用户名: 密码: 验证码:
江苏省稻麦轮作体系养分优化管理技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
江苏省是中国主要的稻麦轮作产区之一,但目前在生产中面临着氮肥用量过高、产量徘徊不前以及氮肥利用率偏低的问题。因此,针对农户生产中存在的主要问题,控制该地区氮肥用量,合理调配其它养分的施用,同步提高作物产量和肥料利用率成为当前农业可持续发展的重要措施之一。本试验从2009年到2010年,在江苏省常熟市辛庄镇、白茆镇,2009年到2011年在如皋市袁桥镇农科所三地高、中、低三种肥力土壤上进行了连续的稻麦轮作的田间试验。试验中在水稻和小麦季均设计5个相同的处理:空白处理(Control, CK)不施用氮肥;农民习惯处理(Farmer fertilizer practice,FFP);三个优化施肥处理(Optimize treatment, OPT):分别为高效处理(High efficiency, HE),高产高效处理(High yield and high efficiency, HYHE)和超高产处理(Super high yield, SHY).本文通过研究江苏省稻-麦轮作体系在养分优化管理技术下水稻和小麦的生长发育,养分吸收,土壤养分供应规律以及水稻花后光合生理指标变化,明确了江苏省稻麦系统高产高效养分需求特征。结果表明:养分优化管理显著提高了稻麦轮作氮肥利用效率,改善了土壤氮素养分供应,使之更加符合作物的氮素需求规律,植株群体在生长前期更加合理,作物抽穗后光合速率等生理指标保持较高水平,进而提高作物产量,为实现江苏省水稻和小麦的高产高效生产提供相应的理论依据。主要研究结果如下:
     1.在江苏省水稻和小麦生产中,OPT处理在比FFP大幅降低氮肥用量的情况下,仍保持了较高的产量水平。HE、HYHE和SHY处理水稻平均施氮量分别比FFP处理降低了42.9%、17.6%和0.4%,产量分别比FFP处理增加了1.8%、4.0%和8.1%。HE、HYHE处理小麦平均施氮量平均比比FFP处理21.4%、1.3%,SHY处理与FFP处理氮肥用量相同,但三个处理小麦产量分别比FFP处理提高4.0%、8.2%和12.2%。从整个稻麦轮作体系来看,FFP处理平均总氮肥用量达到562.9kg/hm2,周年产量为14.2t/hm2;HE处理和HYHE处理分别为372.9kg/hm2和502.9kg/hm2,比FFP处理分别降低了33.8%和10.7%;SHY处理氮肥用量为561.7kg hm-2,三者产量分别达到14.6t/hm2、15.0t/hm2和15.6t hm-2,分别比FFP处理提高2.7%、5.7%和9.8%。
     2.OPT处理氮肥的回收效率(Nitrogen recovery efficiency, REN)、X农学效率(Nitrogen agronomy efficiency, AEN)和偏生产力(Nitrogen partial factor productivity, PFPN)均比FFP处理有所的提高。FFP处理水稻季氮肥平均回收利用率为29.8%,而HE处理、HYHE处理和SHY处理水稻季氮肥回收利用率分别为47.1%、36.2%和33.5%;FFP处理小麦季氮肥回收利用率平均为48.0%,而HE处理、HYHE处理和SHY处理小麦氮肥回收利用率平均分别61.8%、54.7%和57.9%。FFP处理水稻季氮肥农学效率只有7.6kg kg-1,HE、HYHE和SHY处理水稻氮肥农学效率分别为14.2kg kg-1、10.6kg kg-1和9.8kg kg-1。小麦农学效率均高于水稻,其中也是FFP处理小麦氮肥农学效率最低,平均为14.9kg kg-1;而HE、HYHE和SHY处理小麦季氮肥农学效率平均分别为20.7kg kg-1、17.2kg kg-1和17.7kg kg-1。FFP、HE、HYHE和SHY处理水稻季氮肥偏生产力平均分别为25.3kg kg-1、46.4kg kg-1、33.0kg kg-1和28.4kg kg-1;小麦氮肥偏生产力分别为24.3kg kg-1、32.7kg kg-1、26.7kg kg-1和27.1kg kg-1。FFP在所有处理中氮肥效率均最低,而HE处理氮肥效率最高。
     3.不同肥力土壤对氮肥的响应不同,其中低肥力土壤比高肥力土壤对氮肥响应更为敏感。随着土壤肥力的升高,水稻基础产量逐渐升高,如皋(低肥力)、白茆(中肥力)和辛庄(高肥力)空白处理水稻平均产量分别为5.1t hm-2、6.2thm-2和7.0t hm-2,而产量最高的超高产处理水稻平均产量分别为9.5thm-2、9.0thm-2和9.1thm-2。随着土壤肥力的升高,氮肥对水稻产量的提高效率降低。在小麦生产中,随着土壤肥力的升高小麦基础产量逐渐降低,如皋(低肥力)、白茆(中肥力)和辛庄(高肥力)空白处理小麦平均产量分别为2.7thm-2、2.0thm-2和1.8t hm-2,而在施肥处理中也是如皋试验点产量最高,平均高于6.6t hm-2,而白茆和辛庄平均产量在6t hm-2以下。同时无论水稻还是小麦,OPT处理在辛庄(高肥力)试验点产量比FFP处理产量提高幅度最低。说明相对于高肥力土壤优化处理在低肥力土壤上更容易提高作物产量。
     4.养分优化管理技术通过氮肥的后移减少了作物生育前期氮素的吸收比例,提高了生育后期氮素积累所占的比例。使作物前后期氮素吸收比例更加合理。氮素吸收规律的变化增加了水稻和小麦后期干物质的生产,并最终影响产量。移栽到穗分化期是水稻氮素积累最快的时期,其中FFP处理在这一时期氮素积累占全生育期的59.6%,OPT处理在穗分化期前氮素积累比为为46.0%-53.7%,穗分化之后氮素积累比例增加到46.3%-54%,FFP处理穗分化后氮素积累只占40.4%。水稻干物质的生产主要在穗分化后,约占全生育期的64.6-68.4%,穗分化前生物量生产只占31.6%-35.4%。OPT处理主要是增加了水稻后期特别是抽穗后干物质的生产,其占总生物量的比例为30.7%-33.1%,FFP处理抽穗后干物质生产只占总量的26.9%。FFP处理小麦在拔节前氮素积累占总量的42.5%,拔节后氮素积累的比例为57.5%;OPT处理拔节前小麦氮素积累占总量的33.7%-36.8%,拔节后氮素积累比例为63.2%-66.3%。小麦生物量在拔节前生产占总生物量的比例均低于20%,超过80%生物量是在拔节后生产的。其中FFP处理拔节后生物量积累比例为80.1%,而OPT处理拔节后生物量积累比例为83.9%-84.4%。
     5.在水稻分蘖期FFP铵态氮含量显著高于OPT处理,FFP处理铵态氮含量最高可以达到46mgkg-1, OPT处理在15~21mg kg-1.在穗分化后FFP处理铵态氮含量显著低于OPT处理。小麦季土壤硝态氮含量在越冬期最高,然后逐渐下降,OPT处理在孕穗期显著高于FFP。氮肥显著影响着叶片SPAD值的变化,与FFP处理相比,OPT处理前期叶片SPAD值较低,后期SPAD值高于FFP处理。但随着土壤肥力的升高,氮肥对叶片SPAD值的影响减弱。总体来说,优化的氮肥施用措施,改善了习惯施肥下作物生长前期土壤中速效态氮素过高,而中后期土壤中氮素缺乏的现象,使土壤中氮素含量变化更符合作物对氮素吸收的规律。
     6.OPT处理改善了水稻和小麦的群体生长指标。相对FFP处理,OPT处理降低了水稻和小麦最高分蘖数,但分蘖成穗率显著提高。随着基蘖肥中氮素用量的增加,水稻和小麦最高分蘖数随之提高,随着最高分蘖数的增加,分蘖成穗率逐渐降低。优化施肥中的HE处理和HYHE处理主要是通过提高成穗率实现最终的穗数,水稻分蘖平均成穗率由FFP处理的60%提高到70%左右。FFP处理前期过大的群体以及后期土壤氮素含量的降低会造成后期植株加快衰老,导致抽穗后水稻叶片光合速率只有17.6μmol m-2s-1,与空白处理处于同一水平,显著低于OPT处理。
     综上所述,采用养分优化管理技术,通过优化施肥可以改变土壤中养分含量的变化,使之更加符合植株对氮素的需求规律;降低了群体内个体间的竞争,使植株群体在生长前期更加健康合理;同时提高后期土壤氮素含量,使作物抽穗后光合速率等生理指标保持在较高的水平,延缓了植株衰老的速度,增加了花后生物量的生产,进而提高作物的产量。
Jiangsu is one of the main regions with rice-wheat rotation system in china, however it has exist some problem such as excessive nitrogen(N) application, few yield increment and low N efficiency. Therefore, limiting the total nitrogens(N) application, reasonable allocating other nutrient, increasing the crop yield and fertilizer efficiency became the important measures for agricultural sustainable development. Field experiment with rice-wheat rotation system from2009to2011, in Rugao, Baimao and Xinzhuang which correspond with low, middle and high fertility soil respectively of Jiangsu province, was conducted to identify the nutrient characters of rice-wheat system with high yield and high fertilizer efficiency, the N absorption and utilization during winter wheat and rice growing seasons, and the dynamic nutrient supply in soil, and test the physiological change under the optimizing nutrient management, with the hope of providing theoretical basis for higher yield, higher quality and more effective production of paddy rice and wheat in Jiangsu province. The results obtained are as follows:
     With the optimizing nutrient managent, the yield of rice and wheat were keeped at high level which was higher than farmer practice, and the N application was marked lower than farmer practice. The total N rate of HE、HYHE and SHY were42.9%,17.6%and0.4%lower than FFP, respectively. In wheat season, The N rate of HE and HYHE was21.4%,1.3%lower than FFP, and SHY and FFP has the same N rate. From the whole rice-wheat system, total N rate of FFP was562kg hm-2, and the yield was14.2t hm-2. And the average N rate of HE and HYHE were372.9kg hm-2and502.9kg hm"2, which were33.8%and10.7%lower than FFP, respectively; the average N rate of SHY was561.7kg hm-2, it was similar with FFP. But the yield of HE、HYHE and SHY were14.6t hm-2、15.0t hm"2and15.6t hm-2, which were2.7%,5.7%and9.8%higher than FFP respectively.
