用户名: 密码: 验证码:
混合磁路永磁变速器的解析模型与参数特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
与机械变速器相比,永磁变速器具有无接触柔性传动、清洁无噪声、启动力矩低、自动过载保护等优点,但磁场利用率差的不足限制了传统结构永磁变速器在大力矩输出领域的应用。将磁场调制机理应用于永磁变速器,能够提高永磁变速器的磁场利用率和力能指标,对促进永磁变速器的发展具有重要意义。本文以混合磁路永磁变速器(Permanent Variable Transmission, PVT)为研究对象,对该永磁变速器的磁路结构、基本方程与参数约束关系、结构参数对转矩能力的影响、转矩脉动与抑制等问题进行了研究。
     论文首先采用解析分析和数值分析两种方法分析了永磁变速器磁场调制的作用机理,在对径向磁路和轴向磁路结构进行分析的基础上,提出了一种适宜于大力矩应用需求的混合磁路永磁变速器,并对三种磁路结构永磁变速器进行了综合对比。分析结果表明。永磁变速器的三种磁路结构各具特点,轴向磁路和混合磁路两种结构矩密度比较接近,且大于径向磁路结构。从单向磁拉力和机械支撑干涉等方面考虑,混合磁路结构在数百牛米以上的大力矩工程应用领域是一种比较好的方案。
     根据永磁变速器的磁路特点,论文建立了永磁变速器的解析数学模型。采用虚位移法推导了永磁变速器的电磁转矩解析表达式与功率平衡方程。采用理论分析和有限元验证两种方法研究了永磁变速器几种主要参数约束模式及其特点,并对永磁变速器的几种参数约束模式进行了综合对比。研究结果表明,永磁变速器共有五种参数约束模式,其中前两种为等速跟随模式,后两种为变速模式。高低速永磁体极对数相等的参数约束模式不能实现变速,只能实现运动的传递。综合来看,反向差配合变速模式既能实现变速,又具有较高的力矩密度,是最优的参数约束模式。
     采用有限元方法研究了永磁体磁化方向长度,调制铁块径向长度和周向宽度等基本尺寸参数,特别是变速比、永磁体轴向长度和长径比等永磁变速器特有因素对变速器转矩能力的影响。研究结果表明,调制铁块周向宽度系数取为0.4左右有利于提高变速器的转矩能力;混合磁路变速器永磁体轴向长度比例和长径比对变速器的转矩能力影响显著,当低速侧和高速侧轴向长度之比取1.5左右时,变速器的转矩能力最大;另外,适当减小变速器的长径比,即把变速器设计为扁平形状,有利于提高变速器的转矩能力。
     最后,分析了永磁变速器的启动过程和稳态工作点,研究了永磁变速器转矩脉动的变化规律及其影响,并研究了转矩脉动的抑制措施。研究结果表明,永磁变速器稳态工作点为高低速转子永磁体的轴线与调制铁块的轴线对齐,且高低速永磁体的极性相反的位置。由于定位力矩的作用,永磁变速器稳态运行时的转矩中存在脉动成分,且随着负载的增加,转矩的波动比逐渐减小。另外,优化匹配永磁体极对数和调制铁块数目,以及合理选择调制铁块周向宽度能有效抑制永磁变速器的转矩脉动。
Compared with mechanical variable transmissions, permanent variable transmissions (PVT) possess many favorable features, like non-contact flexibe transmission, clean and quiet, low starting torque, self overload protection, et al. However, the drawback of poor utilization of permanent magnets has limited their applications in large torque areas. By applying modulation principle of magnetic field into PVT, full utilization of magnet field and high torque density can be achieved, which is of great significance to the development of PVT. In this thesis, a novel hybrid magnetic circuit PVT is put into forward, and the problems of magnetic circuit structure, fundemantal equations and parameter restrictions, influence of structural parameters on torque capability and torque ripple have been studied.
     Analytical analysis and numerical analysis were used to research the modulation principle of PVT. A novel hybrid magnetic circuit PVT was put into forward which is suitable to be applied in large torque area. Output torque capability was compared among radial circuit, axial cuicuir and hybrid circuit. The results showed that three magnetic circuit structures have their own features. Axial and hybrid circuits which possess similar torque density while larger compared with radial cuircuit structure. Considering unbalanced force and framework supporting, hybrid magnetic circuit structure is the preferential choice.
