用户名: 密码: 验证码:
生姜连作土壤生态系统调控研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究以生姜连作土壤系统为研究对象,对不同连作年限的土壤进行了理化和生物性状的分析,并尝试建立了生姜连作土壤生态系统健康评价模型。同时,利用蚯蚓粪与哈茨木霉菌、两株放线菌(丁香苷链霉菌和球孢链霉菌)进行生姜连作土壤的调控,试验以盆栽和田间条件下进行。结果表明:
     (1)随生姜连作年限延长,土壤过氧化氢酶、蔗糖酶、磷酸酶活性都大幅下降,土壤pH较低;土壤有机质下降。肉足虫数量高;鞭毛虫数量降低。食细菌线虫数量与蔗糖酶、脲酶、磷酸酶、pH等正相关,线虫总数量低。
     (2)盆栽条件下,添加适量蚯蚓粪和适当的生防菌可提高生姜连作土壤的pH值、有机质含量及土壤酶活性,尤其是过氧化氢酶和磷酸酶。蚓粪用量增加则纤毛虫增加,添加放线菌的蚯蚓粪处理原生动物丰度高,哈茨木霉苗期促进了鞭毛虫的生长;苗期放线菌的作用小于哈茨木霉,收获期原生动物丰度超过哈茨木霉。
     (3)田间条件下施用蚯蚓粪及含有生防菌的蚯蚓粪,可以提高土壤过氧化氢酶、蔗糖酶、磷酸酶等酶活性,尤其以“蚯蚓粪+哈茨木霉+秸秆粉”处理提升幅度较大。同时提高土壤有机质含量,提高pH,稳定在6.5左右。促进植物对全氮的吸收,提高土壤速效磷和速效钾的含量。这种促进作用,在试验第三年更为明显。各处理净光合速率均高于对照,部分荧光参数也显著优于对照,说明处理与对照相比生姜的光合能力更强。
     田间条件下,常规施肥管理(CK)土壤的肉足虫占优势时期较多。“蚯蚓粪+秸秆粉”处理纤毛虫的相对丰度在苗期两次高峰,第三年,纤毛虫和鞭毛虫增加。“蚯蚓粪+哈茨木霉+秸秆粉”处理优势类群由肉足虫向鞭毛虫转变。“蚯蚓粪+哈茨木霉+两株放线菌+秸秆粉”处理的肉足虫向鞭毛虫和肉足虫转变。第1-3年,蚯蚓粪处理依次以食真菌线虫、食细菌线虫和食真菌线虫、食细菌线虫为主。对照土壤则主要以食细菌线虫为主,植食线虫其次,尤其时植食性线虫在第一年和第三年收获期均占较大比例,这可能会促进线虫病的发生。蚯蚓粪+哈茨木霉+秸秆粉”处理香农威纳指数和均匀度上作用较明显。
     (4)常规管理更容易严重偏离健康或轻微偏离健康,一旦不消毒则开始偏离健康土壤,增加发病几率。添加哈茨木霉的蚯蚓粪更有利于土壤的健康,这主要因为哈茨木霉的拮抗作用所致。哈茨木霉和放线菌同时加入蚯蚓粪中,可能会因为两种微生物竞争作用的存在,对土壤的改良作用需要较长时间才能体现。
Physical and chemical characteristics of continuous cropping soil were determined in order to establish an estimate modle on soil health. Vermicompost and two antagonistic microbia were applied into continuous cropping soil to regulate soil ecosystem. Study was conducted under pot experiment and field. Data shows:
     (1) Investigation on differents years of ginger continuous cropping soil showed that soil enzyme activity, such as catalase, invertase, phosphatase, decreased with increase of continuous cropping years. So did the soil pH and soil organic matter content. Soil protozoa abundance increased such as amoebae or decreased such as flagellate. Bactervores numbers was decreased for positive correlation with soil enzyme activity, as invertase, urease, e phosphatase, and pH. Total number of nematode was decreased with years of continuous cropping.
     (2) Appropriate content of vermicompost and antagonistic microbia applied increased soil pH, soil organic matter conten, and soil enzyme activity, especially catalase, invertase, phosphatase in continuous cropping ginger soil under pot experiment. Ciliate abundance of soil increased with vermicompost content. Actinomycetes in vermicompost stimulated protozoa total abundance in soil afer harvesting, while Trichoderma harzianum in vermicompost added into soil stimulaion on protozoa total abundance in seedling soil of ginger.
     (3) Vermicompost containing antagonistic microbia applied into continuous cropping ginger soil stimulated soil enzyme activity, as catalase, invertase, phosphatase, espeicially in T2treatment, vermicompost containing Trichoderma harzianum, under field condition. And vermicompost treatments increased soil organic matter content, pH up to6.5, ginger plant adsorption for nitrogen, and available P and available K. The stimulation on soil characteristics and plant growth was obviously in third year after improved by vermicompost with antogonistic microbia. Photosynthesis rate and chlorophyll fluorescence were better in verimicompost treatements than control without vermicompost.