     The recovery effeciency (REN)、agronomic efficiency (AEN) and partial factor productivity (PFPN) in optimizing nutrient management was higher than FFP. The REN of FFP、HE、HYHE and SHY for rice were29.8%、47.1%、36.2%and33.5%respectively. In wheat season, the REN of FFP、HE、HYHE and SHY were48.0%、61.8%、54.7%and 57.9%respectively. The AEN of FFP、HE、HYHE and SHY for rice were7.6kg kg-1、14.2kg kg-1、10.6kg kg-1and9.8kg kg-1respectively. In wheat season, the AEN of FFP、HE、 HYHE and SHY were14.9kg kg-1,20.7kg kg-1,17.2kg kg-1and17.7kg kg-1respectively. Whether in rice season or wheat season, the AEN in FFP was always the lowest. The PFPN of FFP、HE、HYHE and SHY for rice were25.3kg kg-1、46.4kg kg-1、33.0kg kg-1and28.4kg kg-1; and in wheat season were24.3kg kg-1、32.7kg kg-1,26.7kg kg-1and27.1kg kg-1. No matter in rice season or wheat season the PFPN of PFP was lowest, and the HE was the highest.
     There was different response of N application to crop in different fertility soil, and it was more sensitivity in low fertility soil than high fertility siol. The basic yield of rice was increased with the rise of fertility, as the rice yield of CK in Rugao、Baimao and Xinzhuang were5.1t hm-2,6.2t hm-2and7.0t hm-2, while the highest yield of this three sites were9.5t hm-2,9.0t hm-2and9.1t hm-2, respectively. Reversely, the N efficiency to heighten rice yield was reduced with the rise of soil fertility. At the wheat season, the basic yield had reduced with the rise of soil fertilizer, and the average yield of CK in Rugao、Baimao and Xinzhuang were2.7t hm-2,2.0t hm-2and1.8t hm-2. And the highest yield of wheat in these three sites was aslo in Rugao, its6.6t hm-2, it was6t hm-2in Baimao and Xinzhuang sites. At Xinzhuang site the yield increased by optimizing nutrient management was the lowest among three sites although where soil fertility was the highest. It suggested that it is easier to increase yield in low fertility soil relative to high fertility soil by the optimizing nutrient management.
     The optimizing nutrient management reduced the N absorption in the beginning period of rice and wheat, and increased the N absorption in following stage by re-allocation of N application. The change of N absorption in rice and wheat enhanced the biomass production at the last stage, and thus increased the yield. It was the most N accumulation stage of rice from transplanting to panicle initiation. The proportion of N accumulation rate to whole rice season at this stage was59.6%for FFP, and for the optimizing nutrient managements the proportion was46.0%~53.7%. The biomass of rice was mainly produced after panicle initiation, which accounted for64.6~68.4%. After heading, the proportion of rice biomass production for FFP was26.9%, while30.7~33.1%for the optimizing nutrient managements. At the wheat season, the proportion of N accumulation before shooting stage was42.5%for FFP, and was33.7-36.8%for the optimizing nutrient managements. But there more than80%of the biomass was produced after shooting stage, which was80.1% for FFP and83.9~84.4%for the optimizing nutrient managements.
     The highest ammonium content was present at tillering stage in rice, and the FFP treatment had higher ammonium content than the optimizing nutrient managements, for FFP it could reached46mg kg-1, for the optimizing nutrient managements it was just15~21mg kg-1. But after panicle initiation, ammonium content of FFP was lower than that of the optimizing nutrient managements. At the wheat season, there were two peaks for nitrate amount in soil, the first was before winter, and the second was at booting stage. In a word, the optimizing nutrient managements reduced the excessive N content at prophase of growing and improved the nutrient status at later growing stage compared to the FFP treatment, which synchronized the nutrient for crop demand with soil supply. The SPAD of leaf could indicate the N nutrition status for crops. It was changed along with the nitrogen content in soil. The leaf SPAD value for the optimizing nutrient managements was low at prophase of growing, and high at last growing stage to FFP.
     Compared to FFP, the optimizing nutrient managements improved the growing index for rice and wheat. With the N rate increase at basic and tillering stage, the most tillering of rice and wheat was increased, but the ratio of availability tiller was gradually declined. The ratio of available tiller of rice for HE and HYHE treatments were arrived at70%, while for the FFP was just60%. The large biomass at prophase of growing and low nitrogen supply at last growing stage for FFP could accelerate the senescence rapidly. After heading stage the photosynthetic of rice leaf for FFP was just17.6μmol m-2s-1, which was markedly lower than the optimizing nutrient managements.
     In summary, the optimizing nutrient managements synchronized the nutrient for crop demand with soil supply by changing the ratio and time of N application. It regulated the competition for nutrient and space at prophase of growing, and made the senescence slowly after heading, maintained the ideal crops growth condition, and realized the goal of reducing nitrigen fertilizer input and improving crop yield and nitrogen fertilizer use efficiency.
引文
[1]Aggarwal G. C., A.S.Sidhu, N. K. Sekhon, K. S. Sandhu, H. S. Sur.1995. Pudding and N management effect on crop responses in a rice-wheat cropping systerms[J]. Soil Till. Res.,36: 129-139.
    [2]Ahmed N, Eunus M, Latif M A, et al. Effect of nitrogen on yield, yield components and contribution from the pre-anthesis assimilates to grain yield of three photosensitive rice (Oryza sativa L.) cultivars[J]. Journal of the National Science Foundation of Sri Lanka,1998,26(1):35-45.
    [3]Akita S. Improving yield potential in tropical rice.In:IRRI. Progress in Irrigated Rice. Los Banos, Philippines:IRRI,1989. pp 331-334
    [4]Akita S. Improving yield potential in tropical rice[J]. Progress in irrigated rice research,1989: 41-73.
    [5]Alam M M, Ladha J K, Rahman Z, et al. Nutrient management for increased productivity of rice-wheat cropping system in Bangladesh[J]. Field crops research,2006,96(2):374-386.
    [6]Amano, T., Q. Zhu, Y. Wang, N. Inoue, and H. Tanaka. Case studies on high yields of paddy rice in Jiangsu Province, China. I. Characteristics of grain production. Japan Journal of Crop Science, 1993.62:267-274.
