用户名: 密码: 验证码:
稻草还田对油菜生长、土壤肥力的综合效应及其机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
长江中下游地区油菜产量的提高往往受到季节性干旱、冬季低温以及土壤肥力较低等因素的限制。与此同时,在这一地区高强度的水稻种植每年会产生大量的水稻秸秆,由于缺乏合理的利用方式,相当数量的秸秆被直接焚烧于田间,导致了严重的环境污染和资源浪费。考虑到秸秆还田在改善土壤环境和培肥土壤方面的优势,在油菜季推行水稻秸秆还田不仅有可能提高油菜的产量,也可以合理的利用过剩的水稻秸秆,从而起到一举两得的效果。本研究利用盆栽试验、大田试验和长期定位试验,比较了不同稻草还田方式下油菜季土壤水热状况的差异,探讨了不同稻草还田方式对油菜生长、产量及氮利用的影响,分析了水稻—油菜轮作系统长期秸秆还田后土壤肥力及作物生产力的变化,以评估水稻秸秆还田的综合效应以及对油菜生产的影响,从而为水稻秸秆还田在油菜季的合理运用提供参考。主要的研究结果如下:
     1.稻草还田改善了土壤的水分状况,整个油菜生育期稻草翻压处理和覆盖处理0-30cm的土壤储水量平均分别较不还田处理提高了4.8%和9.8%。稻草覆盖显著降低了油菜越冬期0-10cm土层土壤温度的日变化幅度,保温效果明显。与覆盖还田相比,稻草翻压还田对土壤温度的调节作用相对较弱,较明显的土壤温度改变仅出现在5-10cm土层。盆栽和大田试验的结果均表明稻草还田不利于油菜出苗,无论稻草以何种方式还田,油菜的出苗率和群体数量均有一定程度的降低,其中覆盖还田条件下,降低的幅度更大。尽管如此,稻草还田还是改善了油菜的生长,稻草翻压还田在整个生育期显著增加了油菜的干物质积累量,而稻草覆盖还田在薹期之前也明显的促进了油菜的干物质积累,但在薹期之后这种正效应有逐渐减弱的趋势。分析土壤氨挥发和无机氮储量的结果发现,薹期追施氮肥之后,稻草覆盖导致了土壤氨挥发量的急剧增加,而相应的土壤无机氮储量则较稻草不还田处理显著降低。根据这一结果推测由薹肥氮损失加剧导致的氮供应不足可能是薹期之后稻草覆盖正效应下降的主要原因。从产量结果来看,稻草翻压增产效果明显,而稻草覆盖对油菜产量也有一定的正效应,但效应的大小在不同年份间有所不同,在干旱年份(2010-2011),稻草覆盖的增产效果明显,而在降水相对正常的年份(2011-2012),稻草覆盖的增产未达到显著性水平。以上结果说明覆盖和翻压在油菜季均是可行的稻草还田方式,但稻草覆盖条件下油菜的田间管理需要做出一定的调整,增加播种量和改变追肥方式均十分必要。
     2.田间条件下,设置0、3750、7500和15000kg/hm2四个还田量水平初步评估油菜季适宜的稻草覆盖量。从产量结果来看稻草覆盖可明显增加油菜的产量,平均的增产幅度达到16.0%。3个稻草用量处理中,以覆盖量为3750kgha-1的处理产量最高,随着覆盖量的进一步增加产量略有降低,但差异不大。以此作为判断依据同时兼顾操作方便的原则,在实际生产中应当推荐7500kg/hm2的覆盖量,相当于前季稻草全量还田。在稻草覆盖还田条件下研究了增加播种量对油菜出苗及产量的影响,结果表明增加播种量显著增加了油菜的群体数量,当播种量达到原播种量的1.6倍时,有效密度可增加51.2%。产量结果表明相同播种量的条件下,稻草覆盖明显增加了油菜的产量,而覆盖条件下增加播种量又可使油菜产量有进一步的提升,说明增加播种量是充分发挥稻草覆盖增产效应的有效措施。
     3.在双季稻-油菜轮作系统中,连续的秸秆覆盖还田可以提高作物的产量,早稻、晚稻、油菜3种作物中以油菜的增产效应最为明显,5年平均的增产幅度可达14.2%。连续秸秆覆盖还田增加了早稻、晚稻和油菜的养分吸收量,氮、磷、钾养分相对增加幅度的顺序为钾>氮>磷。养分内部利用效率的结果表明,秸秆覆盖对早稻、晚稻和油菜氮和磷的内部利用效率影响较小,但导致了作物钾内部利用效率的明显降低。从养分平衡的结果来看,秸秆还田后,各季作物的氮钾盈余均在秸秆不还田基础上有所提升,特别是钾的提升幅度很大,而磷盈余的变化则相对较小。在试验初期土壤全氮含量受秸秆还田的影响较小,但随着还田年限的增加,土壤全氮含量增加明显。秸秆还田对土壤速效磷的影响不明显,但从还田初期开始就显著提高了土壤速效钾的含量,整个试验期间(2007-2012),土壤速效钾含量平均比不还田处理增加了29.0%,差异显著。秸秆还田导致了土壤有机碳含量的增加,特别是在免耕条件下,增加幅度更为明显。以上结果说明连续的秸秆覆盖还田是双季稻-油菜轮作系统中提高土壤肥力增加作物产量特别是油菜产量的有效途径。
Seasonal drought, low temperature in winter and low soil fertility are main limiting factors for winter oilseed rape production in the middle and lower basin of Yangtze River. Therefore, identifying management practices that modificate the soil micro-enviroment, meanwhile enhance soil fertility is desirable for winter oilseed rape in this region. On the other hand, intensive rice production in the region contributes to enormous amounts of rice straw every year. Because of having not found an alternative method to use the straw, formers just burn it, which causes the waste of resources and environmental pollutio. Considering the advantages of straw retaining in improving soil moisture, soil temperature as well as soil fertility, rice straw retaining in winter oilseed rape season may be a potential practice not only to improve the productivity of winter oilseed rape, but also to fully utilize rice straw. In this study, pot experiment, short-term field experiment and long-term field experiment were conducted to (1) evaluate the effects of rice straw retaining on soil water and soil temperature;(2) explore the influences of rice straw retaining on winter oilseed rape growth, yield and nitrogen use;(3) analyze the changes of soil fertility and crop productivity under the condition long-term straw retaining. Results from this study may provide some information that can be used to (1) determine whether rice straw retaining has the potential of improving the productivity of winter oilseed rape;(2) preliminarily judge whether winter oilseed rape requires different management practices under straw retaining. The main results were as follows.