     Amoebae was mainly protozoa in CK ginger soil in field condition. Amoebae was mainly protozoa in ginger seedling soil of Tl containg vermicompost only in2011and2012, and ciliate and flagellate were maily protozoa in2013under field condition. The mainly protozoa of T2which containg vermicompost and Trichoderma harzianum changed from amoebae to flagellate in field. T3treatment which containing vermicompost and actinomycetes and Trichoderma harzianum mainly protozoa in ginger soil changed from amoebae to flagellate and amoebae. During three years in field, soil mainly nematode in T1, T2, and T3were fungivores, bactervores and fungivores, and bactervores respectively. The control soil nematode was bactervores and plant parasites, plant parasites was most in harvesting soil in2011and2013. Shannon Weiner index and evenness of T2soil was best in three vermicompost treatments.
     (4) Conventional management of ginger continuous cropping soil was suspected for mild or serious diverging from health soil, which will increase the disease instance. Vermicompost with Trichoderma harzianum will improve the health of soil for Trichoderma harzianum resistance for soil pathogen. Vermicompost with two antagonistic microbia improvement on continuous cropping soil need more time maybe for the two microbes requirement for resouces.
引文
Acosta-Martinez, V., Cruz, L., Sotomayor-Ramirez, D., et al, Enzyme activities as affected by soil properties and land use in a tropical watershed. Appl. Soil Ecol.,2007,35,35-45
    Akhtar M, Mahmood I. Control of plant-parasitic nematodes with organic and inorganic amendments to agricultural soil. Applied Soil Ecology,1996, (4):243-247
    Alef, K., Nanniperi, P. Enzyme activities. In:Alef, K., Nanniperi, P. (Eds.), Methods in Applied Soil Microbiology and Biochemistry. Academic Press, London,1995,311-373
    Arancon N, Edwards CA,Yardim F. et al. Management of plant parasitic nematodes by use of vermicomposts. Proceedings of Brighton Crop Protection Conference-Pests and Diseases,2002, 2:705-710
    Atiyeh R, Lee S, Edwards CA, et al. The influence of humic acids derived from earthworm-processed organic wastes on plant growth. Bioresaurce Techndogy,2002,84,7-14
    Baldi, E., Toselli, M., Marcolini, G., et al. Cirillo, E., Innocenti, A., Marangoni, B. Compost can successfully replace mineral fertilizers in the nutrient management of commercial peach orchard. Soil Use Manage,2010,26,346-353
    Bamforth, S. Interactions between protozoa and other organisms. Agric. Ecosyst. Environ,1988,24: 229-234
    Bardgett, R. The biology of soil. In:A Community and Ecosystem Approach, Oxford University Press, New York,2005,242
    Barker K. R., Carter C. C., Sasser J. N. An advanced treatise on Meloidogyne, Methodology. Vol.2. North Carolina State University Graphics, Raleigh, NC,1985,223
    Bergstrom D. W., Monreal C. M. Senditivity of soil enzyme activities to conservation practices. Soil Science Society of America Journal,1998,62:1286-1294
    Bonkowski M, Grilfiths B, Scrimgeour C. Substrate het erogeneity and microfauna in soil organic; 'hotspots' as determinants of nitrogen capture and growth of ryegrass. Applied Soil Ecology, 2000a,14:37-53
    Bonkowski M, Cheng W, Grilfiths B S. et al. Microbial faunal interactions in the rhizosphere and elfec;ts nn plant growth. European Journal of Soil Biology,2000b,36:135-147
    Bott T L, Kaplan L A. Potential for protozoan grazing of bacteria in streambed sediments. Journal of the North American Benthological Society,1990,9(4):336-345
    Brown, G., Barois, I., Lavelle, P. Regulation of soil organic matter dynamics and microbial activity in the drilosphere and the role of interactions with other edaphic functional domains. Eur. J. Soil Biol.,2000,36,177-198
    Bulluck L. R., Barker K. R., Ristaino J. B. Influences of organic and synthetic soil fertility amendments on nematode trophic groups and community dynamics under tomatoes. Applied Soil Ecology,2002,21:233-250
    Cao Z P, Yu Y L, Chen G K, et al. Impact of soil fumigation practices on soil nematodes and microbial biomass. Pedosphere,2004,14(3):387-393
    Chun-Mei Han, Kai-Wen Pan, Ning Wu, et al., Allelopathic effect of ginger on seed germination and seedling growth of soybean and chive Original Research Article. Scientia Horticulturae,2008, 116(3):330-336
    Coleman D C, Anderson R V, Cole C V, et al., Trophic interactions in soils as they affect energy and nutrient dynamics. IV. Flows of metabolic and biomass carbon. Aquatic Microbial Ecology,1978, 4:373-380
    Collins H P, Alva A, Boydston R A, et al. Soil microbial fungal, and nematode response to soil fumigation and cover crops under potato production. Biology and Fertility of Soils,2006,42: 247-257.