     According to the magnetic features of the PVT, mathematical model was set up. The expressions of electromagnetic torque and power banlance equations were deduced with the virtual work method. Theoretical analysis and FEM were adopted to research the main parameter restricion modes and their features of the PVT. Comparisions were made among these modes for further. Results showed that there are five parameter restricion modes in which the former two modes are equal speed following mode and the latter two modes are variable speed mode. The working modes with the same pole pair number on two rotors could not realize the speed variation. Generally speaking, opposite direction subtraction match mode is the best variable speed mode due to the ability of variation speed as well as lager torque density.
     FEM was used to analyze the influence of magnetization length, radial length and circumferential width of modulation pole pieces, especially transmission ratio, axial length ratio of two rotors and length-radius ratio on torque capability of PVT. The results showed that circumferential width at around 0.4 of modulation pole pieces help to enhance the torque capability. The PVT gets largest torque capability with the ratio of axial length of low speed rotor and high speed rotor at around 1.5. Smaller length-radius ratio or tabular shape indicates larger torque capability for PVT.
     Starting process and steady working point of the PVT is analyzed; variation rule of cogging torque and its influence on torque ripple were studied, and effective methods were adopted to restrain torque ripple in PVT. Results showed that steady working point featured that axes of two rotors consistent with that of modulation pole pieces and the polarity of magnets on two rotors is opposite. There are ripple component in following torque when the PVT works in steady state due to cogging torque. The ripple ratio inclined gradually with the increase of load quantity. The effective match of pole pair number of magnets and the number of modulation pole pieces and elaborate choice of circumferential width of modulation pole pieces can restrain torque ripple effectively.
引文
[1]何青,张和豪.齿轮系统动力学模型分析和简化[J].齿轮, 1989, 13(2):16-20.
    [2]朱秋玲.齿轮系统动力学分析及计算机仿真[D].兰州:兰州理工大学, 2004:1-5.
    [3]黄康,田杰,赵韩,等.斜齿微线段齿轮胶合承载能力的研究[J].合肥工业大学学报, 2005,28(2):118-124.
    [4]黄康,赵韩,田杰.微线段齿轮与渐开线齿轮温升对比实验研究[J].中国机械工程, 2006, 17(18): 1880-1883.
    [5] L. M. Cmhango[英],刘丽(译).齿轮减速永磁式直流起动机的性能与分析[J].电机技术, 1991, (3) : 40-44.
    [6]肖会勇,李珊,周陶勇,等.一类齿轮系统动力学模型建立和求解的研究[J].机械设计与制造, 2007, (10): 22-24.
    [7]刘国华,李亮玉,李培明,等.含间隙和时变刚度的齿轮系统非线性动力学模型的研究[J].机械设计, 2008, 25(5): 81-93.
    [8] Cheng-Chi Huang, Mi-Ching Tsai, D.G Dorrell, et al. Development of a Magnetic Planetary Gearbox[J]. IEEE Transactions on Magnetics, 2008, 44(3): 403-412.
    [9] E. Gouda, S. Mezani, L. Baghli, et al. Comparative Study Between Mechanical and Magnetic Planetary Gears[J], IEEE Transactions on Magnetics, 2011, 47(2): 439-450.
    [10]赵韩,王勇,田杰.磁力机械研究综述[J].机械工程学报, 2003, 39(12):97-104.
    [11]潘年榕.电磁齿轮结构参数的研究[D].贵阳:贵州大学, 2007:1-4.
    [12]王勇.场路结合并考虑耦合的磁力机械分析与设计方法研究[D].合肥:合肥工业大学, 2006: 2-4.
    [13]王洪群,虞培清,贾立文,等.磁力机械油封设计研究[J].机械工程师, 2009, (5): 76-77.
    [14]林莘,徐建源,高会军.永磁操动机构动态特性计算与分析[J].中国电机工程学报, 2002, 22(6): 85-88.
    [15]王双红,周理兵.永磁操作机构电磁设计及其动态特性分析[J].华中科技大学学报, 2003, 31(5): 75-77.
    [16]曾闻,陈德桂,李兴文.一种分析永磁操动机构动态特性的方法[J].低压电器,2008, (7): 5-7,53.
    [17]王玉良.国外永磁传动技术的新发展[J].磁性材料及器件, 2001,32(4):45-46.