     1. Straw retaining had significant effects on soil moisture at0-30cm depth. Both straw incorporation and straw mulching resulted in higher soil water content at all growth stages of winter oilseed rape. At seedling stage of winter oilseed rape, straw mulching significantly reduced diurnal fluctuations of soil temperature, but straw incorporation had no significant influence on soil temperature. The results of pot and field experiments showed that both straw incorporation and mulching reduced the emergence percentage of winter oilseed rape, however, the relative mangnitude of the decrease was much bigger when straw mulching was applied than when the straw incorporaction was applied. Straw incorporaction improved the dry matter accumulation of winter oilseed rape throughout the whole growth periods. While straw mulching also increased the dry matter accumulation of winter oilseed rape at all growth stages, nevertheless, the relative magnitude of the increase in dry matter accumulation of winter oilseed rape between the mulched and un-mulched treatments reduced after seedling stage. Straw mulching resulted in more topdressing N loss through ammonia volatilization and a significantly lower soil inorganic N content after seedling stage, which might be the main factor that was responsible for decreasing positive effects of straw mulching on oilseed rape growth after seedling stage. Straw incorporation significantly increased rapeseed yield, but the effect of straw mulching on winter oilseed rape yield varied depend on seasons. In drought season (2010-2011), the mulched treatment had significantly more seed than the un-mulched treatment, however, in relatively normal season (2011-2012), straw mulching merely resulted in an insignificant increase in rapeseed yield.
     2. Different straw-mulching rates treatments (0,3750,7500and15000kg/hm2) were arranged in a field experiment to preliminarily estimate proper straw-mulching rates for winter oilseed rape. The results showed that compared with no straw mulching, mulching could increase significantly the rapeseed yield by16.0%on average. While between the three mulching rates treatments, no significant difference in rapeseed yield was observed. According to this result, meanwhile give consideration of the fundamental of easy operation, the mulching rates of7500kg/hm was recommended in actual farming, this rate roughly corresponded to the amounts of pervious rice straw. The effect of different sowing rates on emergence and yield of winter oilseed rape was studied under the condition of straw mulching. The results showed that the increase in sowing rates had no significant influence on emergence percentage of winter oilseed rape, but it significantly increased the plant density and yield of winter oilseed rape, indicating that increasing the seeding rates was an effective practice to improve rapeseed yield when straw mulching was applied in winter oilseed rape production.
     3. In the double rice-winter oilseed rape cropping system, continuous straw mulching increased the crop yield, moreover, the yield response was more significant in winter oilseed rape season than in rice season. Similar to yield, nutrient uptake of early-season rice, late-season rice and winter oilseed rape were also improved by continuous straw mulching. Straw mulching resulted in significantly lower internal efficiency of potassium (K) both in rice season and winter oilseed rape season, but it had no significant influence on internal efficiency of nitrogen (N) and phosphorus (P). The results of system-level nutrient balance showed that significant positive N, P and K balances had occurred without straw mulching, when straw mulching was applied, N and K surplus of cropping system were furthermore intensified. At the initial stage of long-term field experiment, there was no significant difference in soil total N content between mulched and un-mulched treatments, but with prolongation of experimental years, a gradually significant increase effect of straw mulching on soil total N content was observed. Straw mulching had no sigficant influence on soil available P content, but it had significantly increased soil exchangeable K content since the beginning of experiment. Straw mulching also resulted in an increase in soil total organic C content, moreover, under the condition of no-till, this increase was more significant.
引文
1. 鲍士旦.土壤农化分析.北京:科学出版社,2000
    2. 毕于运,高春雨,王亚静,李宝玉.中国秸秆资源数量估算.农业工程学报,2009,25:211-217
    3. 毕于运.秸秆资源评价与利用研究.[博士学位论文].北京:中国农业科学院图书馆,2010
    4. 曹继华,刘樱,赵小蓉,赵燮京.不同秸秆覆盖耕作方式对稻—油轮作土壤理化性状的影响.西南农业学报,2011,24:2101-2105
    5. 邓力群,陈铭达,刘兆普,沈其荣,王洪军,王建华.地面覆盖对盐渍土水热盐运动及作物生长的影响-土壤通报,2003,34:93-97
    6. 杜章留,高伟达,陈素英,胡春胜,任图生.保护性耕作对太行山前平原土壤质量的影响.中国生态农业学报,2011,19:1134-1142
    7. 付国占,李潮海,王俊忠,王振林,曹鸿鸣,焦念元,陈明灿.残茬覆盖与耕作方式对土壤性状及夏玉米水分利用效率的影响.农业工程学报,2005,21:52-56.