    Conway G R. The properties of agroecosystem. A gricultural Systems,1987,24:95-117
    Costanza R. Predictors of ecosystem health. In:Rapprt D. J., R. Costanza, P. R. Epstein, C. Gaudet & R. Levins eds. Ecosystem health. Malden and Oxford:Blackwell Science,1998:240-250
    Coteaux M M, Darbyshire J F. Functional diversity amongst soil protozoa. Application of Soil Ecology,1998,10:229-237
    Dindal, D.L. Soil Biology Guide. John Wiley & Sons, New York,1990,1349
    Djigal D, Brauman A, Diop T A, et al. Villenave C. Influence of bacterial-feeding nematodes (Cephalobidae) on soil microbial communities during maize growth. Soil Biology and Biochemistry,2004,36:323-331
    Dominguez J, Edwards C A and Subler S. A comparison of vermicomposting and composting. Bio. Cycle,1997,38:57-59
    Dumanski J. Criteria and indicators for land quality and sustainable. ITC,1997,216-223
    Edwards C A, Burrows I. The potential of earthworm composts as plant growth media. In:Edwards C A and E F Neuhauser (eds) Earthworms in Waste and Environment Management. SPB Academic Press, The Hague, The Netherlands,1988,21-32
    Edwards C A. and Norman Q Arancon. Vermicomposts Suppress Plant Pest And Disease Attacks. ProQuest Agriculture Journals,2004,45(3):51-54
    Edwards C A. Breakdown of animal, vegetable and industrial organic wastes by earthworms. In: Edwards CA and EF Neuhauser(eds)Earthworms in Waste and Environment Management. SPB Academic Press,The Hague,The Netherlands,1988,21-31
    Edwards C A. The use of earthworms in the breakdown and management of organic wastes. In: Edwards CA(ed) Earthworm Ecology. CRC Press, Boca Raton, FL,1998,327-354
    Edwards C. A. Utilization of earthworm composts as plant growth medium.In:Tomati U, Grappelli A eds. International Symposium on Agricultural and Environmental Prospects in Earthworm. Rome, Italy.1983,57-62.
    Edwards CA, Norman QA. Verrricomposts suppress plant pest and disease attacks. Pro Quest Apiculture Journals,2004,45(3); 51-54
    Edwards, C.A. Soil invertebrate controls and microbial interactions in nutrient and organic matter dynamics in natural and agroecosystems. In:Coleman, D.C., Hendrix, P.F. (Eds.), Invertebrates as Webmasters in Ecosystems. CABI Publishing, New York,2000:141-159
    Ekelund, F., Ronn, R. Notes on protozoa in agricultural soil with emphasis on heterotrophic flagellates and naked amoebae and their ecology. FEMS Microbiol. Rev.,1994,15:321-353
    Forge T A, Hogue E, Neilsen G Effects of organic mulches on soil microfauna in the root zone of apple:implications for nutrient fluxes and functional diversity of the soil food web. Applied Soil Ecology,2003,22:39-54
    Frechman D. W. and Huang S. P. Response of the soil nematode community in a shortgrass steppe to long-term and short-term grazing. Applied Soil Ecology,1998,9:39-44
    Freckman D W, Ettema C H. Assessing nematode communities in agroecosystems of varying human intervention. Agriculture, Ecosystems and Environment,1993,45:239-261
    Garcia-Ruiz, R., Ochoa, V., Hinojosa, M.B., et al. Suitability of enzyme activities for the monitoring of soil quality improvement in organic agricultural systems. Soil Biol. Biochem.,2008,40: 2137-2145
    Ge, Y., Zhang, J.B., Zhang, L.M., et al. Long-term fertilization regimesaffect bacterial community structure and diversity of an agricultural soil innorthern China. J. Soils Sediments,2008,8: 43-50
    Griffiths B S, Ritz K, Wheatley R E. Nematodes as indicators of enhanced microbiological activity in a Scottish organic farming system. Soil Use and Management,1994,10:20-24
    Guo Y H, Zhang Z X. Establishment and plant regeneration of somatic embryogenic cell suspension cultures of the Zingiber officinale Rosc. Scientia Horticulturae,2005,107(1):90-96
    Guwy, A.J., Martin, S.R., Hawkes, F.R., et al. Catalase activity measure~ments in suspended aerobic biomass and soil samples. Enzyme Microb. Technol.,1999,25:669-676
    Handreck K A. Vermicomposts as components of potting media.BioCycle,1986.27:58-62