    [7]Balasubramanian V, Morales A C, Cruz R T, et al. On-farm adaptation of knowledge-intensive nitrogen management technologies for rice systems[J]. Nutrient Cycling in Agroecosystems,1998, 53(1):59-69.
    [8]Balasubramanian V, Morales A C, Cruz R T, et al. On-farm adaptation of knowledge-intensive nitrogen management technologies for rice systems[J]. Nutrient Cycling in Agroecosystems,1998, 53(1):59-69.
    [9]Blackmer T M, Schepers J S. Techniques for monitoring crop nitrogen status in corn[J]. Communications in Soil Science & Plant Analysis,1994,25(9-10):1791-1800.
    [10]Brown,L,R. Facing the challenge of food scarcity:can we raise grain yields fast enough? Plant nutrition-for sustainable food production and environment [M]. Ando,et al. Kluwer Academic Publishers,1997,15-24
    [11]Brye K R, Norman J M, Gower S T, et al. Methodological limitations and N-budget differences among a restored tallgrass prairie and maize agroecosystems[J]. Agriculture, ecosystems & environment,2003,97(1):181-198.
    [12]Buresh R J, Witt J C, Ramanathan S et al. Site-specific nutrient management-Managing N, P, and K for rice[J]. Fert. News,2005,50(3):25-28
    [13]Cabangon R J, Castillo E G, Tuong T P. Chlorophyll meter-based nitrogen management of rice grown under alternate wetting and drying irrigation[J]. Field Crops Research,2011,121(1): 136-146.
    [14]Cao J M, Hu R F, Zhu L F. Promote sustainable development for irrigated rice through SSNM technology in China[J]. Chinese J. Population, Res. Environ.,2007,5(1):53-57
    [15]Cassman K G, Gines G C, Dizon M A, et al. Nitrogen-use efficiency in tropical lowland rice systems:contributions from indigenous and applied nitrogen[J]. Field Crops Research,1996,47(1): 1-12.
    [16]Cassman, K.G.,M.J. Kropff, and Z.D. Yan. Aconceptual framework for nitrogen management of irrigated rice in high-yield environments.1994. p.81-96. In S.S. Virmani (ed.) Hybrid rice technology:New developments and future prospects. IRRI, Los Ban~os, Philippines.
    [17]Chen J, Huang Y, Tang Y. Quantifying economically and ecologically optimum nitrogen rates for rice production in south-eastern China[J]. Agriculture, Ecosystems & Environment,2011, 142(3):195-204.
    [18]Chen X, Zhang F, Romheld V, et al. Synchronizing N supply from soil and fertilizer and N demand of winter wheat by an improved Nmin method [J]. Nutrient Cycling in Agroecosystems, 2006,74(2):91-98.
    [19]Chen xin-ping.2003. Optimization of the fertilizer management of a winter wheat/summer maize rotation system in the Northern China Plain. University of Hohenheim, Germany.14-30.
    [20]Cui Z, Zhang F, Chen X, et al. In-season nitrogen management strategy for winter wheat: Maximizing yields, minimizing environmental impact in an over-fertilization context[J]. Field Crops Research,2010,116(1):140-146.
    [21]Dawe D, Frolking S, Li C. Trends in rice-wheat area in China[J]. Field Crops Research,2004, 87(1):89-95.
    [22]De Datta S K, Buresh R J. Integrated nitrogen management in irrigated rice[M]//Advances in Soil Science. Springer New York,1989:143-169.
    [23]De Datta S K. Improving nitrogen fertilizer efficiency in lowland rice in tropical Asia [M]// Nitrogen Economy of Flooded Rice Soils. Springer Netherlands,1986:171-186.
    [24]Dobermann A, Cassman K.G, Penf S. Precision nutrient management in intensive irrigated rice sysems. In:Proc of the International Symposium on Maximizing Sustainaable Rice Yield Through Improved Soil and Environmental Management. No 11-17,1996, Khon Kaen, Thailand. Dept. of Agriculture, Soil and fertilizer society of Thailand, Bangkok,1996:133-154
    [25]Dobermann A, White P F. Strategies for nutrient management in irrigated and rainfed lowland rice systems[M]//Resource Management in Rice Systems:Nutrients. Springer Netherlands,1999: 1-26.
    [26]Dobermann A, Witt C, Dawe D, et al. Site-specific nutrient management for intensive rice cropping systems in Asia[J]. Field Crops Research,2002,74(1):37-66.
    [27]Dobermann, A. and T. Fairhurst (2000). "Assessing nitrogen efficiency. In:Dobermann, A., Fairhurst, T. (Eds.), Rice:Nutrient Disorders & Nutrient Management,." vol.41-43.:Potash and
    [28]Dobermann. A. Nutrient use efficiency measurement and management. In IFA international workshop on fertilizer best management practices[J]. International Fertilizer Industry Assoc, Pairs. 2007,3:7-9
    [29]Donald C M, Hamblin J. The biological yield and harvest index of cereals as agronomic and plant breeding criteria[J]. Advances in Agronomy,1976,28:361-405.
    [30]Esfahani M, Abbasi H R A, Rabiei B, et al. Improvement of nitrogen management in rice paddy fields using chlorophyll meter (SPAD)[J]. Paddy and Water Environment,2008,6(2): 181-188.
    [31]Esfahani M, Abbasi H R A, Rabiei B, et al. Improvement of nitrogen management in rice paddy fields using chlorophyll meter (SPAD)[J]. Paddy and Water Environment,2008,6(2): 181-188.
    [32]Evans L T, Visperas R M, Vergara B S. Morphological and physiological changes among rice varieties used in the Philippines over the last seventy years[J]. Field Crops Research,1984,8: 105-124.
    [33]Fageria N K. Yield physiology of rice[J]. Journal of Plant Nutrition,2007,30(6):843-879.
    [34]Fageria, N.K., Baligar, V.C., Jones, C.A.,1997. Growth and Mineral Nutrition of Field Crops,2nd ed. Marcel Dekker, Inc., New York.
    [35]Fan M, Lu S, Jiang R, et al. Nitrogen input,15N balance and mineral N dynamics in a rice-wheat rotation in southwest China[J]. Nutrient Cycling in Agroecosystems,2007,79(3): 255-265.
    [36]FAO. Statistical databaases, Food and Agriculuter Ogrnaization(FAO) of the United Nations. 2001:http//www.fao.org.
    [37]Follett R H, Follett R F, Halvorson A D. Use of a chlorophyll meter to evaluate the nitrogen status of dryland winter wheat[J]. Communications in Soil Science & Plant Analysis,1992,23(7-8): 687-697.
    [38]Fox R H, Piekielek W P, Macneal K M. Using a chlorophyll meter to predict nitrogen fertilizer needs of winter wheat[J]. Communications in Soil Science & Plant Analysis,1994,25(3-4): 171-181.
    [39]Frolking S, Qiu J, Boles S, et al. Combining remote sensing and ground census data to develop new maps of the distribution of rice agriculture in China[J]. Global Biogeochemical Cycles,2002, 16(4):1091.
    [40]Gajri P R, Gill K S, Singh R, et al. Effect of pre-planting tillage on crop yields and weed biomass in a rice-wheat system on a sandy loam soil in Punjab[J]. Soil and Tillage Research,1999, 52(1):83-89.
    [41]Galloway J N, Townsend A R, Erisman J W, et al. Transformation of the nitrogen cycle:recent trends, questions, and potential solutions[J]. Science,2008,320(5878):889-892
    [42]Greenwood D.J.1986. Predication of nitrogen feryilizer needs of arable crops. In:Advances in Plant Nutrition. Tinker B. and activity. Plant Soil,183(1):61-67.
    [43]Guarda G, Padovan S, Delogu G. Grain yield, nitrogen-use efficiency and baking quality of old and modern Italian bread-wheat cultivars grown at different nitrogen levels[J]. European Journal of Agronomy,2004,21(2):181-192.
    [44]Guo J H, Liu X J, Zhang Y, et al. Significant acidification in major Chinese croplands[J]. science,2010,327(5968):1008-1010.
    [45]Hasegawa H. High-yielding rice cultivars perform best even at reduced nitrogen fertilizer rate[J]. Crop science,2003,43(3):921-926.
