用户名: 密码: 验证码:
钒渣对镁碳砖的侵蚀机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
钒钛磁铁矿含有大量的钒资源,它是初级钒产品的主要来源。一种重要的提钒方法是将钒钛磁铁矿经高炉冶炼成含钒铁水,然后把含钒铁水在转炉中氧化吹炼得到高V_2O_3含量的转炉提钒渣。与普通炼钢转炉渣相比,转炉提钒渣具有“低碱度”、“高氧化性”和“高氧化钒含量”的组成特点。为适应提钒工艺要求,提高钒渣生产效益,目前大多采用了具有良好的抗渣侵蚀和抗热剥落等性能的镁碳砖作为炉衬。现场生产发现转炉提钒时,其炉衬寿命低于普通炼钢,炉龄从大约10000次下降到约8000次。因此研究炉衬的损毁机理,对于进一步提高转炉提钒炉衬寿命、优化提钒工艺、提高经济效益有着重要意义。
     本文在转炉提钒温度条件下(1380℃),研究钒渣成分变化、旋转速度变化、镁碳砖C含量的改变、热冲击、外加电场保护对镁碳砖试样侵蚀的影响和转炉提钒渣的物理化学性能,对侵蚀后镁碳砖微观界面进行观察、SEM-EDS分析和Factsage热力学计算以及对转炉提钒渣的性能分析,取得如下成果:
     ①研究了钒渣中FeO、TiO_2、MnO、V_2O_3、MgO含量的变化对转炉提钒渣性能和对镁碳砖损毁的影响。可以发现V_2O_3、TiO_2、MgO含量的增加可以增加转炉提钒渣的熔点,FeO、MnO含量的增加则可以降低转炉提钒渣的熔点;V_2O_3、MgO含量的增加会导致熔渣粘度的升高、降低镁碳砖损毁程度,而增加渣中的FeO、MnO、TiO_2则会降低熔渣的粘度、增加镁碳砖损毁程度,相对于其它组分,其中TiO_2的影响最大。
     ②在动态条件下,研究了提钒温度、钒渣组成、以及钒渣与镁碳砖间相对速度、镁碳砖中C含量对镁碳砖的损毁速率的影响,通过单位时间、面积上的镁碳砖质量减少量来定义镁碳砖损毁速率,并拟合出相应的速率方程。
     ③通过SEM-EDS测试,结合Factsage理论计算,分析了提钒转炉中镁碳砖的C基质氧化损毁机理和MgO颗粒溶解机理。
     ④在热冲击条件下,测试分析了热冲击对镁碳砖损毁速率的影响;通过对镁碳砖进行外加电场保护,对比侵蚀前后熔渣成分的变化,探讨了外加电场提高镁碳砖的可能性。
Titanomagnetite, containing massive vanadium resource, is the mainly source of initial vanadium products. Converter vanadium recovery is a main method to produce vanadium, which is to gain the slag containing V_2O_3 by oxidize the iron liquid, produced by blast furnace, containing V in converter. Compared to ordinary slag, converter vanadium recover-slag has the character of“high oxidizability”,“high level of vanadium”,“low viscosity”,“low basicity”. To meet the requirement of converter vanadium recover and improve the production benefit, the MgO-C brick, which has the performance of excellent thermal shock resistance and slag erosion resistance, are used as the lining. However, field production find that the life of MgO-C, linning life is 8000 times, brick in converter vanadium recovery is short than the life, linning life is 10000 times, in general steel-making. Hence, researching the corrosion mechanism of MgO-C brick has great significance on improving the life of MgO-C brick, optimizing converter vanadium recovery technology, improving economic benefit.
     This paper research the effects of composition variation of converter vanadium recovery-slag, variation of rotation speed, variation of carbon content in MgO-C brick, thermal shock, cathodic protection on the corrosion of MgO-C brick at 1380℃, and the properties of converter vanadium recovery-slag; Following conclusions can be drawn by making investigation on the microstructure of worn samples, SEM-EDS analyses, thermodynamic calculation and analyses on the character of converter vanadium recovery-slag.
     ①It is can be found that the higher the V_2O_3, TiO_2, MgO are, the higher the melting point, more FeO, MnO in slag could decrease the melting point; with increasing the content of V_2O_3, MgO, the viscosity go high, and high level content of FeO、MnO、TiO_2 could decrease the viscosity by studying on the properties of converter vanadium recovery-slag. Higher contents of FeO、TiO_2、MnO in converter vanadium recover-slag could enhance the corrosion rate of MgO-C brick samples, on the contrary, higher contents of V_2O_3、MgO could decrease the corrosion rate, compared to other compositions, the effect of TiO_2 is significant.