    Harris D, Voroney R P, Paul E A. Measurement of microbial biomass N:C by chloroform fumigation-incubation. Canadian Journal of Soil Science,1997,77:507-514
    Hendrix P F, Parmel R W, Crossley D A Jr, et al. Detritus food webs in conventional and no-tillage agroecosystems. Biosciences,1986,36:374-380
    Homma Y, Cook R J. Influence of matric and osmotic water potentials and soil pH on the activity of giant vampyrellid amoebae. Phytopathology,1985,75:243-246
    Horace G C, Richard H C, Fanist G.et al.6-pentyl-a-pyrone from:Trichoderma in a Mediterranean agroecosystem. Journal of Nematology,2001,33(4):208-213
    Howorth L, Brunk C, Jennex D, et al. A dual-perspectivemodel of agroecosystem health:system function and system goals. Journal of Agricultural and Environmental Ethics,1997,10 (2): 127-152
    Ingham, R.E., Trofymow, J.A., Ingham, E.R. Interactions of bacteria, fungi, and their nematode grazers:effects on nutrient cycling and plant growth. Ecol. Monogr.1985,55:119-140
    Kang, D.H., Dougherty, R.H., Clark, S., et al. Catalase activity for rapidassessment of high level total mesophillic microbial load in milk. J. Food Sci.,2002,67:1844-1846
    Kaplan D L, Hartenstein R, Neuhauser E F. Physicochemical requirements in the environment of the earthworm Eisenia foetida. Soil Biology and Biochemistry,1980,12:347-352
    Keillev K A, Banks M K, Sohwab A P. Dissipation of polycyclic aromatic hydrocarbons in the rhizosphere. Journal of Environmental Quality,1996,25(2):212-219
    Kimpinski J, Sturz A V. Managing crop root zone ecosystems for prevention of harmful and encouragement of beneficial nematodes. Soil and Tillage Research,2003,72:213-221
    Lakhdar, A., Hafsi, C., Rabhi, M., et al. Application of municipal solid waste compost reduces thenegative effects of saline water in Hordeum maritimum L. Bioresour. Technol.,2008,99, 7160-7167
    Lavelle, P., Spain, A.V. Soil Ecology. Kluwer Academic Publishers, Dordrecht,2001:654
    Liang W J, Lavian I, Steinberger Y. Effects of agricultural management on nematode community harzianum:Its planter growth inhibitory and antimicrobial properties. Agric. Biol. Chem.,1986, 50(11):943-2945
    Liu X. Z., X. Y. Wu. In:Proceedings of the Second International Workshop on Plant Nematology. Pakistan, Karachi:1992,61-69
    Liu Y, Hua J, Jiang Y, et al. Nematode communities in greenhouse soil of different ages from Shenyang suburb. Helminthologia,2006,43 (1):51-55
    Mader, P.D.A., Fliebbach, A., Dubois, D., et al. Soil fertility and biodiversity in organic farming. Science,2002,296:1694-1697
    Makoi Joachim H. J. R., Ndakidemi Patrick A. Selected soil enzymes:examples of their potential roles in the ecosystem. African Journal of Biotechnology,2008,7(3):181-191
    Miya R K, Firestone M K. Phenanthrene-degrader community dynamics in rhizosphere soil from a cornmon annual grass. Journal of Environmental Quality,2000,29(2):584-592
    Moeskops, B., Buchan, D., Sleutel, S., et al. Soil microbial communities and activities under intensive organic and conventional vegetable farming in West Java, Indonesia. Appl. Soil Ecol.,2010,45: 112-120
    Mukhebi A W. Views on agroecsystem health. In:Agroecosystem health, ed. N.O. Nielson. Proceedings of an international work shop. University of Guelph, Guelph, Canada,1994
    Nasci, C., Da Ros, L., Campesan, G., et al. Clam transplantation and stress related biomarkers as useful tools forassessing water quality in coastal environments. Mar. Pollut. Bull.,1999,39: 255-260
    Neher D A, Olson R K. Nematode communities in soils of four farm cropping management systems. Pedobiologia,1999,43:430-438
    Ngo, P.T., Rumpel, C., Dignac, M.F., et al. Transformation of buffalo manure by composting or vermicomposting to rehabilitate degraded tropical soils. Ecol. Engineer.,2011,37:269-276
    Ngo, P.T., Rumpel, C., Doan, T.T., et al. The effect of earthworms on carbon storage and soil organic matter composition in tropical soil amended with compost and vermicompost. Soil Biol. Biochem.,2012,20:214-220