    [46]He P, Li S, Jin J, et al. Performance of an optimized nutrient management system for double-cropped wheat-maize rotations in North-Central China[J]. Agronomy Journal,2009,101(6): 1489-1496.
    [47]Hoel B O. Use of a hand-held chlorophyll meter in winter wheat:Evaluation of different measuring positions on the leaves[J]. Acta Agriculturae Scandinavica B—Plant Soil Sciences,1998, 48(4):222-228.
    [48]Horton P. Prospects for crop improvement through the genetic manipulation of photosynthesis: morphological and biochemical aspects of light capture[J]. Journal of Experimental Botany,2000, 51(suppl1):475-485.
    [49]Hoshikawa K. The growing rice plant[J]. Tokyo.:An anatomical monograph. Nobunkyo, 1989.
    [50]Huang J, He F, Cui K, et al. Determination of optimal nitrogen rate for rice varieties using a chlorophyll meter[J]. Field Crops Research,2008,105(1):70-80.
    [51]Hussain F, Bronson K F, Peng S. Use of chlorophyll meter sufficiency indices for nitrogen management of irrigated rice in Asia[J]. Agronomy Journal,2000,92(5):875-879.
    [52]Inthapanya P, Sihavong P, Sihathep V, et al. Genotype differences in nutrient uptake and utilisation for grain yield production of rainfed lowland rice under fertilised and non-fertilised conditions[J]. Field Crops Research,2000,65(1):57-68.
    [53]Iqbal T, Tian G M, Li ang X Q e t al. Meas urement of ammonia emission following surface application of urea fert iliz er from i rri gated paddyrice fields[J]. Agric. Sci. China.,2005,4(4): 288-2931
    [54]Islam Z, Bagchi B, Hossain M. Adoption of leaf color chart for nitrogen use efficiency in rice: Impact assessment of a farmer-participatory experiment in West Bengal, India[J]. Field crops research,2007,103(1):70-75.
    [55]Jin J, Yang J P, Shi H X, Chen J, Zheng H F.2005. Variations of nitrogen and phosphorus in surface water body of a paddy field. Journal of Agro-Environment Science,24,357-361. (in Chinese)
    [56]Jing Q, Bouman B A M, Hengsdijk H, et al. Exploring options to combine high yields with high nitrogen use efficiencies in irrigated rice in China[J]. European Journal of Agronomy,2007, 26(2):166-177.
    [57]Ju X, Liu X, Zhang F, et al. Nitrogen fertilization, soil nitrate accumulation, and policy recommendations in several agricultural regions of China[J]. Ambio:A Journal of the Human Environment,2004,33(6):300-305.
    [58]Kamiji Y, Yoshida H, Palta J A, et al. N applications that increase plant N during panicle development are highly effective in increasing spikelet number in rice[J]. Field Crops Research, 2011,122(3):242-247.
    [59]Khurana H S, Phillips S B, Dobermann A, et al. Performance of site-specific nutrient management for irrigated, transplanted rice in northwest India[J]. Agronomy Journal,2007,99(6): 1436-1447.
    [60]Kobayasi K, Nakase H, Imaki T. Effects of planting density and topdressing at the panicle initiation stage on spikelet number per unit area[J]. Japanese Journal of Crop Science,2001,70(1): 34-39.
    [61]Kropff, M.J., K.G. Cassman, H.H. van Laar, and S. Peng. Nitrogen and yield potential of irrigated rice. Plant Soil,1993.155/156:391-394.
    [62]Kusutani A, Ueda K, Asanuma K, et al. Studies on varietal difference in yielding ability in rice [Oryza sativa]:Relationship between source-sink ratio and yield[J]. Japanese Journal of Crop Science,1999,68.
    [63]Le Bail M, Jeuffroy M H, Bouchard C, et al. Is it possible to forecast the grain quality and yield of different varieties of winter wheat from Minolta SPAD meter measurements?[J]. European Journal of Agronomy,2005,23(4):379-391.
    [64]Lee, J.H., Kang, C.S., Roh, A.S., Park, K.Y., Lee, H.J. Assessment of N topdressing rate at panicle initiation stage with chlorophyll meter-based diagnosis in rice. J. Crop Sci. Biotechnol. 2010,12,195-200.
    [65]Li H, Liang X L, Chen Y X e t al. Ammonia volat iliz at ion from ureain rice fields with zero-drainage water management [J]. Agric. WaterManag.,2008,95:887-8941
    [66]Li H, Liang X, Chen Y, et al. Ammonia volatilization from urea in rice fields with zero-drainage water management[J]. Agricultural Water Management,2008,95(8):887-894.
    [67]Li J, Zhang M Q, Kong Q B, et al. Soil testing and formula fertilization index for early rice in Fujian province[J]. Plant Nutr. Fert. Sci,2010,16:938-946.
    [68]Lin D X, Fan X H, Hu F et al. Ammonia volat iliz at ion and ni t rogenut iliz at ion efficiency in res ponse to urea applicat i on in rice fields of the Taihu lake regi on[j]. Pedosphere,2007, 17(5):639-6451
    [69]Lin F F, Qiu L F, Deng J S, et al. Investigation of SPAD meter-based indices for estimating rice nitrogen status[J]. Computers and Electronics in Agriculture,2010,71:S60-S65.
    [70]LIN Z, DAI Q, YE S, et al. Effects of Nitrogen Application Levels on Ammonia Volatilization and Nitrogen Utilization during Rice Growing Season[J]. Rice Science,2012,19(2):125-134.
    [71]Liu X, Ai Y, Zhang F, et al. Crop production, nitrogen recovery and water use efficiency in rice-wheat rotation as affected by non-flooded mulching cultivation (NFMC)[J]. Nutrient Cycling in Agroecosystems,2005,71(3):289-299.
    [72]Liu X, Ju X, Zhang F, et al. Nitrogen dynamics and budgets in a winter wheat-maize cropping system in the North China Plain[J]. Field Crops Research,2003,83(2):111-124.
    [73]Liu X, Ju X, Zhang F, et al. Nitrogen recommendation for winter wheat using Nmin test and rapid plant tests in North China Plain[J]. Communications in soil science and plant analysis,2003, 34(17-18):2539-2551.
    [74]Mann C C. Crop scientists seek a new revolution[J]. Science,1999,283(5400):310-314.
    [75]Marata Y. Physiological responses to nitrogen in plants. In.J.D.Eastin, F.A. Haskins,C.Y. Sullivan,and C.H.M.van Bavel.(eds.) Physiologocal aspects of crop yield. American Society of Agronmy.Madison, WI.1969,pp.235-264
    [76]Mengel K, Viro M. The significance of plant energy status for the uptake and incorporation of NH4-nitrogen by young rice plants[J]. Soil Science and Plant Nutrition,1978,24(3):407-416.
    [77]Murate Y. Photosynthesis, respiration,and nitrogen response.In:The mineral nutrition of the rice plant Proceedings of a symposium at the International Rice research institute. Feb.1964. IRRI. 385-400
    [78]Ottis, B.V., Talbert, R.E. Rice yield components as affected by cultivar and seeding rate. Agron. J.2005,97,1622-1625.
    [79]Oussible M, Crookston R K, Larson W E. Subsurface compaction reduces the root and shoot growth and grain yield of wheat[J]. Agronomy Journal,1992,84(1):34-38.
    [80]Peltonen J, Virtanen A, Haggren E. Using a chlorophyll meter to optimize nitrogen fertilizer application for intensively-managed small-grain cereals[J]. Journal of Agronomy and Crop Science,1995,174(5):309-318.
    [81]Peng S B, Cassman K G. Upper thretholds of nitrogen uptake rates and associated N fertilizer efficiencies in irrigated rice[J]. Agron. J.,1998,90:178-185
    [82]Peng S, Buresh R J, Huang J, et al. Improving nitrogen fertilization in rice by site-specific N management. A review[J]. Agronomy for sustainable development,2010,30(3):649-656
    [83]Peng S, Buresh R J, Huang J, et al. Strategies for overcoming low agronomic nitrogen use efficiency in irrigated rice systems in China[J]. Field Crops Research,2006,96(1):37-47.
    [84]Peng S, Cassman K G, Kropff M J. Relationship between leaf photosynthesis and nitrogen content of field-grown rice in tropics[J]. Crop science,1995,35(6):1627-1630.