    8. 高利伟,马林,张卫峰,王方浩,马文奇,张福锁.中国作物秸秆养分资源数量估算及其利用状况.农业工程学报,2009,25:173-179
    9. 高亚军,黄东迈,朱培立,王志明,李生秀.稻麦轮作条件下长期不同土壤管理对氮素肥力的影响.土壤学报,2000a,37:456-462
    10.高亚军,朱培立,王志明,黄东迈,李生秀.稻麦轮作条件下长期不同土壤管理对磷、钾和pH的影响.土壤,2000b,32:257-261
    11.郭梨锦,曹凑贵,张枝盛,刘天奇,李成芳.耕作方式和秸秆还田对稻田表层土壤微生物群落的短期影响.农业环境科学学报,2013,32:1577-1584
    12.胡乃娟,张四伟,杨敏芳,顾克军,韩新忠,张政文,卞新民,朱利群.秸秆还田与耕作方式对稻麦轮作农田土壤碳库及结构的影响.南京农业大学学报,2013,32:7-12
    13.胡霞,刘连友,蔡强国,李顺江,蔡崇法.土壤结皮的研究进展及其评述.干旱区资源与环境.2005,19:145-149
    14.霍竹,王璞,付晋峰.秸秆还田下两种氮肥施用方式对夏玉米生长特性的影响.华北农学报,2005,20:100-104
    15.姬强,孙汉印,TaraqqiAK,王旭东.不同耕作措施对冬小麦-夏玉米复种连作系统土壤有机碳和水分利用效率的影响.应用生态学报,2014,25:1029-1035
    16.劳秀荣,吴子一,高燕春.长期秸秆还田改土培肥效应的研究.农业工程学报,2002,18:49-52
    17.李涵,张鹏,贾志宽,孙红霞,韩丽娜,杨保平,聂俊峰.渭北旱塬区秸秆覆盖还田对土壤团聚体特征的影响.干旱地区农业研究,2012,30:27-33
    18.李少昆,王克如,冯聚凯,谢瑞芝,高世菊.玉米秸秆还田与不同耕作方式下影响小麦出苗的因素.作物学报,2006,32:463-465
    19.李玮,乔玉强,陈欢,曹承富,杜世州,赵竹.秸秆还田和施肥对砂姜黑土理化性质及小麦-玉米产量的影响.生态学报,2014,优先出版
    20.廖育林,郑圣先,鲁艳红,谢坚,聂军,向艳文.长期施钾对红壤水稻土水稻产量及土壤钾素状况的影响.植物营养与肥料学报,2009,15:1372-1379
    21.林启美,吴玉光,刘焕龙.熏蒸法测定土壤微生物量碳的改进.生态学杂志,1999,18:63-66
    22.刘世平.稻麦两熟制不同耕作栽培方式对农田生态环境和周年生产力的影响.[博士学位论文].扬州:扬州大学图书馆,2005
    23.刘晚苟,山仑,邓西平.植物对土壤紧实度的反应.植物生理学通讯,2001,37:254-260
    24.鲁如坤,刘鸿翔,闻大中,钦绳武,郑剑英,王周琼.我国典型地区农业生态系统养分循环和平衡研究Ⅳ.农田养分平衡的评价方法和原则.土壤通报,1996,27:197-199
    25.鲁如坤,时正元,施建平.我国南方6省农田养分平衡现状评价和动态变化研究.中国农业科学,2000,33:63-67
    26.马力,杨林章,肖和艾,夏立忠,李运东,刘晓春.施肥和秸秆还田对红壤水稻土有机碳分布变异及其矿化特性的影响.土壤,2011,43:883-890
    27.牛新胜,张宏彦,马永良.华北平原蚯蚓对玉米秸秆直立还田冬小麦免耕播种的响应.2010,25:182-186
    28.沈金雄,傅廷栋.我国油菜生产、改良与食用油供给安全.中国农业科技导报,2011,13:1-8
    29.孙建,刘苗,李立军,刘景辉,Acharya SN.不同耕作方式对内蒙古早作农田土壤水热状况的影响.生态学报,2010,30:1539-1547
    30.孙丽敏,李春杰,何萍,刘孟朝,胡景辉.长期施钾和秸秆还田对河北潮土区作物产量和土壤钾素状况的影响.植物营养与肥料学报,2012,18:1096-1102
    31.孙伟红,劳秀荣,董玉良,毕建杰.小麦—玉米轮作体系中秸秆还田到产量及土壤钾素肥力的影响.作物杂志,2004,(4):14-16
    32.孙星,刘勤,王德建,张斌.长期秸秆还田对土壤肥力质量的影响.土壤,2007,39:782-786
    33.谭德水,金继运,黄绍文,高伟.长期施钾与秸秆还田对华北潮土和褐土区作物产量及土壤钾素的影响.植物营养与肥料学报,2008,14:106-112
    34.谭德水,金继运,黄绍文.长期施钾与秸秆还田对西北地区不同种植制度下作物产量及土壤钾素的影响.植物营养与肥料学报,2008,14:886-893
    35.田慎重,王瑜,李娜,宁堂原,王丙文,赵红香,李增嘉.耕作方式和秸秆还田对华北地区农田土壤水稳性团聚体分布及稳定性的影响.生态学报,2013,33:7116-7124
    36.王海霞,孙红霞,韩清芳,王敏,张睿,贾志宽,聂俊峰,刘婷.免耕条件下秸秆覆盖对早地小麦田土壤团聚体的影响.应用生态学报,2012,23:1025-1030
    37.王飞,林诚,李清华,何春梅,李昱,邱珊莲,林新坚.长期不同施肥对南方黄泥田水稻子粒与土壤锌、硼、铜、铁、锰含量的影响.植物营养与肥料学报,2012,18:1056-1063
    38.王汉中.我国油菜产业发展的历史回顾与展望.中国油料作物学报,2010,32:300-302
    39.王宏庭,金继运,王斌,赵萍萍.山西褐土长期施钾和秸秆还田对冬小麦产量和钾素平衡的影响.植物营养与肥料学报,2010,16:801-808
    40.王淑平,周广胜,姜亦梅,姜亦梅,王明辉,姜岩,刘孝义.玉米植株残体留田对土壤生化环境因子的影响.吉林农业大学学报,2002,24:54-57
    41.王小彬,蔡典雄,张镜清,高绪科.早地玉米秸秆还田对土壤肥力的影响.中国农业科学,2000,33:54-61
    42.王允青,郭熙盛.无水层节水灌溉丰产沟秸秆还田对水稻、油菜产量和土壤培肥的影响.土壤通报,2009,40:824-828
    43.王珍,冯浩.秸秆不同还田方式对土壤结构及土壤蒸发特性的影响.水土保持学报,2009,23:224-228
    44.王志勇,白由路,杨俐苹,卢艳丽,王磊,王贺.低土壤肥力下施钾和秸秆还田对作物产量及土壤钾素平衡的影响.植物营养与肥料学报,2012,18:900-906
    45.武际.水早轮作条件下秸秆还田的培肥和增产效应.[博士学位论文].武汉:华中农业大学图书馆,2012
    46.武际,郭熙盛,鲁剑巍,万水霞,王允青,许征宇,张晓玲.不同水稻栽培模式下小麦秸秆腐解特征及对土壤化物学特性和养分状况影响的研究.生态学报,2013,33:565-575
    47.徐国伟,杨立年,王志琴,刘立军,杨建昌.麦秸还田与实地氮肥管理对水稻氮磷钾吸收利用的影响.作物学报,2008,34:1424-1434
    48.徐国伟,谈桂露,王志琴,刘立军,杨建昌.麦秸还田与实地氮肥管理对直播水稻生长的影响.作物学报,2009,35:685-694
    49.徐国伟,谈桂露,王志琴,刘立军,杨建昌.秸秆还田与实地氮肥管理对直播水稻产量、品质及氮肥利用的影响.中国农业科学,2009,42:2736-2746
    50.徐明岗,于荣,王伯仁.长期不同施肥下红壤活性有机质与碳库管理指数变化.土壤学报,2006,43:723-729