    Nichols T D, Wolf D C, Rogers 11 B, et al. Rhizosphere microbial populations in c:ontaminated soils. Water, Air and Soil Pollution,1997,95(1):165-178
    Norman Q.A, Edwards CA, Yardim EN, et al. Suppression of two-spotted spider mite (Tetranychus urticae), mealy bug (Pseudococcus sp) and aphid (Myzus persicae) populations and damage by vermicomposts Crop Protection,2007,26:29-39
    Norman QA, Edwards CA, Andrei Babenko. et al. Influences of vermicomposts, produced by earthworms and microorganisms from cattle manure, food waste and paper waste, on the germination, growth and flowering of petunias in the greenhouse, applied soil ecology,2008,39: 91-99
    Oka Y. Mechanisms of nematode suppression by organic soil amendments:a review. Applied Soil Ecology,2010,44:101-115
    Okey B W. System approaches an properties, and agroecosystem health. Journal of Environmental M anagement,1996,48:187-199
    Orozco F H, Cegarra J, Trujillo L M. Vermicomposting of coffee pulp using the earthworm Eisenia fetida:effects on C and N contents and the availability of nutrients. Biology and Fertility of Soils, 1996,22:162-166
    Pankhurst C E, Hawke B G, McDonald H J, et al. Evaluation of soil biological properties as potential bioindicators of soil health. Australian Journal of Experimental Agriculture,1995,35: 1015-1028
    Pen-Mouratov S. He X. Steinberger Y. Spatial distribution and trophic diversity of nematode populations under Acacia raddiana along a temperature gradient in the Negev Desert Ecosystem. Journal of Arid Environments,2004,56:339-355
    Pramanik, P. Changes in microbial properties and nutrient dynamics in bagasse and coir during vermicomposting:Quantification of fungal biomass through ergosterol estimation in vermicompost. Waste Management,2010,30:787-791
    Pramanik, P., Ghosh, GK., Ghosal, P.K., et al. Changes in organic~C, N, P and K and enzyme activities in vermicomposts of biodegradable organic wastes under liming and microbial inoculants. Bioresour. Technol.,2007,98:2485-2494
    Reinecke A J, Venter J M. Moisture preferences, growth and reproduction of the compost worm Eisenia fetida (Oligochaeta). Biology and Fertility of Soils,1987,3:135-141
    R(?)nn R, McCaig A E, Griffiths B S, et al. Impact of proto-zoan grazing on bacterial community structure in soil micro~cosms. Applied and Environmental Microbiology,2002,68(12):6094
    Ruess L. Nematode soil faunal analysis of decomposition pathways in different ecosystems. Nematology,2003,5(2):179-181
    Sinsabaugh, R.L., Lauber, C.L., Weintraub, M.N., et al. Stoichiometry of soil enzyme activity at global scale. Ecol. Lett.,2008,11:1252-1264
    Soule J D, Piper J K. Farming in nature's image:An ecological approach to agriculture. Island Press, Washington,1992
    Stout J D, Heal O W. Protozoa, In:Soil Biology (Burges A, Raw F eds). New York:Academic Rress, 1967:149-195
    Stursova, M., Baldrian, P. Effects of soil properties and management on the activity of soil organic matter transforming enzymes and the quanti cation of soil-bound and free activity. Plant and Soil, 2010,338:99-110
    Sun Z. J. Vermicomposting in China. Verminumuim. Michigen, USA.2000
    Switala, J., Loewen, P.C.,2002. Diversity of properties among catalases. Arch.Biochem. Biophys.401: 145-154
    Tomati U, Grappelli A, Galli E. Fertility factors in earthworm. In:Proc, Int. Symp. Agric Environ. Prospects in Earthworm farming. Publication Ministro della Ricerca Scientifica Technologia, Rome,1983,49-56
    Vance E D, Brookes P C, Jenkinson D S. An extraction method for measuring soil microbial C. Soil Biology and Biochemistry,1987,19:703-707
    Verlloerlloeven R. Response of soil microfauna to organic fertilization in sandy virgin soils of coastal dunes. Biol. Fertil. Soils.2001,34:390-396
    Vickerman K. The diversity and ecological significance of protozoa. Biodiversity and Conservation, 1992,1:334-341
    Wasilewska L. The effect of age of meadows on succession and diversity in soil nematode communities. Pedobiologia,1994,38:1-11