    [85]Peng S, Cassman K G, Kropff M J. Relationship between leaf photosynthesis and nitrogen content of field-grown rice in tropics[J]. Crop science,1995,35(6):1627-1630.
    [86]Peng S, Garcia F V, Laza R C, et al. Adjustment for specific leaf weight improves chlorophyll meter's estimate of rice leaf nitrogen concentration [J]. Agronomy Journal,1993,85(5):987-990.
    [87]Peng S, Garcia F V, Laza R C, et al. Increased N-use efficiency using a chlorophyll meter on high-yielding irrigated rice[J]. Field Crops Research,1996,47(2):243-252.
    [88]Peng S, Laza R C, Visperas R M, et al. Grain yield of rice cultivars and lines developed in the Philippines since 1966[J].2000.
    [89]Peng X L, Liu Y Y, Luo S G, et al. Effects of site-specific nitrogen management on yield and dry matter accumulation of rice from cold areas of northeastern China[J]. Agricultural Sciences in China,2007,6(6):715-723.
    [90]Phosphate Inst., Singapore, and IRRI, Manila, Philippines, pp.155-160.
    [91]Plenet D, Lemaire G. Relationships between dynamics of nitrogen uptake and dry matter accumulation in maize crops. Determination of critical N concentration[J]. Plant and Soil,1999, 216(1-2):65-82.
    [92]Prihar S S, Ghildyal B P, Painuli D K. Physical properties of mineral soils affecting rice-based cropping systems[C]//International Workshop on Physical Aspects of Soil Management in Rice-Based Cropping Systems, Los Banos, Laguna (Philippines),1984.1985.
    [93]S.Chaillou and T. Lamaze. Ammoniacal nutrition of plants. In:edited by Jean-Francois Morot-Gaudry. Nitrogen assimilation by plants. Science Publishers,Inc.(USA).2001.P53-69
    [94]Samborski S M, Tremblay N, Fallon E. Strategies to make use of plant sensors-based diagnostic information for nitrogen recommendations[J]. Agronomy Journal,2009,101(4): 800-816.
    [95]Scaife A. Derivation of critical nutrient concentrations for growth rate from data from field experiments[J]. Plant and soil,1988,109(2):159-169.
    [96]Schlegel A J, Grant C A, Havlin J L. Challenging approaches to nitrogen fertilizer recommendations in continuous cropping systems in the Great Plains[J]. Agronomy Journal,2005, 97(2):391-398.
    [97]Setter T. L., S. Peng, G. J. D. Kirk,, et al.. Physiologicalconsiderations and bybrid rice [G]. In K.G. Cassman (ed.) Breaking the yield battier.1994:39-62.
    [98]Shi Z, Li D, Jing Q, et al. Effects of nitrogen applications on soil nitrogen balance and nitrogen utilization of winter wheat in a rice-wheat rotation[J]. Field Crops Research,2012,127: 241-247.
    [99]Shiga, H., N. Miyazaki, and S. Sekiya. Time of fertilizer application in relation to the nutrient requirement of rice plants at succes sive stages. p.223-229. In Proc. Int. Seminar on Soil Environ. And Fertil. Manage, in Intensive Agric., Tokyo, Japan.20 Aug.1977. The Soc. of the Sci. of Soil and Manure, Tokyo.
    [100]Shrestha S, Brueck H, Asch F. Chlorophyll index, photochemical reflectance index and chlorophyll fluorescence measurements of rice leaves supplied with different N levels[J]. Journal of Photochemistry and Photobiology B:Biology,2012,113:7-13.
    [101]Shukla AK, Ladha JK, Singh VK, Dwivedi BS, Balasubramanian V, Gupta RK, Sharma SK, Singh Y, Pathak H,Pandey PS, Padre AT, Yadav RL. Calibrating theleaf color chart for nitrogen management in differentgenotypes of rice and wheat in a systems perspective.Agron J.2004. 96:1606-1621
    [102]Singh B, Singh Y, Ladha J K, et al. Chlorophyll meter-and leaf color chart-based nitrogen management for rice and wheat in Northwestern India[J]. Agronomy Journal,2002,94(4):821-829.
    [103]Singh U, Ladha J K, Castillo E G, et al. Genotypic variation in nitrogen use efficiency in medium-and long-duration rice[J]. Field Crops Research,1998,58(1):35-53.
    [104]Song X F, Agata W, Kawamitsu Y. Studies on dry matter and grain production of Chinese F1 hybrid rice cultivars. I. Characteristics of dry matter production[J]. Japanese Journal of Crop Science,1990,59(1):19-28.
    [105]Spaner D, Todd A G, Navabi A, et al. Can leaf chlorophyll measures at differing growth stages be used as an indicator of winter wheat and spring barley nitrogen requirements in eastern Canada?[J]. Journal of Agronomy and Crop Science,2005,191(5):393-399.
    [106]Sui B, Feng X, Tian G, et al. Optimizing nitrogen supply increases rice yield and nitrogen use efficiency by regulating yield formation factors[J]. Field Crops Research,2013,150:99-107.
    [107]Ten Berge H F M, Thiyagarajan T M, Shi Q, et al. Numerical optimization of nitrogen application to rice. Part Ⅰ. Description of MANAGE-N[J]. Field Crops Research,1997,51(1): 29-42.
    [108]Thenabadu M W. Evaluation of the nitrogen nutrition status of rice by plant analysis[J]. Plant and Soil,1972,37(1):41-48.
    [109]Tian Y H, Yin B, Yang L Z, et al. Nitrogen runoff and leaching losses during rice-wheat rotations in Taihu Lake region, China[J]. Pedosphere,2007,17(4):445-456.
    [110]Wada, G., Shoji, S., Mae, T., Relationship between nitrogen absorption and growth and yield of rice plants. Jpn. Agric. Res. Q.1986.20,135-145.
    [111]Wang D J, Liu Q, Lin J H, et al. Optimum nitrogen use and reduced nitrogen loss for production of rice and wheat in the Yangtse Delta region[J]. Environmental geochemistry and health,2004,26(2):221-227
    [112]Wang D J, Liu Q, Lin J H, et al. Optimum nitrogen use and reduced nitrogen loss for production of rice and wheat in the Yangtse Delta region[J]. Environmental geochemistry and health,2004,26(2):221-227.
    [113]Wang G, Dobermann A, Witt C, et al. Performance of site-specific nutrient management for irrigated rice in southeast China[J]. Agronomy Journal,2001,93(4):869-878.
    [114]Wang G, Dobermann A, Witt C, et al. Performance of site-specific nutrient management for irrigated rice in southeast China[J]. Agronomy Journal,2001,93(4):869-878.
    [115]Wang G, Zhang Q C, Witt C, et al. Opportunities for yield increases and environmental benefits through site-specific nutrient management in rice systems of Zhejiang province, China[J]. Agricultural Systems,2007,94(3):801-806.
    [116]Watanabe, S., Y. Hatanaka, and K. Inada. Development of adigital chlorophyll meter:Ⅰ. Structure and performance. Jpn. J.Crop Sci.1980.49(spec. issue):89-90.
    [117]Wells, B., Faw, W.F. Short-statured rice response to seeding and N rates. Agron. J.197870, 477-480.
    [118]Xia Y, Yan X. Economic optimal nitrogen application rates for rice cropping in the Taihu Lake region of China:taking account of negative externalities[J]. Biogeosciences Discussions,2011,8(4): 6281-6305. Xu J, Peng S, Yang S, et al. Ammonia volatilization losses from a rice paddy with different irrigation and nitrogen managements [J]. Agricultural Water Management,2012,104: 184-192.
    [119]Xiong-hui J I, Sheng-xian Z, Yan-hong L U, et al. Study of dynamics of floodwater nitrogen and regulation of its runoff loss in paddy field-based two-cropping rice with urea and controlled release nitrogen fertilizer application[J]. Agricultural Sciences in China,2007,6(2):189-199.
    [120]Xiong-hui J I, Sheng-xian Z, Yan-hong L U, et al. Study of dynamics of floodwater nitrogen and regulation of its runoff loss in paddy field-based two-cropping rice with urea and controlled release nitrogen fertilizer application[J]. Agricultural Sciences in China,2007,6(2):189-199.
    [121]Yamauchi M. Physiological bases of higher yield potential in F[C]//Hybrid Rice Technology: New Developments and Future Prospects:Selected Papers from the International Rice Research Conference. Int. Rice Res. Inst.,1994:71.