    [18] HMD. Seamless pump manufacture at maximum velocity[J]. World pumps, 1999, (394):33-36.
    [19] Gerald Parkingson, Eric Johnson. Surging interest in leak proof pumps[J]. Chemical engineering, 1983, (6):30-31.
    [20] Anon. Magnetic drive pumps for the chemical industry[J]. World pumps, 1995, (341):51-52.
    [21]邵龙,赵清,宁杰,吴延忠.永磁磁力耦合器转子强度有限元分析[C].第十一届全国永磁电机学术交流会论文集,沈阳,中国, 2011:84-89.
    [22]王玉良,邓子龙,赵章荣.国外磁传动无密封泵技术发展概况[J].石油机械, 2003, 31(4):52-54.
    [23]李福宝.磁传动密封综述[J].辽阳石油化工高等专科学校学报, 2000, 16(1):37-39.
    [24]戴光明,夏成明等.磁力传动技术的应用[J].真空与低温,1996, 2(2):90-98.
    [25] Ose Baiba, Pugachov Vladislav, Orlova Svetlana, Vanags Juris. The influence of permanent magnets' width and number on the mechanical torque of a magnetic coupler with rectangular [C]. Proceedings of 2011 IEEE International Symposium on Industrial Electronics, Gdansk, Poland, 2011: 761-765.
    [26] C. Ferreira, J. Vaidya. Torque analysis of permanent magnet coupling using 2D and 3D finite elements methods[J]. IEEE Transactions on Magnetics, 1989, 25(4): 3080-3082.
    [27] D. R. Huang, G. J. Chiou, Y. D. Yao, et al. Effect of magnetization profiles on the torque of magnetic coupling[J]. Journal of Applied physics, 1994, 76(10): 6862-6864.
    [28]陈志刚.永磁磁性传动器驱动扭矩的分析计算[J].江苏理工大学学报, 1995, 16(6): 79-85.
    [29] Peel Ian. Pumps: mechanical seal or magnetic drive[J]. Industrial lubrication and tribology, 1996, 48(4): 6-7
    [30] W. Wu, H. C. Lovatt, J.B. Dunlop. Analysis and design optimization of magnetic couplings using 3D finite element modeling[J]. IEEE Transactions on Magnetics, 1997, 33(5): 4083-4085.
    [31] Yang Chaojun, Li Zhiteng, Lu Yugen, et al. Application of squirrel cage rotor asynchronous magnetic coupling in high temperature resistant magnetic pump [J]. Jixie Gongcheng Xuebao, 2011, 29(3): 214-218.
    [32] Pan Zheng, Yousef Haik, Mohammad Kilani, et al. Force and torquecharacteristics for magnetically driven blood pump[J]. Magnetism and Magnetic Materials, 2002, (241): 292-302.
    [33]臧戈飞,李岩.绿色流体输送机械—磁力驱动泵[J].通用机械, 2003, (8): 47-51.
    [34] Havist, Michelle. The advantage of magnetically driven gear pumps[J].World pumps, 2004, (458): 24-27.
    [35]苏彦宏,张泽慧.磁传动技术的发展和应用[J].甘肃科技, 2004, 20(8): 82-86.
    [36]张宏刚.永磁磁力耦合器损耗的计算与分析[D].长春:吉林大学, 2008: 45-70
    [37] P. O. Rasmussen, T. O. Andersen, F. T. Joergensen, et al. Development of a High Performance Magnetic Gear[J]. IEEE Transactions on Industry Applications, 2005, 41(3): 764-770.
    [38] Anon. Recent innovation in magnetic drive pumps production[J]. World pumps, 1999, (396): 55-57.
    [39] K. Tsurumoto. Power Transmission of Magnetic Gear Using Common Meshing and Insensibility to Center Distance[J]. IEEE Translation Journal on Magnetics in Japan, 1988, 3(7): 588-589.
    [40] K. Tsurumoto. Generating Mechanism of Magnetic Force in Meshing Area of Magnetic Gear Using Permanent Magnet[J]. IEEE Translation Journal on Magnetics in Japan, 1991, 6(6): 531-536.
    [41] Ando Yoshinor, Ito Masaru, Murakami Iwanori. Development of cylindrical magnetic gear prototype [J]. International Journal of Applied Electromagnetics and Mechanics, 2010, 33(4): 1397-1404.