    Xingang Zhou, Danmei Gao, Jie Liu, et al. Changes in rhizosphere soil microbial communities in a continuously monocropped cucumber (Cucumis sativus L.) system. European Journal of Soil Biology,2014,60:1-8
    Xu W, Mage J A. A review of concepts and criteria for assessing agroecosystem health including a preliminary case study of southern Ontario. Agriculture Ecosystems & Environment,2001,83: 215-233
    Yang L. J., Li T. L., Li F. S., et al. Fertilization regulates soil enzymatic activity and fertility dynamics in acucumber field. Scientia Horticuhurae,2008,116:21-26
    Yeates G W, Bongers, T, De Goede, R G M,et al. Feeding habits in soil nematode families and genera-an outline for ecologists. Journal of Nematology,1993a,25(3):315-331
    Yeates G W, Wardle D A, Watson R N. Relationships between nematodes, soil microbial biomass and weed~management strategies in maize and asparagus cropping systems. Soil Biology and Biochemistry,1993b,25:869-876
    Yiridoe E K, Weersink A. A review and evaluation of agroecosystem health analysis:the role of economics. Agricultrual system,1997,55 (4):601-626
    Zhang, Y.M., Zhou, G.Y., Wu, N., et al. Soil enzyme activity changesin different-aged spruce forests of the eastern Qinghai-Tibetan plateau. Pedosphere,2004,14:305-312
    鲍士旦.土壤农化分析.北京:中国农业出版社,2000:39-110
    陈宝梁,周丹丹,朱利中,等.生物碳质吸附剂对水中有机污染物的吸附作用及机理.中国科学(B辑):化学,2008,38(6):530-537
    陈默,高光,朱丽萍,等.太湖水体中微型原生动物对细菌的捕食作用.应用生态学报,2007,18(10):2384-2388
    陈申宽,黄复民,郭桂清,等.大豆连作土壤肥力变化与有害生物发生的关系.中国农学通报,2006,22(7):373-376
    陈申宽,齐广,武迎红,等.大豆连作对土壤养分及其产量的影响.哲里木畜牧学院学报,1999,9(3):31-33,40
    陈义群,董元华,王辉,等.不同农业措施对草莓连作土壤微生物群落特征的影响.安徽农业科学,2011,39(25):15286-15289,15294
    陈政.连作生姜根际土壤微生物群落结构分析.泰安:山东农业大学,2013年
    杜新民,吴志红,张永清,等,不同种植年限日光温室土壤盐分和养分变化研究.水土保持学报,2007,(2):78-80
    段玉玺,靳莹莹,王胜君,等,生防菌株Snef85的鉴定及其发酵液对不同种类线虫的毒力.植物保护学报,2008,(2):132-136
    段玉玺,吴刚.植物线虫病害防治.北京:中国农业科技出版社,2002年
    樊琳,柴如山,刘立娟,等.稻草和猪粪发酵残渣配施菌剂对大棚连作土壤的改良作用.植物营养与肥料学报,2013,19(2):437-444
    封海胜,张思苏,万书波,等.解除花生连作障碍的对策研究.Ⅲ.微生物调节剂的增产效果.花生科技,1996,(3):13-16
    封海胜,张思苏,万书波,等.解除花生连作障碍的对策研究Ⅱ.连作花生专用肥的增产效果.花生科技,1996,(2):14-17
    高雪峰,武春燕,韩国栋.不同利用强度下草原土壤微生物的生物量和数量的动态研究.干旱区资源与环境,2011,25(5):188-191
    关松荫.土壤酶学研究方法.北京:农业出版社,1986:266-288
    郭衍银,王秀峰.生姜癞皮病的发生危害及病原初步鉴定.植物保护,2004,30(1):61-62
    韩丽梅,鞠会艳,杨振明,等.大豆连作微量元素营养研究Ⅲ.连作对锰营养的影响.大豆科学,1999,18(3):207-211
    韩丽梅,邹永久,鞠会艳,等.大豆连作微量元素营养研究Ⅰ.连作对锌营养的影响.大豆科学,1998,17(1):65-71
    韩亚楠,毕美光,刘润进,李敏.AM真菌对连作西瓜生长及其枯萎病的影响.北方园艺,2013,(13):150-153
    韩玉珠,宋述尧.稻草配施生物菌剂对人棚连作土壤的改良效果.湖北农业科学,2012,51(8):1544-1547
    侯永侠,周宝利,吴晓玲.不同辣椒品种抗连作障碍的效果.中国蔬菜,2009,(18):41-45
    侯永侠,周宝利,吴晓玲.不同连作土壤对辣椒生长发育的影响研究.北方园艺,2009,(8): 9-11
    胡诚.不同施肥条件下土壤线虫群落结构及其生态功能研究.北京:中国农业大学,2007
    胡艳霞.蚯蚓粪对植物土传真菌病害的抑制作用及其机理研究.北京:中国农业大学,2002
    胡元森,刘亚峰,吴坤,等.黄瓜连作土壤微生物区系变化研究.土壤通报,2006,37(1):126-129
    黄雪松,宴日安,吴建中.姜酚的生物活性评述.暨南大学学报,2005,26(3):434-439
    戢俊臣,张敏,刘铭,等.四川省姜瘟病菌生物型鉴定初报.四川农业大学学报,2004,22(4):391-394
    姜英华,胡白石,刘凤权.植物土传病原菌拮抗细菌的筛选与鉴定.中国生物防治,2005,21(4):260-264
    驹田旦.持续性农业和土壤病害管理.系统农业,1994,10(2):18-22
    赖国毅,陈超.SPSS17.0中文版常用功能与应用实例精讲.北京:电子工业出版社.2010,327-338
    李福云,王玉,胡晓辉.番茄连作土壤中放线菌剂最佳施用量的筛选.西北农业学报,2013,22(12):132-136
    李海云,王秀峰,邢禹贤.设施土壤盐分积累及防治措施研兄进展.山东农业大学学报:自然科学版,2001,32(4):535-538
    李贺勤,刘奇志,张林林,等.草莓连作土壤酚酸类物质积累对土壤线虫的影响.生态学杂志,2014,33(1):169-175
    李红叶,曹若彬.果蔬产生病害生物防治研究进展.生物防治通报,1993,(4):176-180
    李吉进,宋东涛,邹国元,等.不同有机肥料对番茄生长及品质的影响.中国农学通报,2008,24(10):300-305
    李继蕊,史庆华,王秀峰,等.不同配比蚯蚓堆肥和牛粪堆肥对根际微环境及黄瓜产量、品质的影响.山东农业科学,2013,45(6):66-70
    李坤,郭修武,孙英妮,等.葡萄连作对土壤细菌和真菌种群的影响.应用生态学报,2009,20(12):3109-3114
    李晓磊,李井会,宋述尧.秸秆有机肥改善设施黄瓜连作土壤微生物区系.长春大学学报,2006,16(6):119-122
    李秀,徐坤,巩彪,等.生姜农艺性状与产量形成关系的多重分析.中国农业科学,2012,45(12):2431-2437
    李戌清,王晓玮,郑积荣,等.硫酰氟熏蒸剂对温室黄瓜根结线虫的防治效果.中国农学通报,2012,28(36):273-276
    李英臣,宋长春,侯翠翠,等.不同氮输入对湿地草甸沼泽土N2O排放和有机碳矿化的影响.生态学杂志,2010,29(11):2091-2096
    李兆林.生石灰调节大豆根际微环境研究.哈尔滨:东北林业大学,2008
    李志刚,刘爱勤,祖超,等.不同种植年限胡椒园土壤理化性质及微生物生态特征研究初报.热带作物学报,2012,33(7):1245-1249
    梁建根,郑经武,郝中娜,等,生防菌K-8对南方根结线虫的防治及其鉴定.中国农学通报,2011,27(21):282-286
    梁运江,李伟,张风,等.保护地连作障碍的生物防治和物理防治方法.江苏农业科学,2011, 39(6):604-605,646
    林启美,吴玉光,刘焕龙.熏蒸法测定土壤微生物量碳的改进.生态学杂志,1999,18(2):63-66.