     ②Research the effect of vanadium recovery temperature, composition of slag, the relative speed between samples and slag, the content of C in samples on the corrosion rate, at dynamic conditions. The corrosion rate were evaluated by the variation of the sampls’quality, the corrosion rate equations were geted.
     ③The wear mechanism of C and resolution mechanism of MgO grain in MgO-Cbrick were analysed by SEM-EDS investigation and the Factsage calculation.
     ④Due to the MgO grain suffer the thermal shock, which result in accelerating destruction, the corrosion rate raised, and the C also affected at thermal shock condition. Rejecting the ions which could erode the carbon by cathodic protection, it can improve the slag resistance of MgO-C brick efficiently by analysis the composition of the slag after test.
引文
[1]黄道鑫.提钒炼钢[M].北京:冶金工业出版社, 2000.
    [2]姬云波,童雄,叶国华.提钒技术的现状和进展[J].国外金属矿选矿, 2007,5:10-14.
    [3]中国冶金百科全书总编辑委员会.中国冶金百科全书·耐火材料[M].北京:冶金工业出版社, 1997.
    [4]张文杰.碳复合耐火材料[M].北京:冶金工业出版社, 1990.
    [5]汤祎峰,于萍霞.抗侵蚀镁碳砖的研制[J].国外耐火材料, 1997,10:27-30.
    [6] Tsuboi S, Hayashi S, Nonobe K.Spalling. Resistance of low carbon MgO-C bricks[J]. Taikabutsu, 1999, 51(12):638-643.
    [7]曾层峰,田守信,徐延庆.含碳耐火材料用结合剂及新技术在低碳镁碳耐火砖中的应用综述[J].中国科技论文在线, 2005.
    [8]王诚训. MgO-C质耐火材料[M].北京:冶金工业出版社, 1995.
    [9] A.S.Gokce. The effect of antioxidants on the oxidation behaviour of magnesium-carbon refractory brickcs[J]. Ceromics Intnational, 2008, 34:323-330
    [10]于景坤.耐火材料性能测定与评价[M].北京:冶金工业出版社, 2001.
    [11] W.E.Lee,S.Zhang .Melt corrosion of oxide and oxide carbon refractories[J]. International Materials Reviews. 1999, 44 (3):77-104.
    [12]张刚.镁碳砖的损毁机理及预防对策[J].鞍钢技术, 2000, 9:10-14.
    [13] A. Ikesue, H. Yamamoto, H. Shikano, K. Hiragushi, S. Kataoka, Corrosion mechanism of MgO–C refractories by manganese oxide containing slag[J]. Taikabutsu (Refractories), 1988, 40(9):535–542.
    [14] D.S. Xie, C. Garlick, T. Tran, The wear of tundish stopper refractories by inclusion slags[J]. ISIJ Int, 2005, 45 (2):175–182.
    [15] M. Guo, et al.Interaction of Al2O3-rich slag with MgO–C refractories during VOD refining—MgO and spinel layer formation at the slag/refractory interface[J]. Journal of the European Ceramic Society, 2009, 29:1053–1060.
    [16] M.-A. Van Ende, et al., Degradation of MgO–C refractories by MnO-rich stainless steel slags[J]. Ceram. Int, 2009:1016-1026
    [17]刘清才,许原,陈登福.含钛熔渣对镁炭质耐火材料的侵蚀[J].耐火材料, 2003, 37(6):316-318.
    [18]许原,潘元,刘清才等.含钛熔渣与镁碳质耐火材料的作用机理[J].重庆大学学报, 2003, 26(1):119-121.
    [19] LIU Qing-cai, et al. Corrosion Resistance of MgO-C Based Refractory to Slag Containing Titania[J] . Iron & Steel Res Int, 2004,11(1):1-4.
    [20]陈肇友.化学热力学与耐火材料[M].北京:冶金工业出版社, 2005.
    [21]杜明玺.氧化镁与石墨的氧化还原反应.国外耐火材料[J].1998.10:8-13.
    [22]董履仁.含钒钛转炉渣与碱性耐火材料的作用机理[J].钢铁钒钛.1998(1)1-9,16.
    [23] J. Liu, et al. In situ observation of the direct and indirect dissolution of MgO particles in CaO–Al2O3–SiO2-based slags[J]. Journal of the European Ceramic Society, 2007,27: 1961–1972.