    [42] K. Tsurumoto. Study of a Trial Production of Magnetic Gear with Variable Circular Arc Tooth Profile[J]. IEEE Translation Journal on Magnetics in Japan, 1990, 5(8): 690-696.
    [43] Wang Zhi-Ming, Sun Tao, Tang Dong-Mei, Zhu, Chong-Hui. Some Analysis of influence factors for FEA-based cross-magnetic gear transmission performance [C]. Procedings of 2010 International Conference on Computer, Mechatronics, Control and Electronic Engineering, Changchun, China, 2011:100-105.
    [44] K. Tsurumoto. Basic analysis on Transmitted Force of Magnetic Gear Using Permanent Magnet[J]. IEEE Translation Journal on Magnetics in Japan, 1992, 7(6): 447-452.
    [45] K. Tsurumoto. Some Improvements of Starting Characteristics of Magnetic Gear by Eddy Current Effect[J]. IEEE Translation Journal on Magnetics in Japan, 1993, 8(1): 62-66.
    [46] Ikuta. K, Makita. S, Arimoto. S. Non-contact magnetic gear for transmissionmechanism[C]. Proceedings of IEEE Conference on Micro electro mechanical systems, Nara, Japan, 1991:125-130.
    [47] S. Kikuchi, K. Tsurumoto. Design and characteristics of a new magnetic worm gear using permanent magnet[J]. IEEE Transactions on Magnetics, 1993, 29(6): 2923-2925.
    [48] S. Kikuchi, K. Tsurumoto. Trial construction of a new magnetic skew gear using permanent magnet[J]. IEEE Transactions on Magnetics, 1994, 30(6): 4767-4769.
    [49] M. Venturini, F. Leonardi. High torque, low speed joint actuator based on PM brushless motor and magnetic gearing[C]. Proceedings of the 28th Annual Meeting of the IEEE Industry Applications Conference, Toronto, Ont, Canada 1993: 37-42
    [50] Y.D. Yao, D.R. Huang, S.M. Lin, et al. Theoretical computations of the magnetic coupling between magnetic gears[J]. IEEE Transactions on Magnetics, 1996, 32(3): 710-713.
    [51] Y. D.Yao, D. R. Huang, C. C. Hsieh, et al. Radial magnetic coupling studies of perpendicular magnetic gears[J]. IEEE Transactions on Magnetics, 1996, 32(5): 5061-5063.
    [52] Man Yongkui, Zhao Yushuang, Bian Chunyuan, et al. A kind of magnetic gear with high speed [J]. Advances in Information Sciences and Service Sciences, 2011, 3 (1): 105-109.
    [53] Y.D. Yao, D.R. Huang, C.C. Hsieh, et al. Simulation study of the magnetic coupling between radial magnetic gears[J]. IEEE Transactions on Magnetics, 1997, 33(2): 2203-2206.
    [54] Y.D. Yao, D.R. Huang, C.M. Lee, et al. Magnetic coupling studies between radial magnetic gears[J]. IEEE Transactions on Magnetics, 1997, 33(5): 4236-4238.
    [55] E. P. Furlani. Two-dimensional analysis for the coupling of magnetic gears [J]. IEEE Transactions on Magnetics, 1997, 33(3): 2317-2321.
    [56] E. P. Furlani. Analytical analysis of magnetically coupled multipole cylinders [J]. Journal of Applied Physics, 2000, 33(1): 28-33.
    [57]赵韩,陶骏,田杰,等.磁场积分法在稀土永磁齿轮传动机构场分析中的应用[J].机械工程学报, 2000, 36(8): 29-32.
    [58]曹坚,张国贤.少齿差永磁齿轮系的研究与设计[J].机械设计与制造, 2010, (9): 28-30.
    [59]孔繁余,张旭锋,张洪利,黄建军.无接触传动永磁齿轮磁场的数值模拟.工程设计学报, 2009, 16(3): 187-190.
    [60]王虎生,侯云鹏,程树康.无接触永磁齿轮传动机构发展综述[J].微电机,2008, 41(2): 71-73.
    [61]魏衍侠.永磁齿轮的理论研究和有限元分析[J].机械, 2011, (4): 21-24.