    51.徐明岗,卢昌艾,李菊梅等.农田土壤培肥.北京:科学出版社,2009
    52.徐阳春,沈其荣,冉炜.长期免耕与施用有机肥对土壤微生物生物量碳、氮、磷的影响.土壤学报, 2002, 39: 89-96
    53.闫超,刁晓林,葛慧玲,王晓伟,马春梅,龚振平.水稻秸秆还田对土壤溶液养分与酶活性的影响.土壤通报,2012,43:1232-1236
    54.杨芳,田霄鸿,陆欣春,杨习文,李秀丽.小麦秸秆腐解对自身锌释放及土壤供锌能力的影响.植物营养与肥料学报,2011,17:1188-1196
    55.游东海,田霄鸿,把余玲,李锦,王淑娟,刘廷,南雄雄.小麦—玉米轮作体系中秸秆还田方式对土壤肥力及作物产量的影响.西北农林科技大学学报,2012,40:167-172
    56.俞海,黄季焜,Rzelle S, Brandt L.中国东部地区耕地土壤肥力变化趋势研究.地理研究,2003,22:380-388
    57.袁家富.麦田秸秆覆盖效应及增产作用.生态农业研究,1996,4:61-65
    58.曾木祥,张玉洁.秸秆还田对农田生态环境的影响.农业环境与发展,1997,14:1
    59.张璐,张文菊,徐明岗,蔡泽江,彭畅,王伯仁,刘骅.长期施肥对中国3典型农田土壤活性有机碳库变化的影响.中国农业科学,2009,42:1646-1655
    60.张鹏,贾志宽,王维,路文涛,高飞,聂俊峰.秸秆还田对宁南半干旱地区土壤团聚体特征的影响.中国农业科学,2012,45:1513-1520
    61.张喜英,陈素英,裴冬,刘孟雨.秸秆覆盖下的夏玉米蒸散、水分利用效率和作物系数的变化.地理科学进展,2002,21:583-592
    62.张振江.长期麦杆直接还田对作物产量与土壤肥力的影响.土壤通报,1998,29:154-155
    63.赵鹏,陈阜.秸秆还田配施化学氮肥对冬小麦氮效率和产量的影响.作物学报,2008,34:1014-1018
    64.朱琳,刘春晓,王小华,孙勤芳,卞新民.水稻秸秆沟埋还田对麦田土壤环境的影响.生态与农村环境学报,2012,28:399-403
    65.朱新玉,董志新,况福虹,朱波.长期施肥对紫色土农田土壤动物群落的影响.生态学报,2013,33:464-474
    66.邹娟,鲁剑巍,陈防,李银水.我国冬油菜区土壤肥力变化及施肥效果演变.中国油料作物学报,2011,33:275-279
    67. Arshad MA, Azooz RH. In-row residue management effects on seed-zone temperature, moisture and early growth of barley and canola in a cold semi-arid region ion northwestern Canada. Am J Altern Agric,2003,18:129-136
    68. Baggs EM, Stevenson M, Pihlatie M, Regar A, Cook H, Cadisch G. Nitrous oxide emissions following application of residues and fertilizer under zero and conventional tillage. Plant Soil, 2003,254:361-370
    69. Bakht J, Shafi M, Jan MT, Shah Z. Influence of crop residue management, cropping system and N fertilizer on soil N and C dynamics and sustainable wheat (Triticum aestivum L.) production. Soil Till Res,2009,104:233-240
    70. Balwinder-Singh, Humphrey E, Eberbach PL, Katupitiya A, Yadvinder-Singh, Kukal SS. Growth, yield and water productivity of zero till wheat as affected by rice straw mulch and irrigation schedule. Field Crops Res, 2011,121:209-225
    71. Bationo A, Christianson CB, Klaij MC. The effect of crop residue and fertilizer use on pearl millet yields in Niger. Nutr Cycl Agroecosys, 1993, 34: 251-258
    72. Beheydt D, Boeckx P, Ahmed HP, Cleemput OV N2O emission from conventional and minimum-tilled soils. Biol Fertil Soils, 2008, 44: 863-873
    73. Blanco-Canqui H, Lal R, Post WM, Izaurralde RC, Owens LB. Corn stover impacts on near-surface soil properties of no-till corn in Ohio. Soil Sci SocAm J, 2006a, 70: 266-278
    74. Blanco-Canqui H, Lal R, Post WM, Owens LB. Changes in long-term no-till corn growth and yield under different rates of stover mulch. Agron J, 2006b, 98:1128-1136
    75. Blanco-Canqui H, Lal R. Soil and crop response to harvesting corn residues for biofuel production. Geoderma, 2007a, 141:355-362
    76. Blanco-Canqui H, Lal R. Soil structure and organic carbon relationships following 10 years of wheat straw management in no-till. Soil Till Res, 2007b, 95:240-254
    77. Blanco-Canqui H, Lal R. Corn stover removal for expanded uses reducesasoil fertility and structural stability. Soil Sci SocAm J, 2009a, 73:418-426.
