用户名: 密码: 验证码:
红土镍矿硫酸熟化焙烧—水浸浸出液中回收镍钴等有价金属的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着可用于火法处理的含镍钴的硫化矿逐渐枯竭,使得适用于湿法处理的红土镍矿的研究已经受到了越来越多的关注。经过不同的湿法浸出过程,镍、钻、锰、铁、铬、铝等金属以金属盐的形式进入浸出液中,因此,采取一种经济合理的除杂流程以回收其中的镍钴等有价金属对于整个红土镍矿的处理过程具有重要的意义。
     本研究对象为对来自菲律宾的褐铁矿型红土镍矿采用硫酸熟化焙烧-水浸工艺处理得到的多金属离子溶液。分析溶液的成分表明浸出液中Fe3+、A13+含量高,且同时存在不同含量的Cr3+、Zn2+、Cu2+Ca2+、Mg2+、Mn2+等杂质离子。针对浸出液成分复杂,杂质离子多的特点,对比不同方法的优缺点,本研究采用水解沉淀分离Fe3+、A13+、Cr3+-氟化盐沉淀分离Ca2+、Mg2+-硫化沉淀分离Zn2+、Cu2+-氧化沉淀分离Mn2+的四步法分离其中的杂质离子,得到了较纯净的含Ni2+Co2+及少量金属离子杂质的溶液。
     通过单因素实验确定了各步的最佳工艺,并得到了最优的实验结果。采用水解共沉淀的方法分离Fe3+、A13+、Cr3+,在优化条件下,Fe3+、A13+、Cr3+的沉淀率分别为99.6%、99.4%、92.2%,溶液中剩余的Fe3+、A13+、Cr3+浓度分别低于0.05g/L、0.03 g/L及0.04 g/L。采用氟化盐沉淀法分离Ca2+、Mg2+,钙镁的沉淀率分别可达到88.91%和93.07%,溶液中的Ca2+、Mg2+浓度可降至0.03g/L和0.07g/L以下采用硫化沉淀法分离了其中的Zn2+、Cu2+,锌铜的沉淀率分别可达到99.5%和99.9%以上,溶液中剩余Zn2+、Cu2+的浓度分别低于0.002g/L和0.001g/L。最后通过氧化沉淀法分离了溶液中的Mn2+,沉淀率为99.9%以上,溶液中残余的Mn2+浓度低于0.004g/L。最后得到的为含Ni2+、Co2+以及少量金属离子杂质的溶液。整个流程镍钴的回收率分别可达到90%和85%以上。
     本研究针对原料特点,确定了各工艺的最优工艺条件,为工业化生产实践提供了技术方案。
With the depletion of the nickel and cobalt contained sulfide ore which is easy treated by pyrometallurgical processes, more attentions have been paid on the treating of nickel laterite by hydrometallurgical processes. After different leaching processes, the leaching solution is obtained which contains nickel, cobalt, manganese, iron, chromium, aluminum and other metals in the form of metal salts. To recover the valuable metals like nickel and cobalt, a reasonable and economical method to separate the impurities and purify the leaching solution has a great significance for the whole treating processes of nickel laterite.
     In this research, a mixed metal ions solution was treated which was obtained from Philippines nickel laterite using concentrated sulfuric acid curing-roasting-leaching processes. By analyzing the constitution of the leaching solution, results showed that there have a high content of Fe3+,Al3+and Mn2+ions in the solution while the content of Cr3+,Zn2+,Cu2+,Ca2+,Mg2+ ions and other impurities was realitivily low. For the complex composition of the solution, a four-step precipitataion mehod was taken by comparing different methods, including the remove of Fe3+, Al3+ and Cr3+ ions by hydrolysis co-precipitation, remove of Ca2+ and Mg2+ ions by fluoride precipitation, remove of Zn2+and Cu2+ ions by sulfide precipitation and the remove of Mn2+ions by oxidation precipitation. After the precipitation and separation of impurities, a pure solution which contained Ni2+ and Co2+ ions and little impurities was obtained.