    刘德辉,胡锋,胡佩.蚯蚓活动对红壤磷素有效性的影响及其活化机理研究.生态学报,2003,23(11):2299-2306
    刘方,卜通达,何腾兵.连作烤烟土壤养分变化分析.贵州农学院学报,1997,16(2):1-4
    刘来,黄保健,孙锦,等.大棚辣椒连作土壤微生物数量、酶活性与土壤肥力的关系.中国土壤与肥料,2013,(2):5-10
    刘来,孙锦,郭世荣,等.大棚辣椒连作土壤养分和离子变化与酸化的关系.中国农学通报,2013,29(16):100-105
    刘益仁,徐阳春,李想,等.有机肥部分替代化肥对土壤微生物生物量及矿质态氮含量的影响.江西农业学报,2009,21(11):70-73
    刘振伟,史秀娟.生姜茎腐病的发生规律及病原菌的分离测定.山东农业科学,2008,(9):73-76
    刘振伟,史秀娟.生姜茎腐病的研究进展.中国植保导刊,2008,28(10):12-14
    卢传坚,欧明,王宁生.姜的化学成分分析研究概述.中药新药与临床药理,2003,14(3):215-217
    马春梅,庄倩倩,龚振平,等.保护性耕作对寒地土壤酶活性的影响.东北农业大学学报,2012,43(11):40-44
    马丽丽,郭卫华,贺同利,等.山东省寿光市蔬菜种植区土壤原生动物研究.山东农业科学,2009,10:83-85
    马玲,马琨,汤梦洁,等.间作与接种AMF对连作土壤微生物群落结构与功能的影响.生态环境学报,2013,22(8):1341-1347
    马宁宁,李天来.设施番茄长期连作土壤微生物群落结构及多样性分析.园艺学报,2013,40(2):255-264
    马云华,魏珉,王秀峰.日光温室连作黄瓜根区微生物区系及酶活性的变化.应用生态学报,2004,15(6):1005-1008
    宁应之,沈韫芬.中国典型地带土壤原生动物:Ⅱ.生态学研究.动物学报,1998,44(3):271-276
    宁应之,沈韫芬.珞珈山森林土壤原生动物生态学研究及土壤原生动物定量方法探讨.动物学研究,1996,17(3):225-232
    尚庆茂,张志刚,朱为民.蚯蚓粪基质与肥料添加量对辣椒穴盘育苗效果的研究.上海农业学报,2006,22(2):13-16
    尚庆茂,张志刚.不同浓度氮钾肥对蚯蚓粪基质西瓜穴盘苗的影响.中国瓜类,2005,(5):9-11
    尚庆茂,张志刚.黄瓜蚯蚓粪基质穴盘育苗肥料添加量的研究.长江蔬菜,2005,(11):41-43
    尚庆茂,张志刚.蚯蚓粪基质及肥料添加量对茄子穴盘育苗影响的试验研究.农业工程学报,2005,21(12):129-132
    尚庆茂,张志刚.蚯蚓粪基质辣椒穴盘苗播后喷施肥料效果的研究.西南园艺,2005,33(5):1-3
    尚庆茂,张志刚.蚯蚓粪基质在甘蓝穴盘育苗中的应用.长江蔬菜,2006,(1):49-50
    尚庆茂,张志刚.蚯蚓粪基质在黄瓜穴盘育苗中的应用.蔬菜,2005,(11):40-41
    尚庆茂,张志刚.蚯蚓粪基质在辣椒穴盘育苗中的应用.北方园艺,2006,(1):8-10
    尚庆茂,张志刚.蚯蚓粪基质在茄子穴盘育苗中的应用.西南园艺,2006,(1):5-7
    尚庆茂,张志刚.蚯蚓粪基质在西瓜穴盘育苗中的应用研究.中国瓜类,2006,(1):14-16
    尚庆茂,张志刚.蚯蚓粪在番茄育苗上的应用效果.中国蔬菜,2005,(9):10-12
    石保峰,沈方科,肖光雄,泷岛.不同灭菌措施消除烟-薯连作土壤障碍的效应.广西烟草学会2013年学术年会论文集—原料保障篇,2013,115-119
    宋琰,肖能文,戈峰.大气CO2升高和蚯蚓活动对土壤C、N的影响.生态学报,2007,27(7):2922-2928
    苏立涛.连作条件下有机物料对平邑甜茶根系及土壤环境影响的研究.泰安:山东农业大学,2010
    苏中晓,姚红燕,门庆永.大姜根结线虫病的防治试验研究.现代农业科技,2013,(22):99-101
    孙继民,邹学校,罗尊长,等.不同pH条件对连作土壤微生态及辣椒的影响.辣椒杂志(季刊),2013,(3):26-29
    孙军德,赵春燕,曲宝成,等.氯化苦熏蒸土壤对微生物种群数量的影响.土壤通报,2005,36(2):283-285
    孙秀山,封海胜,万书波,等.连作花生田主要微生物类群与土壤酶活性变化及其交互作用.作物学报,2001,27(5):617-620
    王才斌,成波,吴正锋,等.连作对花生光合特性和活性氧代谢的影响.作物学报,2007,33(8):1304-1309
    王宏伟,王兴祥,吕立新,等.施加内生真菌对花生连作土壤微生物和酶活性的影响.应用生态学报,2012,23(10):2693-2700
    王继红,刘景双,于君宝,等.氮磷肥对黑土玉米农田生态系统土壤微生物量碳、氮的影响.水土保持学报,2004,18(1):36-38
    王金陵,杨庆凯,吴宗璞.中国东北大豆.哈尔滨:黑龙江科学技术出版社,1999,386-388
    王娟,刘补成.马铃薯连作年限对土壤氮磷钾及微量元素的影响.甘肃农业科技,2014,(1):20-22
    王小芬,王伟东,高丽娟,等.变性梯度凝胶电泳在环境微生物研究中的应用详解.中国农业大学学报,2006,11(5):1-7
    王小艺,沈佐锐.农业生态系统健康评估方法研究概况.中国农业大学学报,2001,6(1):84-90
    王永和,高亚娟,李建龙,等.蚯蚓粪土壤改良剂克服草毒连作障碍的效果.江苏农业学报,2013,29(5):1039-1042
    潍坊市农业局网站.2014.http://www.wfny.gov.cn
    吴金水,林启美,黄巧云,等.土壤微生物生物量测定方法及其应用.北京:气象出版社,2006年6月:54-78
    肖国生,胡廷章,唐华丽,等.三峡水库消落带淹没前后土壤微生物生态分布及优势菌群的鉴定.江苏农业科学,2011,39(4):493-496
    徐坤,郑国生,王秀峰.施氮量对生姜群体光合特性及产量和品质的影响.植物营养与肥料学报,2001,7(2):189-193
    徐坤.生姜高产栽培技术研究.山东农业科学,1999(2):28-29
    徐莹莹,杜秉海,丁延芹,等.生姜根际姜瘟病拮抗菌的筛选及鉴定.山东农业科学,2012,01:79-83
    许艳丽,韩晓增.大豆重迎茬研究.哈尔滨:哈尔滨工程大学出版社,1995
    许艳丽,刘晓冰,韩晓增,等.大豆连作对生长发育动态及产量的影响.中国农业科学,1999,32(增刊):64-68
    许永利,张俊英,袁跃广,等.设施番茄连作土壤的改良措施研究.北方园艺,2010,(5):60-62
    杨梅,刘建辉,李世栋,等.基质配方和施肥量对厚皮甜瓜幼苗生长及生理特性的影响.西北农林科技大学学报(自然科学版),2007,35(4):168-174
    杨先芬.瓜菜施肥技术手册.北京:中国农业出版社,2001,279-292
    杨小刚.蚯蚓(粪)-植物对亚健康农田生态系统的改良作用研究.北京:中国农业大学,2008.