    78. Blanco-Canqui H, Lal R. Crop Residue removal impacts on soil productivity and environmental quality. Crit Rev Plant Sci, 2009b, 73:139-163
    79. Bijay-Singh, Bronson KF, Yadvinder-Singh, Khera TS, Pasuquin E. Nitrogen-15 balance as affected by rice straw management in a rice-wheat rotation in northwest India. Nutr Cycl Agroecosys, 2001,59:227-237
    80. Bijay-Singh, Shan YH, Johnson-Beebout SE, Yadvinder-Singh, Buresh RJ. Crop residue management for lowland rice-based cropping systems in Asia. Adv Agron, 2008, 98:117-199.
    81. Borresen T. The effect of straw management and reduced tillage on soil properties and crop yields of spring-sown cereals on two loam soils in Norway. Soil Till Res, 51,1999:91-102
    82. Bossuyt H, Denef K, Six J, Frey SD, Merckx R, Paustian K. Influence of microbial populations and residue quality on aggregate stability. Appl Soil Ecol,2001,16:195-208
    83. Brennan J, Hackett R, McCabe T, Grant J, Fortune RA, Forristal PD. The effect of tillage system and residue management on grain yield and nitrogen use efficiency in winter wheat in a cool Atlantic climate. Eur J Agron, 2014,54:61-69
    84. Bristow KL. The role of mulch and its architecture in modifying soil temperature. Aust J Soil Res, 1988,26,269-280
    85. Bronick CJ, Lal R. Soil structure and management: a review. Geoderma, 2005, 124: 3-22
    86. Bruce SE, Kirkegaard JA, Pratley, Howe JG Growth suppression of canola through wheat stubble Ⅰ. Separating physical and biochemical causes in the field. Plant Soil, 2006, 281: 203-218.
    87. Buysse P, Roisin C, Aubinet M. Fifty years of contrasted residue management of an agricultural crop: Impacts on the soil carbon budget and on soil heterotrophic respiration. Agr Ecosyst Environ, 2013, 167: 52-59
    88. Cassel DK, Raczkowski CW, Denton HP. Tillage effects on corn production and soil physical conditions. Soil Sci Soc Am J, 1995,59:1436-1443
    89. Chakraborty D, Nagarajan S, Aggarwal P, Gupta VK, Tomara RK, Garg RN, Sahoo RN, Sarkar A, Chopra UK, Sundara Sarma KS, Kalra N. Effect of mulching on soil and plant water status, and the growth and yield of wheat (Triticum aestivum L.) in a semi-arid environment. Agr Water Manage, 2008, 95:1323-1334
    90. Cambardella, Elliott ET. Participate Soil organic-matter changes across a grassland cultivation sequence. Soil Sci SocAm J, 1992, 56:777-783
    91. Chen SY, Zhang XY, Pei D, Sun HY, Chen SL. Effects of straw mulching on soil temperature, evaporation and yield of winter wheat: field experiments on the North China Plain. Ann Appl Biol, 2007,150: 261-268
    92. Cookson WR, Osman M, Marschner P, Abaye DA, Clark I, Murphy DV, Stockdale EA, Watson CA Controls on soil nitrogen cycling and microbial community composition across land use and incubation temperature. Soil Biol Biochem, 2007, 39:744-756
    93. Coppens F, Gamier P, Degryze S, Merckx R, Recous S. Soil moisture, carbon and nitrogen dynamics following incorporation and surface application of labelled crop residues in soil columns. Eur J Soil Sci, 2006,57: 894-905
    94. Dam RF, Mehdi BB, Burgess MSE, Madramootoo CA, Mehuys GR, Callum IR. Soil bulk density and crop yield under eleven consecutive years of corn with different tillage and residue practices in a sandy loam soil in central Canada. Soil Till Res, 2005, 84: 41-53
    95. Deng XP, Shan L, Zhang HP, Turner NC. Improving agricultural water use efficiency in arid and semiarid areas of China. Agr Water Manage, 2006, 80: 23-40
    96. Dinnes DL, Karlen DL, Jaynes DB, Kaspar TC, Hatfield JL, Colvin TS, Cambardella CA Nitrogen management strategies to reduce nitrate leaching in tile-drained midwestern soils. Agron J, 2002,94:153-171
    97. Doring TF, Brandt M, Heβ J, Finckh MR, Saucke H. Effects of straw mulch on soil nitrate dynamics, weeds, yield and soil erosion in organically grown potatoes. Field Crops Res, 2005, 94:238-249
    98. Ferreras LA, Costa JL, Garcia FO, Pecorari C. Effect of no-tillage on some soil physical properties of a structural degraded Petrocalcic Paleudoll of the southern "Pampa" of Argentina Soil Till Res, 2000,54:31-39
    99. Franzluebbers AJ, Hons FM, Zuberer DA. Tillage and crop effects on seasonal dynamics of soil CO2 evolution, water content, temperature, and bulk density. Appl Soil Ecol, 1995, 2: 95-109
    100. Frey SD, Elliott ET, Paustian K. Bacterial and fungal abundance and biomass in conventional and no-tillage agroecosystems along two climatic gradients. Soil Biol Biochem, 1999, 31, 573-585
    101. Fuentes M, Govaerts B, De Le6n F, Hidalgo C, Dendooven L, D.Sayre K, Etchevers J. Fourteen years of applying zero and conventional tillage, crop rotation and residue management systems and its effect on physical and chemical soil quality. Eur J Agron, 2009, 30: 228-237
    102. Gangwar KS, Singh KK, Sharma SK, Tomar OK. Alternative tillage and crop residue management in wheat after rice in sandy loam soils of Indo-Gangetic plains. Soil Till Res, 2006, 88:242-252
    103. Gantzer CJ, Buyanovsky GA, Alberts EE, Remley PA. Effects of soybean and corn residue decomposition on soil strength and splash detachment Soil Sc SocAm J, 1987, 51: 202-206
    104. Ghosh PK, Devi Dayal, Bandyopadhyay KK, Mohanty M. Evaluation of straw and polythene mulch for enhancing productivity of irrigated summer groundnut. Field Crops Res, 2006, 99: 76-86
    105. Glab T, Kulig B. Effect of mulch and tillage system on soil porosity under wheat (Triticum aestivum). Soil Till Res, 2008, 99:169-178