     By adoption of single factor experiments, optimum technical conditions were determined while the optimumexperiment results wereobtained. Using hydrolysis precipitation mehod to remove Fe3+,Al3+and Cr3+ ions, under optimum conditions, the removal rate were 99.6%,99.4% and 92.2%,respectivelly. Remained concentration of Fe3+,Al3+ and Cr3+ ions in the solution were lower than0.05g/L,0.03 g/L and 0.04 g/L, respectively. By utilizing fluoride precipitation method to remove Ca2+ and Mg2+ ions, precipitation rate of Ca2+ and Mg2+ can reach88.91% and 93.07%, remained concentration of Ca2+ and Mg2+ ions in the solution can be recuced to 0.03g/L and 0.07g/L. Using sulfide precipitation method to remove Zn2+and Cu2+ ions,99.9% of Cu2+ and 99.5% of Zn+ can be precipitated and separated from the solution, remained concentration of Zn2+and Cu2+ ions were lower than 0.002g/L and 0.001g/L. Oxidation precipitation method was adopted to remove Mn2+ ions in the solution at last. Precipitaion rate of Mn2+ was higher than 99.9%, remained concentration of Mn2+ in the solution was lower than 0.004g/L. After the precipitation and separation processes, the solution which contained Ni2+ and Co2+ ions and trace impurities was ontained. Through the entire processes, more than 90% of nickel and 85% of cobalt can be recoverd from the solution.
     According to the characteristics of the materials, the present work determined the optimum technical conditions for each process,which will contribute a techincal scheme to the industrialized practice and production.
引文
[1]何焕华,蔡乔芳.中国镍钴冶金[M].北京:冶金工业出版社,2000,56-63
    [2]Pingwei Zhang, Toshiro Yokoyama, Osamu Itabashi, et al. Recovery of metal values from spent nickel-metal hydride rechargeable batteries [J]. Journal of power sources,1999(77):116~122.
    [3]黄其兴,王力川,朱鼎元.镍冶金学[M].北京:中国科学技术出版社,1990
    [4]陈东文.镍与社会生活[J].化学教学,2002(7):61
    [5]朱景和.世界镍红土矿开发与利用的技术分析[J].中国金属通报,2007,(35):22-25
    [6]朱训.中国矿情.第二卷[M].北京:科学出版社,1999
    [7]陶炳昆,殷先明.我国镍资源形式及开发对策[J].中国地质经济,1991,(10):13-16
    [8]张友平,周渝生,李肇毅等.红土矿资源特点和火法冶金工艺分析[J].铁合金,2007,(6):18-21
    [9]李建华,程威,肖志海.镍红土矿处理工艺综述[J].湿法冶金,2004,(4):191-194
    [10]Roorda H.J., Hermans J.M.A.. Energy Constrains in the Exfraction of Nickel from Oxides ores [J]. Erzmetal,1981,34(3):882~887
    [11]徐庆新,摘译.红土矿的过去与未来[J].中国有色冶金,2005,12(6):1-7
    [12]陈家镛,杨守志,柯家骏等.湿法冶金的研究与发展[M].北京:冶金工业出版社,1998,27-54
    [13]刘大星.从镍红土矿中回收镍、钴技术的进展[J].有色金属(冶炼部分),2003,3:6-10
    [14]王海北.蒋开喜.镍精矿加压酸浸新工艺研究[J].有色金属(冶炼部分),2004,4:2
    [15]康南京.我国镍钴冶炼应用热压浸出技术的进展[J].有色冶炼,1995,(1):1-7
    [16]刘学,温建康,阮仁满.真菌衍生有机酸浸出低品位氧化镍矿[J].稀有金属,2006,13(4):490-493
    [17]Castro I. M., Fietto J.L.R., Etal R.X.. Bioleaching of zinc and nickel from silicates using Aspergillus niger cultures [J]. Hydrometallurgy,2000,57(1):39~ 49