    要晓玮,梁银丽,曾睿,等.不同有机肥对辣椒品质和产量的影响.西北农林科技大学学报(自然科学版),2011,39(10):157-161
    袁龙刚,张军林,张朝阳,等.连作对辣椒根际土壤微生物区系影响的初步研究.陕西农业科学,2006,(2):49-50
    张宝贵.蚯蚓与微生物的相互作用.生态学报,1997,17(5):556-560
    张俊英,许永利,刘志强.蚯蚓粪缓解大棚黄瓜连作障碍的研究.北方园艺,2010,(4):58-60.
    张丽莉,张玉兰,陈利军,等.稻-麦轮作系统土壤糖酶活性对开放式CO2的浓度增高的响应.应用生态学报,2004,15(6):1019-1024
    张丽荣,康萍芝,沈瑞清.木霉菌对土传病害病原真菌的拮抗作用.内蒙古农业科技,2007,(5):48-50
    张宁,廖燕,孙振钧,等.蚯蚓种群特征及其对土壤肥力指示作用研究.土壤通报,2011,42(6):1434-1438
    张树生,杨兴明,黄启为,等.施用氨基酸肥料对连作条件下黄瓜的生物效应及土壤生物性状的影响.土壤学报,2007,4(4):689-694
    张思苏,封海胜,万书波,等.花生不同连作年限对植株生育的影响.花生科技,1992,(2):21-23
    张四海,曹志平,胡婵娟.添加秸秆碳源对土壤微生物生物量和原生动物丰富度的影响.中国生态农业学报,2011,19(6):1283-1288
    张鑫,卜东欣,张超,等.四种熏蒸剂对辣椒疫霉和南方根结线虫的毒力.植物保护学报,2013,40(5):464-468
    张学军,陈晓群,王黎民,等.宁夏银川市设施蔬菜田土壤养分资源特征.宁夏农林科技,2004,(1):7-10
    张一鸣,杨丽娟,郭小鸥,等.钙素及秸秆物料对40茬番茄连作土壤的修复效应初报.沈阳农业大学学报,2013,44(5):594-598
    赵玲,欧阳立明,陆小辰.不同基质配方的有机肥对连作辣椒的生长及根际土壤微生物多样性的影响.华中农业大学学报,2013,32(2):72-77
    甄志高,段莹,王晓林.花生连作对植株营养水平和光合生理指标的影响.陕西农业科学,2004,1:12-13
    周宝利,徐妍,尹玉玲,等.不同连作年限土壤对茄子土壤生物学活性的影响及其嫁接调节.生态学杂志,2010,29(2):290-294
    周东兴,申雪庆,周连仁,等.蚯蚓粪对番茄农艺性状和品质的影响.东北农业大学学报,2012,43(11):28-33
    周乐昕.引入秸秆碳源抑制番茄根结线虫病的初步研究.北京:中国农业大学,2009
    周礼恺,张志明.土壤酶活性的测定方法.土壤通报,1980,(5):37-49
    周丽霞,丁明慰.土壤微生物学特性对土壤健康的指示作用.生物多样性,2007,115(2):162-171
    周群英,王士芬.环境工程微生物学.北京:中国高等教育出版社,2008年
    朱林,彭宇,袁飞,等.施用稻草秸秆等有机物料对黄瓜连作土壤速效养分的影响.中国农学通报,2001a,17(2):30-36
    朱林,张春兰,沈其荣,等.施用稻草秸秆等有机物料对黄瓜连作土壤pH、EC值和微生物的影响.安徽农业大学学报,2001b,28(4):350-353
    朱天辉,邱德勋.Trichoderma harzianum对Rhizoctonia solani的抗生现象.四川农业大学学报,1994,12(1):11-15
    朱震,陈芳,肖同建,等.拮抗菌生物有机肥对番茄根结线虫的防治作用.应用生态学报,2011,4:1033-1038

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700