    106. Govaerts B, Sayre KD, Lichter K, Dendooven L, Deckers J. Influence of permanent raised bed planting and residue management on physical and chemical soil quality in rain fed maize/wheat systems. Plant Soil, 2007, 291:39-54
    107. Guggenberger Q Frey SD, Six J, Paustian K, Elliott T. Bacterial and fungal cell-wall residues in conventional and no-tillage agroecosystems. Soil Sci SocAm J, 1999, 63, 1188-1198
    108. Halvorson AD, Del Grosso SJ, Reule CA. Nitrogen, tillage, and crop rotation effects on nitrous oxide emissions from Irrigated cropping systems. J Environ Qual, 2008,37:1337-1344
    109. Hatfield JL, Sauer TJ, Prueger JH. Managing soils to achieve greater water use efficiency:a review. Agron J, 2001,93:271-280
    110. Holland EA, Coleman DC. Litter placement effects on microbial and organic matter dynamics in an agroecosystem. Ecology, 1987, 68, 425-433
    111.Hu Q, Feng S. A daily soil temperature data set and soil temperature climatology of the contiguous United States. JAppl Meteorol, 2003,42:1139-1156
    112. Huang YL, Chen LD, Fu BJ, Huang ZL, Gong J. The wheat yields and water-use efficiency in the Loess Plateau: straw mulch and irrigation effects. Agr Water Manage, 2005, 72: 209-222
    113. Huijsmans JFM, Hol JMG, Vermeulen GD. Effect of application method, manure characteristics, weather and field conditions on ammonia volatilization from manure applied to arable land. Atmos Environ,2003,37:3669-3680
    114. Janzen HH, Campbell CA, Brandt SA, Lafond GP, Townley-Smith L. Light-fraction organic matter in soils from long-termcrop rotations. Soil Sci SocAm J, 1992,56:1799-1806
    115. Kaewpradit W, Toomsan B, Cadisch G, Vityakon P, Limpinuntana V, Saenjan P, Jogloy S, Patanothai A. Mixing groundnut residues and rice straw to improve rice yield and N use efficiency. Field Crops Res, 2009, 110:130-138
    116. Karlen DL, Hint PG, Campbell RB. Crop residue removal effects on corn yield and fertility of a Norfolk sandy loam. Soil Sci SocAm J, 1984, 48:868-872
    117. Karlen DL,Wollenhaupt NC, Erbach DC, Berry EC, Swan JB, Eash NS, Jordahl JL. Crop residue effects on soil quality following 10 years of no-till corn. Soil Till Res, 1994, 31:149-167
    118. Kladivko EJ. Residue effects on soil physical properties. In: Managing Agricultural Residues. Unger PW, Eds. Boca Raton: CRC Press, 1994. 123-141
    119. Knoepp JD, Swank WT. Using soil temperature and moisture to predict forest soil nitrogen mineralization. Biol Fertil Soils, 2002,36:177-182
    120. Kravchenko AG, Thelen KD. Effect of winter wheat crop residue on no-till corn growth and development. Agron J, 2007, 99: 549-555
    121. Kushwaha CP, Tripathi SK, Singh KP. Variations in soil microbial biomassand N availability due to residue and tillage management in a dryland rice agroecosystem. Soil Till Res, 2000, 56, 153-166
    122. Kumar K, Goh KM. Management practices of antecedent leguminous and non-leguminous crop residues in relation to winter wheat yields, nitrogen uptake, soil nitrogen mineralization and simple nitrogen balance. Eur J Agron, 2002, 16:295-308
    123. Lal R. Soil temperature, soil moisture and maize yield from mulched and unmulched tropical soils. Plant Soil, 1974, 40:129-143
    124. Le Bissonnais Y Aggregate stability and assessment of soil crustability and erodibility:I. Theory and methodology. Eur J Soil Sci, 1996, 47:425-437
    125. Le Bissonnais Y, Singer M. Crusting, runoff and erosion response to soil water content and successive rainfalls. Soil Sci SocAm J, 1992, 56: 1898-1903
    126. Li CF, Yue LX, Kou ZK, Zhang ZS, Wang JP, Cao CG Short-term effects of conservation management practices on soil labile organic carbon fractions under a rape-rice rotation in central China. Soil Till Res, 2012, 119:31-37
    127. Limon-Ortega A, Sayre KD, Francis CA. Wheat and maize yields in response to straw management and nitrogen under a bed planting system. Agron J, 2000, 92:295-302
    128. Liu EK, Yan CR, Mei XR, He WQ, Bing SH, Ding LP, Liu Q, Liu S, Fan TL. Long-term effect of chemical fertilizer, straw, and manure on soil chemical and biological properties in northwest China. Geoderma, 2010,158:173-180
    129. Liu H, Jiang GM, Zhuang HY, Wang KJ. Distribution, utilization structure and potential of biomass resources in rural China:With special references of crop residues. Renew Sust Energ Rev, 2008,12:1402-1418
    130. Liu XJ, Mosier AR, Halvorson AD, Zhang FS. The impact of nitrogen placement and tillage on NO, N2O, CH, and CO2 fluxes from a clay loam soil. Plant Soil, 2006, 280:177-188
    131. MacKenzie AF, Fan MX, Cadrin F. Nitrous oxide emission in three years as affected by tillage, corn-soybean-alfalfa rotations, and nitrogen fertilization. J Environ Qual, 1998, 27: 698-703
    132. Malhi SS, Lemke R. Tillage, crop residue and N fertilizer effects on crop yield, nutrient uptake, soil quality and nitrous oxide gas emissions in a second 4-yr rotation cycle. Soil Till Res, 2007, 96:269-283
    133. Malhi SS, Lemke R, Wang ZH, Chhabra BS. Tillage, nitrogen and crop residue effects on crop yield, nutrient uptake, soil quality, and greenhouse gas emissions. Soil Till Res, 2006, 90: 171-183
    134. Malhi SS, Nyborg M, Solberg ED, Dyck MF, Puurveen D. Improving crop yield and N uptake with long-term straw retention in two contrasting soil types. Field Crops Res, 2011,124:378-391
    135. Meek BD, Carter DL, Westermann DT, Wright JL, Peckenpaugh RE. Nitrate leaching under furrow irrigation as affected by crop sequence and tillage. Soil Sci SocAm J, 1995, 59:204-210.