    [62]田杰,邓辉华,张萍,等.永磁齿轮的研究及其在磁性联轴器上的应用[J].机电一体化, 2008, (7):59-61.
    [63]陈匡非,杜玉梅.平行轴永磁齿轮的特性研究[J].微特电机, 2004, (4): 5-10.
    [64]张建涛,夏东.永磁齿轮转矩特性研究[J].机械, 2005, (3): 3-5.
    [65]张建涛.永磁齿轮特性仿真及其在人工心脏中的应用研究[D].北京:中国科学院, 2005: 26-37
    [66]张建涛,夏东.永磁齿轮在人工心脏中的应用研究[J].微特电机, 2005, (9): 5-10
    [67]张建涛,夏东.永磁齿轮传动特性研究[J].机械设计与制造, 2005, (5): 69-70.
    [68] K. Atallah, D. Howe. A Novel High-Performance Magnetic Gear[J]. IEEE Transactions on Magnetics, 2001, 37(4): 2844-2846.
    [69]刘新华.新型磁场调制式磁性齿轮的设计研究[D].上海:上海大学, 2008: 42-48
    [70] Xinhua Liu, K.T.Chau, J.Z. Jiang, Chuang Yu. Design and analysis of interior magnet outer rotor concentric magnetic gears[J]. Journal of Applied Physics, 2009, 105(7):1-3.
    [71] K. T. Chau, Dong Zhang, J. Z. Jiang, et al. Design of a Magnetic-Geared Outer-Rotor Permanent-Magnet Brushless Motor for Electric Vehicles[J]. IEEE Transactions on Magnetics, 2007, 43(6): 2504-2506.
    [72] LinniJian, K.T.Chau, J.Z.Jiang. A Magnetic-Geared Outer-Rotor Permanent Magnet Brushless Machine for Wind Power Generation[J]. IEEE Transactions on Industry Applications, 2009, 45(3): 954-962.
    [73] S.L.Ho, Shuangxia Niu, W.N.Fu. Transient analysis of a magnetic gear integrated brushless permanent magnet machine using circuit-field-motion coupled time-stepping finite element method[J]. IEEE Transactions on Magnetics, 2010, 46(6): 2074-2077
    [74] S. L. Ho, Shuangxia Niu, W. N. Fu. Design and Field Analysis of a Magnetic Gear Integrated Tubular Linear Permanent Magnet Machine[C]. Proceedings of 14th Biennial IEEE Conference on Electromagnetic Field Computation, Chicago, IL, United states, 2010: 1-1
    [75] Nicolas W. Frank, Hamid A. Toliyat. Gearing Ratios of a Magnetic Gear for Marine applications[C]. Proceedings of IEEE Electric Ship Technologies Symposium, Baltimore, MD, United states, 2009: 477-481
    [76] LaxmanShah, AndrewCruden, BarryW.Williams. A Variable Speed MagneticGear Box Using Contra-Rotating Input Shafts[J]. IEEE Transactions on Magnetics, 2011, 47(2): 432-438
    [77] Thierry Lubin, Smail Mezani, Abderrezak Rezzoug. Analytical computation of the magnetic field distribution in a magnetic gear[J]. IEEE Transactions on Magnetics, 2010, 46(7): 2611-2621.
    [78] Noboru Niguchi, Katsuhiro Hirata, Masari Muramatsu, Yuichi Hayakawa. Dynamic Analysis of Axial-Type Magnetic Gear Employing 3-D FEM[C]. Proceedings of 14th Biennial IEEE Conference on Electromagnetic Field Computation, Chicago, IL, United states, 2010:1-1
    [79] Noboru Niguchi, Katsuhiro Hirata, Masari Muramatsu, Yuichi Hayakawa. Eddy Current Analysis of Magnetic Gear Employing 3-D FEM[C]. Proceedings of 14th Biennial IEEE Conference on Electromagnetic Field Computation, Chicago, IL, United states, 2010: 1-1
    [80]田杰,邓辉华,赵韩,等.稀土永磁齿轮传动系统动态仿真研究[J].中国机械工程, 2006,17(22): 2315-2318.
    [81]李福伟.基于有限元分析的磁性齿轮模拟仿真及实验研究[D].天津:天津大学, 2009: 14-15, 25-29
    [82] J. Rens, K. Atallah, D. Howe. A novel magnetic harmonic gear[C]. Proceedings of IEEE International Electric Machines and Drives Conference, Antalya, Turkey, 2007: 698-703.