    [122]Yang W H, Peng S, Huang J, et al. Using leaf color charts to estimate leaf nitrogen status of rice[J]. Agronomy Journal,2003,95(1):212-217.
    [123]Yang W H, Peng S, Huang J, et al. Using leaf color charts to estimate leaf nitrogen status of rice[J]. Agronomy Journal,2003,95(1):212-217.
    [124]Yin F, Fu B, Mao R. Effects of nitrogen fertilizer application rates on nitrate nitrogen distribution in saline soil in the Hai River Basin, China[J]. Journal of Soils and Sediments,2007, 7(3):136-142.
    [125]Ying J, Peng S, He Q, et al. Comparison of high-yield rice in tropical and subtropical environments:I. Determinants of grain and dry matter yields[J]. Field Crops Research,1998,57(1): 71-84.
    [126]Yong jian Sun, Jun Ma et al., The effects of different water and nitrogen managements on yield and nitrogen use efficiency in hybrid rice of China[J]. Field crops research,2012,127:85-98.
    [127]Yoshida S. Fundamentals of rice crop science[M]. Int. Rice Res. Inst.,1981.
    [128]Zhao B, Li X, Li X, et al. Long-term fertilizer experiment network in China:crop yields and soil nutrient trends[J]. Agronomy Journal,2010,102(1):216-230.
    [129]Zhao R F, Chen X P, Zhang F S, et al. Fertilization and nitrogen balance in a wheat-maize rotation system in North China[J]. Agronomy Journal,2006,98(4):938-945.
    [130]Zhou Q, Wang J. Comparison of upper leaf and lower leaf of rice plants in response to supplemental nitrogen levels[J]. Journal of plant nutrition,2003,26(3):607-617.
    [131]Zhu Z L, Chen D L. Nitrogen fertilizer use in China-Contributions to food production, impacts on the environment and best management strategies[J]. Nutrient Cycling in Agroecosystems,2002,63(2-3):117-127.
    [132]Zou J, Huang Y, Qin Y, et al. Changes in fertilizer-induced direct N2O emissions from paddy fields during rice-growing season in China between 1950s and 1990s[J]. Global Change Biology,2009,15(1):229-242.
    [133]敖和军,邹应斌,申建波,彭少兵,唐启源,冯跃华.早稻施氮对连作晚稻产量和氮肥利用率及土壤有效氮含量的影响[J].植物营养与肥料学报,2007,05:772-780.
    [134]蔡贵信,彭光浩.红壤丘陵旱地一油菜系统中尿素的去向和增产效果[J].土壤,1995,01:56.
    [135]曹金留,田光明,任立涛,等.江苏南部地区稻麦两熟土壤中尿素的氨挥发损失[J].南京农业大学学报,2000,23(4):51-541
    [136]陈东义.豫东小麦高产创建中“氮肥后移”技术措施[J].中国农技推广,2009,25(11):36-38
    [137]陈苇,陈荣业.氮肥用量和用期对不同水稻品种的效应[J].浙江农业科学,1989,03:124-128.
    [138]陈祥,同延安,杨倩.氮磷钾平衡施肥对夏玉米产量及养分吸收和累积的影响[J].中国土壤与肥料,2008,06:19-22.
    [139]陈祥.冬小麦/夏玉米高产研究中的养分资源管理[D].西安:西北农林科技大学,2008.
    [140]陈新平,张福锁.1996.可持续农业中的推荐施肥[M].化肥工业,23(3):7-10.
    [141]陈学斌,李卓吾.二系法杂交稻营养生理特性研究Ⅱ:二系法杂交稻对氮素的吸收与分配[J].湖南农业科学,1991(2):20-21.
    [142]程国旺,王浩波,戚艺军,余增亮.氮肥用量对面包小麦品种产量和品质的影响[J].安徽农业科学,2002,03:337-338.
    [143]戴云仙.近50年我国粮食产量变化的数学分析[J].内蒙古农业大学学报(自然科学版),2001,03:109-112.
    [144]邓美华,尹斌,张绍林,等.不同施氮量和施氮方式对稻田氨挥发损失的影响[J].土壤,2006,38(3):263-2691
    [145]丁艳锋,刘胜环,王绍华,王强盛,黄丕生,凌启鸿.氮素基、蘖肥用量对水稻氮素吸收与利用的影响[J].作物学报,2004,08:762-767.
    [146]杜金哲,李文雄,白祥和,胡尚连,刘锦红.春小麦子粒蛋白质积累和产量形成规律及施氮的调节作用[J].东北农业大学学报,1999,01:2-10.
    [147]杜永林,苏祖芳.氮肥运筹对水稻抽穗期群体源库质量的影响[J].耕作与栽培,1999,02:20-23.
    [148]范明生,刘学军,江荣风,张福锁,吕世华,曾祥忠.覆盖旱作方式和施氮水平对稻-麦轮作体系生产力和氮素利用的影响[J].生态学报,2004,11:2591-2596.
    [149]范明生.水旱轮作系统养分资源综合管理研究田[D].北京:中国农业大学,2005.
    [150]冯惟珠,苏祖芳,杜永林,周培南,季春梅.水稻灌浆期源质量与产量关系及氮素调控的研究[J].中国水稻科学,2000,01:27-33.
    [151]傅庆林,俞劲炎,王建红.施氮对杂交稻518的氮吸收、转化和利用的影响[J].浙江农业学报,1999,11(4):174-177.
    [152]高辉,张洪程,冯加根.江苏粮食安全问题的目标定位与对策[J].农业现代化研究,2007,03:271-274.
    [153]龚邦铎,尹士景,李晋生,等.水肥管理对小麦灌浆速度和粒重的影响[J].农牧情报研究,1981(22):107-111
    [154]郭绍铮,陈秀瑾,林凡,黄玉鸾,王旻.千斤小麦光合产物的积累、分配和运转[J].江苏农业科学,1981,01:8-14
    [155]郭文善,方明奎,王蔚华,朱新开,封超年,彭永欣.氮素对小麦茎鞘物质贮运和籽粒发育的调节效应[J].江苏农业研究,2001,04:1-4.
    [156]胡承太,颜振德.水稻品种氮素营养特性与产量形成的关系[J].江苏农业科学,1984(3),2-8
    [157]黄见良,李合松,李建辉,等.不同杂交水稻吸氮特性与物质生产的关系[J].核农学报,1998,12(2):89-94.
    [158]黄见良.水稻氮素营养特性、氮肥利用率与实时实地氮肥管理的研究[D].湖南农业大学,2003.
    [159]黄进宝,范晓晖,张绍林.太湖地区铁渗水耕人为土稻季上氮肥的氨挥发[J].土壤学报,2006,43(5):786-7921
    [160]黄育民,李义珍,杨惠杰,等.水稻源库遗传生理学研究Ⅳ.几个不同历史阶段主栽水稻品种氮素的吸收、运转与分配特性研究[J].福建稻麦科技,1996,14(4):14-18.
    [161]吉田昌一著.稻作科学原理[M].杭州:浙江科学技术出7版社,1984.
    [162]江立庚,曹卫星,甘秀芹,韦善清,徐建云,董登峰,陈念平,陆福勇,秦华东.不同施氮水平对南方早稻氮素吸收利用及其产量和品质的影响[J].中国农业科学,2004,04:490-496.
    [163]姜军,黄耀,杨兆芳.一个稻麦作物氮肥利用率的统计模型[J].南京农业大学学报,2005,01:57-60.
    [164]蒋碧娟,熊宗禹,文先发.基蘖肥与穗粒肥配比对两系杂交稻产量的影响[J].杂交水稻,2001,01:37-38.
    [165]蒋彭炎,洪晓富,冯来定,等.水培条件下氮浓度对水稻氮素吸收和分蘖发生的影响研究[J].作物学报,1997,23(2):191-199.
    [166]焦雯珺,闵庆文,林煜,朱清科,张建军.植物氮素营养诊断的进展与展望[J].中国农学通报,2006,12:351-355.
    [167]金善宝.中国小麦学[M].北京:中国农业出版社,1996
    [168]玖村敦颜.从源库关系看日本水稻的发展.国外农学—水稻,1983,(3):1-5
    [169]巨晓棠,刘学军,邹国元,等.冬小麦/夏玉米轮作体系中氮素的损失途径分析[J].中国农业科学,2002,35(12):1493-1499.