    [18]中南矿业学院冶金研究室.氯化冶金[M].北京:冶金工业出版社,1978,345-349
    [19]Buchanan D., Nickel A.. Counnidity Review[M]. London:Institute of Mining and Metallurgy,1982
    [20]Pickles C.A.. Microwave heating behaviour of nickeliferous limonitic laterite ores [J]. Mineral Engineering,2004,17(6):775~784
    [21]黄其兴等.镍冶金学[M].北京:科学技术出版社,1990:224-225
    [22]陈家镛等.湿法冶金的研究与发展[M].北京:冶金工业出版社,1998:27-54
    [23]Madsen I.C., Scarlett N.V.Y. and Whittington B.I.. Pressure acid leaching of nickel laterite ores[J]. Appl. Cryst,2005,38:927~933
    [24]喻正军.从镍转炉渣中回收镍钴铜的理论与技术研究[D].博士学位论文,2007.1:14-15
    [25]兰兴华.镍和钻溶剂萃取进展[J].世界有色金属,2004,(3):35-39
    [26]郭华军,李新海,彭文杰等.一种采用硫化沉淀从红土镍矿浸出液中富集镍钴的方法[P],2008,11.12
    [27]彭容秋.重金属冶金学[M],长沙:中南大学出版社,2004:271-280
    [28]李立元,陈学田.P507萃取剂在钴、镍分离系统中的应用[J].世界有色金属,1997,(10):26-28
    [29]但勇,丰驰.氯化钴溶液中树脂交换除Cu新工艺试验报告[J].四川有色金属,2002,(2):22-24
    [30]许庆仁.酸性磷型萃取剂的结构与其萃取钴(Ⅱ)和镍(Ⅰ)性能的关系[J].中国有色金属学报,1999,3,(901):139-143
    [31]王艳芝,韩树民.仲辛基苯乙酸萃取铜(Ⅱ)钴(Ⅱ)镍(Ⅱ)的机理[J].有色金属,2003,(3):16-18
    [32]李玉萍,王献科.液膜法提取氯化钴[J].中国铝业,2002,26(2):28-30
    [33]Michael J.N, Zaimawati Z.. The development of a resin-in-pulp process for the recovery of nickel and cobalt from laterite leach slurries [J]. Hydrometallurgy, 2003,72(4):407~415
    [34]烟伟.废弃锰矿焙砂浸出液的铁钴锰分离研究[J].湿法冶金,1998(3):6-9
    [35]申勇峰,曾德文,刘海霞等.高锰钴土矿的还原浸出及萃取工艺研究矿产保护与利用[J].1998,(1):29-32
    [36]柳松,古国榜.镍基高温合金废料的回收[J].无机盐工业,1997,(2):38- 39.
    [37]周斌,康思琦,罗爱平.N235萃取分离旧锅镍电池中钴和镍的研究[J].五邑大学报,2003,17(2):22-25.
    [38]吴文伟.钴镍分离研究进展[J].广西冶金,1993,(2):43-48.
    [39]朱屯.钴镍萃取分离的化学及其应用[J].有色金属(冶炼部分),1986,38(4):28-32.
    [40]Jackon E. Hydrometallurgical extraction and reclamation [M]. West Sussex:Ells Horwood Limited,1986:151~153.
    [41]岳松,废高温合金钢中钴、镍的分离和利用[J],四川环境,2000,(19)4:29-32.
    [42]李学鹏、杨斌、刘大春等;硫酸镍电解液净化除杂工艺研究[J],稀有金属,2010(2):31-34.
    [43]林才顺.从湿法硫酸镍中去除锰、铁的新工艺研究[J].湿法冶金,2002,21(3):139-142.
    [44]李天才.湿浸硫酸镍工艺中锰、铁、镍的分离[J].湿法冶金,1997,3(63):29-30.
    [45]杜清枝,杨继舜.物理化学[M].重庆:重庆大学出版社,1999.
    [44]Marcel Pourbaix, Atlas of Electrochemical Equilibriam in Aqueous Solutions[M]. NACE International Cebeleor,1974.
    [45]Giannopoulou I,Panias D. Differential Precipitation of Copper and Nickel from Acidic Polymetallic Aqueous Solutions [J]. Hydrometallurgy,2008,90(2/4) 137-146.
    [46]张文山,石朝军,梅光贵.施法冶金(包括Zn、Mn、Cu、Ni、Co等)除铁的几种主要方法[J].中国锰业,2006,24(2):40-42.
    [47]Riveros P A,Dutrizac J E.The Precipitation of Hermite from Ferric Chloride Media[J]. Hydrometallurgy,1997,46(1/2):85-104.
    [48]李金辉,李新海,周友元等.镍钻锰三元电池废料浸出液除铜铁净化[J],过程工程学报.2009,9(4):676-682.
    [49]刘春侠.处理湿法炼锌净化渣-钴镍渣的试验研究[D].硕士学位论文,2005,6:15-18.
    [50]钟竹前,梅光贵.化学位图在湿法冶金和废水中的应用[M].长沙:中南工业大学出版社,1986.