    [24] QIN Xianpeng, LIYuanbing, YANG Zhenghong. Effect of Ti(C, N) on Properties of Low-carbon MgO-C Bricks. China’s refractories, 2008, (2):16-21.
    [25]高振昕.转炉MgO-Ca-C衬砖中形成“MgO致密层”辨析[J].国外耐火材料, 2000, (5): 56-60.
    [26]李晓明.镁碳砖致密MgO层形成的热力学计算[J].硅酸盐通报, 1988,(5).
    [27]于景坤,刘承军.影响镁碳耐火材料表面MgO致密层形成的因素[J].耐火材料, 2002 , 36(4) :190-193.
    [28]于景坤,刘承军.镁碳耐火材料表面MgO致密层的形成机理[J].耐火材料, 2002 , 36(3):125-127.
    [29] S. Mackwell, M. Bystricky, C. Sproni, Fe–Mg interdiffusion in (Mg,Fe)O[J], Phys. Chem. Miner, 2005, 32 (5-6):418-425.
    [30] J.T. Jones, I.B. Cutler, Interdiffusion in the system MnxO–MgO[J]. Am. Ceram. Soc, 1971,54 (7):335–338.
    [31] P. Kofstad, Nonstoichiometry, Diffusion, and Electrical Conductivity in Binary Metal Oxides[M], John Wiley, New York, 1972.
    [32] S. Zhang, H. Sarpoolaky, N.J. Marriott, W.E. Lee, Penetration and corrosion of magnesia grain by silicate slas[J], Br. Ceram. Trans. J, 2000,99 (6):248-255.
    [33] M. UMAKOSHI, K. MORI, and Y. KAWAI: Kyushu Daigaku Kogaku, 1980, 53, 191–206.
    [34] P. ZHANG and S. SEETHARAMAN[J]. Am. Ceram. Soc, 1994, (77):970-976.
    [35] H. FUKUYAMA, J. R. DONALD, and J. M. TOGURI[J]. Am. Ceram. Soc, 1997, 80:2229–2236.
    [36]黄希祜,钢铁冶金原理[M].北京:冶金工业出版社.2002.
    [37] C. Bale, P. Chartrand, S.A. Degterov, G. Eriksson, K. Hack, R. Ben Mahfoud[J]. Melancon, A.D. Pelton, S. Petersen, FactSage thermochemical software and databases, Calphad, 2002, 26(2):189–228.
    [38]敖进清,李楠,韩兵强.含钒钢渣对镁碳砖的侵蚀[J].耐火材料, 2006, 40(4):287-290.
    [39]王志强,朱伯铨,方斌祥.纳米TiC对低碳MgO-C砖抗氧化性及热导率的影响[J].耐火材料, 2008, 42(6)409-412.
    [40]华旭军,朱伯铨,李雪冬,方斌祥,范正赟. TiC-C复合粉体的制备及其对低碳镁碳砖抗氧化性能的影响[J].武汉科技大学学报, 2007, 30(2):145-148.
    [41] C.G. Aneziris, J. Hub′alkov′a, R. Barab′as. Microstructure evaluation of MgO–C refractories withTiO2- and Al-additions[J]. Journal of the European Ceramic Society: 2007, 27:73–78.
    [42]李存弼译.转炉砖中产生的热传导率对热应力的影响[J].国外耐火材料: 1999(5), 53-56.
    [43]李继光,李义尧等. Al2O3/Ni(Ti)复合材料的热震稳定性[J].中国有色金属学报, 1998, 2:145-146.
    [44]陆华译.对耐火材料热震稳定性的评价[J].国外耐火材料, 1997, 5:45-49.
    [45]关振铎,张中太,焦金生.无机材料物理性能[M].清华大学出版社, 2002,150-162.
    [46]李纯译.低碳MgO-C砖的耐热震性[J].国外耐火材料, 2001, 6:57-60.
    [47]何见林.添加镁锆砂及环保沥青对低碳镁碳砖性能影响的演剧[D].武汉科技大学博士论文, 2008.
    [48]王京京,叶方保,马成良等. B2SiAlON含量对MgO-C材料性能的影响[J].耐火材料, 2008,42(5):330-333.
    [49]刘波,刘永锋,刘开琪,孙加林.低碳MgO- C材料的抗热震性研究[J].耐火材料, 2008,44(42):123-125.
    [50]蒋久信,张国栋,李纯等.石墨对MgO- C耐火材料导电性能的影响[J].耐火材料, 2002 , 36(6):329-332
    [51]田宁信.石墨含量对MgO-C材料导电率的影响[J].耐火材料, 1994, 28(2) 96 -98.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700