    [170]孔令聪,汪芝寿,曹承富.氮肥运筹方式对优质小麦产量和品质的影响[J].安徽农业科学,1996,24(3):214-216
    [171]李红莉,张卫峰,张福锁,杜芬,李亮科.中国主要粮食作物化肥施用量与效率变化分析[J].植物营养与肥料学报,2010,05:1136-1143.
    [172]李杰布,孙宜男.冬小麦千斤栽培技术中凡个关键问题的研究[J].作物学报,1979,5(3):11-22
    [173]李截然,李文雄,曾寒冰,程岩.氮肥施用期对春小麦氮素利用和蛋白质产量的效应[J].东北农学院学报,1991,03:205-215.
    [174]李仁岗,王淑敏,王克武,吴荣臻,吴文可.冬小麦对土壤氮和肥料氮的吸收及氮素平衡的研究[J].土壤通报,1982,04:21-22.
    [175]李荣刚,戴其根,皮家欢.江苏太湖稻麦两熟地区生态、经济施氮量的初步研究[J].江苏农 业研究,2000,02:30-35.
    [176]李荣刚.高产农田氮素肥效与调控途径[D].中国农业大学,2000.
    [177]李生秀.植物体氮素的挥发损失-小麦生长后期地上部分氮素的损失[J].西北农业大学学报,1992,,20(增):1-6
    [178]李伟波,吴留松,廖海秋.太湖地区高产稻田氮肥施用与作物吸收利用的研究[J].土壤学报,1997,01:67-73.
    [179]李义珍,郑景生,庄占龙,黄育民,杨惠杰.杂交稻施氮水平效应研究[J].福建农业学报,1998,02:59-65.
    [180]李友军.旱地小麦根系生育与调控效应的研究[J].干旱地区农业研究,1997,03:9-14.
    [181]连纲,王德建.太湖地区麦季氮素淋失特征[J].土壤通报,2004,35(2):163-165.
    [182]凌励,高产小麦养分吸收特点及高效施肥技术研究初报,见:江苏土肥科技与农业可持续发展,河海大学出版社,1997,163-170
    [183]凌启鸿编著,作物群体质量[M],上海科学技术出版社,2000
    [184]凌启鸿主编.水稻群体质量理论与实践[M].北京:中国农业出版社.1995:118-134.
    [185]凌启鸿主编.作物群体质量[M].上海:上海科学技术出版社,2000:162-163.
    [186]刘立军,徐伟,吴长付,杨建昌.实地氮肥管理下的水稻生长发育和养分吸收特性[J].中国水稻科学,2007,02:167-173.
    [187]刘立军.水稻氮肥利用效率及其调控途径[D].扬州大学,2005.
    [188]刘兴海,王树安,李绪厚.冬小麦抗逆栽培技术原理的研究Ⅱ不同生育期重施氮肥对冬小麦生育和抗逆性的影响[J].华北农学报,1986,03:1-9.
    [189]罗安程,杨肖娥.氮钾供应水平与水稻生育后期对不同形态氮吸收的关系[J].中国农业科学,1998,03:62-65.
    [190]罗安程,杨肖娥.氮钾供应水平与水稻生育后期对不同形态氮吸收的关系[J].中国农业科学,1998,03:62-65.
    [191]罗成秀.杂交稻需肥特性与肥料管理[G].杂交水稻国际学术讨论会文集.1986:10.
    [192]马立珩,张莹,隋标,刘彩玲,王萍,顾琐娣,沈其荣,徐茂,郭世伟.江苏省水稻过量施肥的影响因素分析[J].扬州大学学报(农业与生命科学版),2011,02:48-52.
    [193]米国华,张福锁,王震宇.小麦超高产生理基础探讨一小麦后期碳氮代谢互作与粒重形成[J].中国农业大学学报,1997,2(5):73-78
    [194]苗艳芳,常爱芬,张会民,陈明灿,牛建斌,李建有.氮肥分配比例对小麦产量及群体质量的影响[J].麦类作物学报,1999,04:45-47.
    [195]倪竹如,陈俊伟,阮美颖.氮肥不同施用技术对直播水稻氮素吸收及其产量形成的影响[J].核农学报,2003,17(2):123-126.
    [196]欧阳西荣.小麦冬前壮苗的增产机理与高产栽培技术[J].湖南农学院学报,1995,03:239-244.
    [197]潘晓华,王永锐.两系杂交稻始穗期追施氮钾肥提高叶片光合功能的作用[J].江西农业大学学报,1997,03:3-7.
    [198]彭少兵,黄见良,钟旭华,杨建昌,王光火,邹应斌,张福锁,朱庆森,Roland Buresh,Christian Witt.提高中国稻田氮肥利用率的研究策略[J].中国农业科学,2002,09:1095-1103.
    [199]彭永欣,等.氮素营养对小麦籽粒产量与品质调节效应的研究[C].小麦栽培与生理.江苏:东南大学出版社,1992,127-144
    [200]彭永欣,姜雪忠,郭文善,等.氮素营养对小麦籽粒产量与品质调节效应的研究.Ⅱ.氮素 对小麦籽粒营养品质调节效应的生理机制分析[J].小麦栽培栽培与生理,1992:145-158
    [201]钱益声,吴安之,张建国等.稻田套播小麦技术[C].江苏土肥科技与农业持续发展.江苏省土壤协会编写.江苏:河海大学出版社,1997:456-459
    [202]权勇,金妍姬.水稻不同群体的氮素吸收特性[J].延边大学农学学报,2000,22(2):86-90.
    [203]饶鸣钿,郑履端,刘珠.氮肥运筹方式对水稻产量和品质的影响[J].耕作与栽培,2002,03:29-57.
    [204]石庆华,潘晓华,钟旭华,张佩莲,郭进跃.不同熟期杂交晚稻的氮素吸收特性与产量形成的研究[J].江西农业学报,1991,01:43-50..
    [205]石庆华,徐益群,张佩莲,曾宪江,潘晓华,钟旭华.籼粳杂交稻的氮素吸收特性及其对库源特征的影响[J].江西农业大学学报,1994,04:333-339.
    [206]石庆华.水稻不同熟期品种的碳、氮代谢研究初报[J].江西农业大学学报,1988,S2:94-101.
    [207]史锟,张福锁,刘学军,张旭东.不同时期开沟施氮对水稻物质生产及产量的影响[J].西南农业学报,2002,02:78-81.
    [208]宋海星,李生秀.玉米生长量、养分吸收量及氮肥利用率的动态变化[J].中国农业科学,2003,01:71-76.
    [209]宋勇生,范晓晖,林德喜,杨林章,周健民.太湖地区稻田氨挥发及影响因素的研究[J].土壤学报,2004,41(2):265-269.
    [210]苏祖芳,张亚洁,张娟,张海泉,姚志发,沈富荣,姚友权,李本良.基蘖肥与穗粒肥配比对水稻产量形成和群体质量的影响[J].江苏农学院学报,1995,03:21-30.
    [211]苏祖芳,周培南,许乃霞,张亚洁.密肥条件对水稻氮素吸收和产量形成的影响[J].中国水稻科学,2001,04:42-47.
    [212]孙继祥,魏建强,暴勇.水稻氮肥运筹方式试验研究[J].北方水稻,2007,(3):98-99
    [213]孙羲主编.作物营养与施肥[M].北京:农业出版社,1990.
    [214]孙永飞,吴旭江,徐柏娟,任国芳,袁亚明.小麦生育前期少氮施肥技术探付[J].浙江农业科学,1994,1:35-36
    [215]孙治军,单玉珊,仲崇媛,丛惠芳.高产小麦需肥规律及优化施肥模式[J].山东农业科学,1991,02:18-21.
    [216]唐珍琦.湖南水稻种植情况调查及不同养分管理模式对水稻产量的影响研究[D].湖南农业大学,2009.
    [217]田秀英,石孝均.不同施肥对稻麦养分吸收利用的影响[J].重庆师范学院学报(自然科学版),2003a,02:44-47.
    [218]田秀英.施肥对稻麦养分吸收利用的影响[J].渝西学院学报(自然科学版),2003b,01:55-58.
    [219]王德建,林静慧,孙瑞娟,夏立忠,连纲.太湖地区稻麦高产的氮肥适宜用量及其对地下水的影响[J].土壤学报,2003,03:426-432.