    [51]沈强华,张旭.氟化沉淀法净化硫酸锌溶液中钙镁的热力学分析[J],昆明理工大学学报,2000,25(4):25-28.
    [52]林才顺.氟化钠去除钙镁工艺的影响因素分析与控制[J].湖南冶金, 2003,31(4):36-38.
    [53]孙洵,冯素萍,张存胜.海水萃取除钙、镁的研究初探[J].山东化工,1997(2):5-7.
    [54]卫峰.元明粉生产中除钙镁方法简介[J].海湖盐与化工,1995,25(2):24-26.
    [55]Dean J.A.. Lange's Handbook of Chemistry (15th Edition)[M]. McGraw-Hill, Inc.,1998.
    [56]D,An Approach to Reduce Magnesium Sulphate From Zinc Electrolyte With Recovery of Zinc From Disposed Residue of an Effluent Treatment Plant, Hydrometallurgy,1990,24(4):407-415.
    [57]Matthew I G, et al. Metallurgical Transaction B, Volume Ⅱ B,March,1980,73~82.
    [58]龚竹青,赵红钢,黄坚等.粗硫酸镍脱除钙镁的工艺研究[J].无机盐工业,2000,32(2):16-17.
    [59]刘洪刚,朱国才.氟化锰沉淀脱除还原氧化锰矿浸出液中钙镁[J].矿冶,2007,16(4):25-28.
    [60]陈胜利,郭学益,李钧等.镍电解液中杂质铅和锌的行为及脱除方法[J]有色金属(冶炼部分).2008,(6):6-9.
    [61]Smith R M,Martell A E,Critical stability constants, Vol.4,Inorganic complexs,Plenum Press,1976.
    [62]Simons C S,Hydrogen sulphide as a hydrometallurgical reagents, in Unit processes in hydrometallurgy, Wadsworth, M E,Davis F T(Eds), Gordon&Breach,1964, p592.
    [63]滕业龙.水中硫化氢的溶解规律[J].干旱环境监测,1994(1):24-26.
    [64]Erkan Sahinkaya,Murat Gungor,Aiper Bayrakdar. et al. Separate Recovery of copper and zinc from acid mine drainage using biogenic sulfide[J].Journal of Hazardous Materials,2009(171):901-906.
    [65]Alison Emslie Lewis.Review of metal sulphide precipitation [J] Hydrometallurgy,2010(104):222-234.
    [66]Mamta Bhagat,Joanna E.Burgess,A.Paula M.Antunes et al.Precipitation of mixed metal residues from wastewater utilising biogenic sulphide [J]. Minerals Engineering,2004(17):925-932.
    [67]R.M.M.Sampaio,R.A.Timmers,Y.Xu et al.Selective precipitation of Cu from Zn in a pS controlled continuously stirred tank reactor[J], Journal of Hazardous Materials,2009(165)256-265.
    [68]X.X.Fan et al. Removal of Mn2+ from zinc sulfate solution with ammonium peroxysulphate,Nonferrous Metals (metallurgy section),23(2002),65-68.
    [69]K.C.Nathsarma and P.V.R.Bhaskara Sarma, Separation of iron and manganese from sulphate solutions obtained from Indian ocean nodules, Hydrometallurgy 17(1987),239-249.
    [70]Park, K.H., Kim, H.I., Das, R.P., Selective acid leaching of nickel and cobalt from precipitated manganese hydroxide in the presence of chlorine dioxide. Hydrometallurgy 78 (2005):1-9.
    [71]Zhang, W., Singh, P., Muir, D.,2002. Oxidative precipitation of manganese with SO2/O2 and separation from cobalt and nickel. Hydrometallurgy 63,127-135.
    [72]Ferron, C.J., Turner, D., Purification of cobalt-containing oreleaching solutions by removal of iron and manganese with oxidation by the O2-SO2 gas mixture. WO Patent (2000) No.2000056943.
    [73]洪涛.氧化沉淀法分离炼锌除钴渣中锌钻的研究[D].2003.5:35-45.
    [74]Freundilich H M F. Uber die adsorption in Losungen [J]. Z.Phys.Chem.,1906, 57:385-470.
    [75]Langmuir I.The adsorption of gases on plane surfaces of glass,mica and platinum,Journal of American Chemistry Society,1918,40(9):1361-1403.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700