaw Luen Tang, Chia Chen Hsu. Controlling Aspect Ratio of Focal Spots of High Numerical Aperture Objective Lens in Multi-photon Absorption Process. Opt. Commun. 2006, 258(2): 97~102
    42 J. W. Goodman.傅里叶光学导论.詹达三,董经武,顾本源译.科学技术出版社. 2006: 88~110
    43 Jason B. Stewart, Bahaa E. A. Saleh, Malvin C. Teich, John T. Fourkas. Experimental Demonstration of Polarization-assisted Transverse and Axial Optical Superresolution. Optics Communications. 2004, 56: 315~319
    44 Kallol Bhattacharya, A. K. Chakraborty, Ajay Ghosh. Simulation of Effects of Phase and Amplitude Coatings on the Lens Aperture with Polarization Masks. Opt. Soc. Am. ( A) 1994, 11(2): 586~592
    45云茂金,万勇,孔伟金,王美,刘均海,梁伟.可调谐位相型光瞳滤波器的横向光学超分辨和轴向扩展焦深.物理学报. 2008, (1): 194~199
    46云茂金,刘立人,孙建锋,刘德安.径向双折射滤波器的超分辨性能研究.光学学报. 2005, 25(1): 131~135
    47 T. Wilson, A. R. Carlini. Size of the Detector in Confocal Imaging Systems. Opt. Lett. 1987, 12(4): 227~229
    48 T. Wilson. Confocal Microscopy. London. Academic Press. 1990: 1~78 123~156
    49王新久.液晶光学和液晶显示.科学技术出版社. 2006: 6~36 55~61
    50 Nabeel A. Riza, Mumtaz Sheikh. Demonstration of Three-dimensional Optical Imaging Using a Confocal Microscope Based on a Liquid-crystal Electronic Lens. Optical Engineering. 2008, 47(6): 063201-1~063201-8
    51 Mao Ye, Bin Wang, Susumu Sato. Liquid Crystal Lens with a Focal Length that is Variable in a Wide Range. Optics Communications. 2005, 250: 6407~6412
    52王谦,何赛灵.液晶指向矢分布的模拟和比较研究.物理学报. 2001, 50(5): 926~931
    53 C. J. R. Sheppard, Min Gu. Edge-setting Criterion in Confocal Microscopy. Appl. Opt. 1992, 31(22): 4575~4577

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700