    [220]王夫玉,黄丕生.水稻群体茎蘖消长模型及群体分类研究[J].中国农业科学,1997,01:58-65.
    [221]王广元.水稻新施肥技术研究[J].山西农业科学,1997,01:30-32.
    [222]王海,席运官,陈瑞冰,徐欣,魏琴,李菊英.太湖地区肥料、农药过量施用调查研究[J].农业环境与发展,2009,03:10-15.
    [223]王龙俊.小麦高产群体质量栽培的应用研究—Ⅲ.小麦不同种植模式的高产群体质量配套技术[J].耕作与栽培,1997,03:11-14.
    [224]王绍中,等.小麦超高产主攻穗粒重研究[A].小麦穗粒重研究[C],北京:中国农业出版社,1995,197-204
    [225]王守林,彭根元,苏宝林.应用~(15)N示踪技术对北京春稻氮素效应的研究[J].北京农业大学学报,1989,04:391-396.
    [226]王曙光,戴其根,陈后庆,张洪程,许轲,霍中洋,张强.氮素供应对优质专用小麦品质影响的研究进展[J].耕作与栽培,2004,01:16-17.
    [227]王秀芹,张洪程,黄银忠,戴其根,霍中洋,许轲,邵世志,徐巡军.施氮量对不同类型水稻品种吸氮特性及氮肥利用率的影响[J].上海交通大学学报(农业科学版),2003,04:325-330.
    [228]文启孝,程励励,张晓华.我国一些耕地土壤的固定态铵含量和最大固铵量[J].土壤,1996,03:168.
    [229]吴建国.冬小麦地上部分不同器官干物质,氮磷积累,分配特点的初步分析[J].河南农学院学报,1981,02:26-31.
    [230]武同华.中国13个粮食主产区的比较优势及影响因素分析[D].南京财经大学,2012.
    [231]夏文建,优化施氮下稻-麦轮作体系氮肥氨挥发损失研究植物营养与肥料学报2010,16(1):6-13
    [232]肖恕贤,覃步生,陈盛球,李成国,韦锦秀.杂交早稻需肥特性和施肥技术研究[J].作物学报,1982,01:23-32.
    [233]徐富贤,熊洪,朱永川,张林,万先齐,刘茂,王贵雄.杂交中稻粒肥高效施用量与齐穗期SPAD值关系研究[J].作物学报,2007,03:449-454.
    [234]徐富贤,熊洪,朱永川,张林,万先齐,刘茂,王贵雄.杂交中稻粒肥高效施用量与齐穗期SPAD值关系研究[J].作物学报,2007,03:449-454.
    [235]徐恒永,赵振东,张存良,刘爱锋,刘建军,毕德锋,杭新杰,晁岳华,张怀友,耿金茹.氮肥对优质专用小麦产量和品质的影响Ⅰ.氮肥对产量及产量形成的影响[J].山东农业科学,2000,05:27-30.
    [236]薛正平,杨星卫.我国稻谷总产量及粮食政策调整对上海粳米价格走势的影响[J].上海农业学报,2000,02:14-16.
    [237]闫湘,金继运,何萍,梁鸣早.提高肥料利用率技术研究进展[J].中国农业科学,2008,02:450-459.
    [238]晏娟,沈其荣,尹斌,张绍林,朱兆良.太湖地区稻麦轮作系统下施氮量对作物产量及氮肥利用率影响的研究[J].土壤,2009,03:372-376.
    [239]杨海生,张洪程,张士永,杨连群,戴其根.依叶龄施氮模式对优质水稻群体及产量形成的影响[J].扬州大学学报,2002,03:51-55.
    [240]杨洪建.江苏52个供应商中标粳稻良补项目[N].农资导报,2008-03-11C03.
    [241]杨连新,王余龙,吕贞龙,黄建晔,庄恒扬,沈新平,单玉华.淮北生土地区肥料运筹对水稻产量形成及氮素吸收的影响[J].扬州大学学报,2003,01:50-54.
    [242]杨肖娥,孙羲.生育后期追施NO3--N和NH4+-N对水稻的生理效应[J].土壤通报,1990,03:111-114.
    [243]杨新泉,冯锋,宋长青,等.主要农田生态系统氮素行为与氮肥高效利用研究[J].植物营养与肥料学报,2003,9(3):373-376.
    [244]易琼,张秀芝,何萍,杨利,熊桂云.氮肥减施对稻-麦轮作体系作物氮素吸收、利用和土壤氮素平衡的影响[J].植物营养与肥料学报,2010,05:1069-1077.
    [245]殷春渊,张洪程,张庆,魏海燕,戴其根,霍中洋,许轲,马群,李敏,李国业.水稻不同生育期类型 品种精确定量施氮参数的初步研究[J].作物学报,2010,08:1342-1354.
    [246]于振文,田奇卓,潘庆民,等.超高产小麦生育特性的分析[M].全国第9次小麦栽培学术讨论会,北京:2000
    [247]余松烈,亣新华,刘希运.高产冬小麦对三要素的吸收和供应特点的研究[J].土壤肥料,1981,01:31-34.
    [248]曾希柏,李菊梅.中国不同地区化肥施用及其对粮食生产的影响[J].中国农业科学,2004,03:387-392.
    [249]张达,林杉,黄永芬,曹一平.通气状况与氮素形态对水稻和旱稻生长的影响[J].哈尔滨师范大学自然科学学报,2002,04:97-102.
    [250]张福锁,马文奇,江荣风,等.养分资源的概念及其综合管理的理论基础与技术途径[M].张福锁主编.养分资源综合管理.北京:中国农业人学出版社,2003:4-14.
    [251]张福锁,王激清等,中国主要粮食作物肥料利用率现状与提高途径[J].土壤学报,2008,05:915-924.
    [252]张国印,孙世友,秦凤书,茹淑华,耿暖,王凌.冬小麦植株氮素营养诊断指标研究[J].河北农业科学,2006,04:1-4.
    [253]张洪程,许轲,戴其根,霍中洋,董明辉.超高产小麦吸氮特性与氮肥运筹的初步研究[J].作物学报,1998,06:935-940.
    [254]张静,王德建.太湖地区乌栅土稻田氨挥发损失的研究[J].中国生态农业学报,2007,11(15):84-871
    [255]张绍林,朱兆良,徐银华,陈荣业,李阿荣.关于太湖地区稻麦上氮肥的适宜用量[J].土壤,1988,01:5-9.
    [256]张亚丽.水稻氮效率基因型差异评价与氮高效机理研究[D].南京农业大学,2006.
    [257]张瑜芳,张蔚榛.农作物对氮肥吸收速率的研究现状[J].灌溉排水,1996,15(3):1-8.
    [258]张重义,王群杰,杨批修.高产小麦产量形成的生理特点[J].麦类作物学报,1991,06:47-50.
    [259]赵全志,黄丕生,凌启鸿.水稻群体光合速率和茎鞘贮藏物质与产量关系的研究[J].中国农业科学,2001,03:304-310.
    [260]赵荣芳,曹宁和崔振岭.氮素分期优化管理对冬小麦产量和籽粒品质的影响[J].中国农学通报,2009,25(16):142-145.
    [261]钟旭华,彭少兵,.JohnE.SHEEHY,刘鸿先.水稻群体成穗率与干物质积累动态关系的模拟研究[J].中国水稻科学,2001,02:28-33.
    [262]周军,杨荣泉,陈海军,黄德明,徐秋明.冬小麦水肥增产耦合效应及经济性研究[J].华北农学报,1994,03:100-106.
    [263]周阮宝,谷丽萍,周嘉槐.强化后期氮素营养对提高水稻结实率及改善米质的作用[J].植物生理学通讯,1992,28(3):171-176.
    [264]朱红梅,刘强,荣湘民,等.不同栽培方法对水稻产量及蛋白质含量的影响[J].湖南农业大学学报(自然科学版),2004,30(1):4-8.
    [265]朱新开,郭文善,封超年,彭永欣,凌启鸿.不同类型专用小麦氮素吸收积累差异研究[J].植物营养与肥料学报,2005,02:148-154.
    [266]朱兆良,1992.农田生态系统中化肥氮的去向和管理.见:中国土壤氮素.朱兆良,文启孝士编.南京:江苏科技出版社,213-219

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700