    [83] K. Atallah, S.D. Calverley, D. Howe. Design, analysis and realization of a high performance magnetic gear[J]. IEE Proc.–Electric Power Applications, 2004, 151(2): 135-143.
    [84] K.Atallah, J.Wang, D.Howe. A high-performance linear magnetic gear[J]. Journal of Applied physics, 2005, 97(10): 1-3.
    [85] S.Mezani, K.Atallah, D.Howe. A high-performance axial-field magnetic gear[J]. Journal of Applied Physics, 2006, 99(08): 1-4.
    [86] Li Yong, Xing Jingwei, Peng Kerong, et al. Principle and Simulation Analysis of a Novel Structure Magnetic Gear[C]. Proceedings of the 11th International Conference on Electrical Machines and Systems, Wuhan, China, 2008: 3845-3849
    [87] L.L. Wang, J.X. Shen, Y. Wang, et al. A novel magnetic-geared outer-rotor permanent-magnet brushless motor[C]. Proceedings of 4th IET International Conference on Power Electronics, Machines and Drives, York, United kingdom, 2008: 33-36
    [88] LinniJian, K.T.Chau,YuGong, et al. Comparison of coaxial magnetic gears with different topologies[J]. IEEE Transactions on Magnetics, 2009, 45(10):4526-4529
    [89] Linni Jian, Chau, K.T.. A Coaxial Magnetic Gear With Halbach Permanent Magnet Arrays[J]. IEEE Transactions on Energy Conversion, 2010, 25(2): 319-328.
    [90] LinniJian, K.T.Chau, WenlongLi, et al. A novel coaxial magnetic gear using bulk HTS for industrial applications[J]. IEEE Transactions on Applied superconductivity, 2010, 20(3): 981-984
    [91]田杰,赵韩,陈科.小型及微型稀土永磁齿轮传动设计初探[J].机械传动, 1998, 22 (2): 4-19.
    [92]赵韩,陶骏,杜世俊,等.稀土永磁传动机构的转矩计算及特性分析[J].机械传动, 1999, 23(3): 23-25.
    [93]郑伟刚,罗延科,李屹.稀土永磁磁力齿轮传动实验研究[J].机械制造, 2004, (42): 52-54.
    [94] Linni Jian, K. T. Chau, J. Z. Jiang. An integrated magnetic-geared permanent -magnet in-wheel motor drive for electric vehicles[C], Proceedings of 2008 IEEE Vehicle Power and Propulsion Conference, Harbin, China, 2008: 1-6.
    [95] K.T.Chau, Dong Zhang, J.Z. Jiang, et al. Transient analysis of coaxial magnetic gears using finite element comodeling[J]. Journal of Applied Physics, 2008, 103(7): 1-3.
    [96]曹海东,黄苏融,谢国栋.轴向磁场调制型永磁磁力齿轮及其电磁性能分析[J].电机与控制应用, 2009, 36(10): 24-27.
    [97] L.L.Wang, J.X.Shen, P.C.K.Luk, et al. Development of a magnetic-geared permanent-magnet brushless motor[J]. IEEE Transactions on Magnetics, 2009, 45(10): 4578-4581.
    [98] Yi Du , K.T. Chau, Ming Cheng, et al. A Linear Magnetic-geared Permanent Magnet Machine for Wave Energy Generation[C]. Proceedings of 2010 International Conference on Electrical Machines and Systems, Incheon, Korea 2010: 1538-1541
    [99] Nicolas W. Frank, Hamid A. Toliyat, Gearing Ratios of a Magnetic Gear for Wind Turbines[C]. Proceedings of 2009 IEEE International Electric Machines and Drives Conference, Miami, FL, United states, 2009: 1224-1230
    [100] Yubo Yang, Xiuhe Wang, Rong Zhang, et al. Research of cogging torque reduction by different slot width pairing in permanent magnet motors[C]. Proceedings of 2005 International Conference on Electrical Machines and Systems. Nanjing, China, 2005: 367-370.
    [101]胡建辉,邹继斌,陈霞.无刷直流电机的理想与非理想定位力矩及其综合抑制方法[J].中国电机工程学报, 2005, 25(22): 153-157.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700