    136. Mkhabela MS, Madani A, Gordon R, Burton D, Cudmore D, Elmi A, Hart W. Gaseous and leaching nitrogen losses from no-tillage and conventional tillage systems following surface application of cattle manure. Soil Till Res, 2008, 98:187-199
    137. Morris NL, Miller PCH, Orson JH, Froud-Williams RJ. The effect of wheat straw residue on the emergence and early growth of sugar beet (Beta vulgaris) and oilseed rape (Brassica napus). Eur JAgron, 2009, 30: 151-162
    138. Pankhurst CE, Kirkby CA, Hawke BQ Harch BD. Impact of a change in tillage and crop residue management practice on soil chemical and microbiological properties in a cereal-producing red duplex soil in NSW, Australia. Biol Fertil Soils 2002, 35:189-196
    139. Parkin TB, Kaspar TC. Temperature controls on diurnal carbon dioxide flux:Implications for estimating soil carbon loss. Soil Sci SocAm J, 2003, 67:1763-1772
    140. Perucci P, Bonciarelli U, Santilocchi R, Bianchi AA. Effect of rotation, nitrogen fertilization and management of crop residues on some chemical, microbiological and biochemical properties of soil. Biol Fertil Soils, 1997, 24: 311-316
    141. Qin JT, Hu F, Zhang B, Wei ZG, Li HX. Role of straw mulching in non-continuously flooded rice cultivation. Agr Water Manage, 2006, 83:252-260
    142. Quemada M, Cabrera ML. Temperature and moisture effects on C and N mineralization from surface applied clover residue. Plant Soil, 1997, 189:127-137.
    143. Rahman MA, Chikushi J, Saifizzaman M, Lauren JG Rice straw mulching and nitrogen response of no-till wheat following rice in Bangladesh. Field Crops Res, 2005, 91:71-81
    144. Ramakrishna A, Tam HM, Wani SP, Long TD. Effect of mulch on soil temperature, moisture, weed infestation and yield of groundnut in northern Vietnam. Field Crops Res, 2006, 95: 115-125
    145. Rathke GW, Behrens T, Diepenbrock W. Integrated nitrogen management strategies to improve seed yield, oil content and nitrogen efficiency of winter oilseed rape (Brassica napus L.):A review. Agr Ecosyst Envion, 2006, 117:80-108
    146. Rebetzke GJ, Bruce SE, Kirkegaard JA. Longer coleoptiles improve emergence through crop residues to increase seedling number and biomass in wheat (Triticum aestivum L.). Plant Soil, 2005,272:87-100
    147. Roldan A, Caravaca F, Hernandez MT, Garcia C, Sanchez-Brito C, Velasquez M, Tiscareno M. No-tillage, crop residue additions, and legume cover cropping effects on soil quality characteristics under maize in Patzcuaro watershed (Mexico). Soil Till Res, 2003, 72: 65-73
    148. Salinas-Garcia JR, Baez-Gonzalez AD., Tiscareno-L6pez M, and Rosales-Robles E. Residue removal and tillage interaction effects on soil properties under rain-fed corn production in Central Mexico. Soil Till Res, 2001,59:67-79
    149. Sain P, Broadbent FE. Moisture Absorption, Mold Growth, and Decomposition of Rice Straw at Different Relative Humidities. Agron J, 67: 759-762
    150. Sauer TJ, Hatfield, JL, Prueger, JH. Corn residue age and placement effects on evaporation and soil thermal regime. Soil Sci Soc Am J, 1996, 60:1558-1564
    151. Saviozzi A, Levi-Minzi R, RiValdi R, Vanni G. Laboratory studies on the application of wheat straw and pig slurry to soil and the resulting environmental implications. Agr Ecosyst Environ, 1997,61,35-43
    152. Sharma P, Abrol V, Sharma RK. Impact of tillage and mulch management on economics, energy requirement and crop performance in maize-wheat rotation in rainfed subhumid inceptisols, India. Eur J Agron, 2011,34:46-51
    153. Sharratt BS. Corn stubble height and residue placement in the northern US Corn Belt Part Ⅰ. Soil physical environment during winter. Soil Till Res, 2002, 64:243-252
    154. Shaver TM, Peterson GA, Ahuja LR, Westfall DG. Soil sorptivity enhancement with crop residue accumulation in semiarid dryland no-till agroecosystems. Geoderma,2013, 192:254-258
    155. Shaver TM, Peterson GA, Ahuja LR, Westfall DG, Sherrod LA, Dunn G Surface soil physical properties after twelve years of dryland no-till management. Soil Sci Soc Am J, 2002, 66: 1296-1303
    156. Singh B, Chanasyk DS, McGil WB. Soil hydraulic properties of an Orthic Black Chernozem under long-term tillage and residue management. Can JSoil Sci, 1996, 76:63-71.
    157. Singh B, Malhi SS. Response of soil physical properties to tillage and residue management on two soils in a cool temperate environment. Soil Till Res, 2006, 85:143-153
    158. Singh G, Jalota SK, Yadvinder-Singh. Manuring and residue management effects on physical properties of a soil under the rice-wheat system in Punjab, India. Soil Till Res, 2007, 94:229-238
    159. Six J, Bossuyt H, Degryze S, Denef K. A history of research on the link between (micro) aggregates, soil biota, and soil organic matter dynamics. Soil Till Res, 2004, 79:7-31
    160. Six J, Elliott ET, Paustian K. Aggregate and soil organic matter dynamics under conventional and no-tillage systems. Soil Sci Soc Am J, 1999, 63:1350-1358
    161. Six J, Feller C, Denef K, Ogle SM, Sa JCM, Albrecht A. Soil organic matter, biota and aggregation in temperate and tropical soils—effects of no-tillage. Agronomie, 2002, 22, 755-775
    162. Skidmore EL, Layton JB, Armbrust DV, Hooker ML. Soil physical properties as influenced by cropping and residue management. Soil Sc Soc Am J, 1986, 50: 415-419
    163. Spedding TA, Hamel C, Mehuys GR, Madramootoo CA. Soil microbial dynamics in maize-growing soil under different tillage and residue management systems. Soil Biol Biochem, 2004,36:499-512
    164. Surekha K, Padma Kumari AP, Narayana Reddy M, Satyanarayana K, Sta Cruz PC. Crop residue management to sustain soil fertility and irrigated rice yields. Nutr Cycl Agroecosys,2003, 67: 145-154
    165. Tang C, Yu Q. Impact of chemical composition of legume residues and initial soil pH on pH change of a soil after residue incorporation. Plant Soil, 1999, 215:29-38
    166. Thuy NH, Shan YH, Bijay-Singh, Wang KR, Cai ZC, Yadvinder-Singh, Buresh RJ. Nitrogen supply in rice-based cropping systems as affected by crop residue management. Soil Sci Soc Am J, 2008, 72:514-523
    167. van Donk SJ, Tollner EW, Steiner JL, Evett SR. Soil temperature under a dormant bermudagrass mulch: Simulation and measurement. Trans ASAE, 2004, 47:91-98
    168. Venkateshwaran N, ElayaPerumal A, Alavudeen A Thiruchitrambalam M. Mechanical and water absorption behaviour of banana/sisal reinforced hybrid composites. Mater Design, 2011,32: 4017-4021.
    169. Wang QJ, Bai YH, Gao HW, He J, Chen H, Chesney RC, Kuhn NJ, Li HW. Soil chemical properties and microbial biomass after 16 years of no-tillage farming on the Loess Plateau, China. Geoderma, 2008,144:502-508
    170. Wang XB, Cai DX, Hoogmoed WB, Perdok UD, Oenema O. Crop residue, manure and fertilizer in dryland maize under reduced tillage in northern China: I. grain yields and nutrient use efficiencies. Nutr Cycl Agroecosyst, 2007, 79: 1-16
    171. Wang XH, Feng ZM. Biofuel use and its emission of noxious gases in rural China. Renew Sust Energ Rev,2004,8:183-192
    172. Wang ZH, Liu XJ, Ju XT, Zhang FS, Malhi SS. Ammonia volatilization loss from surface-broadcast urea: comparison of vented- and closed-chamber methods and loss in winter wheat-summer maize rotation in North China Plain. Commun Soil Sci Plan, 2004, 35: 2917-2939
    173. Whitbread A, Blair G, Konboon Y, Lefroy R, Naklang K Managing crop residues, fertilizers and leaf litters to improve soil C, nutrient balances, and the grain yield of rice and wheat cropping systems in Thailand and Australia. Agr Ecosyst Environ, 2003, 100:251-263
    174. Whitehead DC, Raistrick N. Effects of some environmental factors on ammonia volatilization from simulated livestock urine applied to soil. Biol Fertil Soils, 1991, 11:279-284
    175. Wilhelm WW, Johnson JMF, Hatfield JL, Voorhees WB, Linden DR Crop and soil productivity response to corn residue removal: a literature review. Agron J, 2004, 96: 1-17
    176. Wu YX. Study on water-soluble organic reducing substances: Ⅲ. Electrochemical properties of decomposition products of rice straw and their interactions with variable charge soils. Pedosphere, 1996, 6, 167-173
    177. Wuest SB, Albrecht SL, Skirvin KW. Crop residue position and interference with wheat seedling development. Soil Till Res, 2000, 55:175-182
    178. Xu JM, Tang C, Chen ZL. The role of plant residues in pH change of acid soils differing in initial pH. Soil Biol Biochem, 2006, 38:709-719
    179. Xu JZ, Peng SZ, Yang SH, Wang WG Ammonia volatilization losses from a rice paddy with different irrigation and nitrogen managements. Agr Water Manage, 2012, 104: 184-192
    180. Xu JZ, Liao LX, Tan JY, Shao XH. Ammonia volatilization in gemmiparous and early seedling stages from direct seeding rice fields with different nitrogen management strategies:A pots experiment. Soil Till Res, 2013,126:169-176
    181. Yadvinder-Singh, Bijay-Singh, Ladha JK, Khind CS, Khera TS, Bueno CS. Effects of Residue Decomposition on Productivity and Soil Fertility in Rice-Wheat Rotation. Soil Sci Soc Am J, 2004,68:854-864
    182. Yadvinder-Singh, Bijay-Singh, Timsina J. Crop residue management for nutrient cycling and improving soil productivity in rice-based cropping systems in the Tropics. AdvAgron, 2005, 85: 269-407
    183. Zeng XY, Ma YT, Ma LR. Utilization of straw in biomass energy in China. Renew Sust Energ Rev, 2007,11: 976-987
    184. Zhou JB, Wang CY, Dong F, Zheng XF, Gale W, Li SX. Effect of water saving management practices and nitrogen fertilizer rate on crop yield and water use efficiency in a winter wheat-summer maize cropping system. Field Crops Res, 2011,122,157-163
    185. Zhu ZL, Chen DL. Nitrogen fertilizer use in China - Contributions to food production, impacts on the environment and best management strategies. Nutr Cycl Agroecosys, 2002, 63:117-127

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700