用户名: 密码: 验证码:
重症肌无力胸腺Foxp3表达及临床意义的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
重症肌无力(MG)系累及神经肌肉接头乙酰胆碱受体(AchR)的自身免疫性疾病。尽管目前已经明确参与MG自身免疫反应的抗体与靶抗原,但是MG自身免疫反应的产生机制仍不清楚。多项研究表明,胸腺异常与MG关系密切,可能为自身免疫产生的主要原因。胸腺来源的CD4+CD25+调节性T淋巴细胞(Treg)对活化的效应T淋巴细胞具有显著的抑制功能,在维持自身免疫耐受中起着重要作用。Foxp3为抑制性转录调节基因,系Treg发育及功能形成所必须的重要条件。MG患者胸腺及外周血中存在CD4+CD25+Treg功能异常,但Foxp3作为Treg功能特征性标志,目前对其在MG胸腺内表达及变化的研究尚未见报道。
     本研究结合HE染色与免疫组织化学,检测Foxp3在MG患者胸腺组织中的表达与定位分布;采用Western Blot与RT-PCR技术观察Foxp3基因及蛋白产物表达的变化;并利用流式细胞技术分析Foxp3阳性细胞(Foxp3+)在胸腺细胞亚群中的分布与变化,以及功能分子CTLA-4、TGF-β、IL-10的表达;通过RT-PCR与Western Blot分别检测MG胸腺TGF-β、IFN-γ、IL-10、IL-4 mRNA以及Smad3、Smad7的表达并探讨其与Foxp3表达的关系。
     实验的主要结果:(1) MG增生胸腺、萎缩胸腺以及瘤旁胸腺的髓质区组织学改变较为相似,均表现为相对面积扩大,淋巴细胞数量增多;髓质区内淋巴滤泡形成,血管周围间隙增宽。增生胸腺及瘤旁胸腺CD25阳性细胞率显著高于对照。MG增生胸腺以及萎缩、瘤旁胸腺组织中Foxp3蛋白及mRNA水平无显著差异,但均显著低于正常胸腺而高于胸腺瘤。Foxp3蛋白与mRNA表达在不同的MGFA分型之间亦存在显著差异。(2)胸腺瘤组织以增生上皮细胞为主,间有数量不等淋巴细胞,其中CD25、Foxp3阳性细胞率,Foxp3蛋白及mRNA表达水平均显著低于对照胸腺、增生胸腺、萎缩胸腺及瘤旁胸腺。(3) Foxp3在CD4、CD8单阳性(SP)胸腺细胞以及CD4+CD8+双阳性(DP)胸腺细胞中均有表达,CD4+SP胸腺细胞中Foxp3+细胞比例非常显著高于CD8+SP、DP胸腺细胞(P<0.01)。MG胸腺Foxp3+细胞在CD4+SP中的比例显著低于正常胸腺(P<0.01),而在CD8+SP、DP中无显著改变。(4)正常胸腺CD25+细胞76%表达Foxp3,CD25-细胞0.32%表达Foxp3,差异非常显著(P<0.01)。MG胸腺中Foxp3在CD25+细胞中的表达显著低于正常(P<0.05),而CD25-细胞中Foxp3表达则非常显著高于正常(P<0.01)。(5) MG胸腺组织Foxp3+细胞表达CTLA-4显著低于正常胸腺(P<0.05),而TGF-β、IL-10的表达则无统计学差异。(6) MG胸腺组织中TGF-βmRNA表达水平、Smad3/Smad7比值均非常显著低于正常胸腺(P<0.01)。其中,增生胸腺TGF-βmRNA水平非常显著高于胸腺瘤组织(P<0.05)。(7) MG增生胸腺、萎缩胸腺、瘤旁胸腺及胸腺瘤组织中IFN-γmRNA表达存在显著性差异,增生胸腺IFN-γmRNA表达水平非常显著高于正常胸腺、萎缩胸腺、瘤旁胸腺以及胸腺瘤;萎缩胸腺、瘤旁胸腺中IFN-γmRNA水平亦显著高于胸腺瘤组织。(7) MG胸腺组织中Foxp3 mRNA表达水平与TGF-βmRNA呈正相关,与IFN-γmRNA表达呈负相关,与IL-10、IL-4 mRNA表达水平无显著相关性。。
     研究结论:①MG萎缩胸腺、瘤旁胸腺与增生胸腺具有相似的髓质区组织学改变及与之相一致的CD25+、Foxp3+细胞分布特点;且三者Foxp3蛋白、mRNA表达水平无显著差异。提示增生胸腺、萎缩胸腺、瘤旁胸腺具有相同的免疫病理学异常,这可能是MG发病的共同基础。胸腺瘤的存在是否参与MG发病及其作用尚需深入研究。②MG胸腺组织中Foxp3阳性细胞率、蛋白及mRNA表达水平均显著低于正常胸腺,且与MGFA临床分型相关;CD4+SP胸腺细胞、CD25+胸腺细胞表达Foxp3显著降低,提示Foxp3表达异常可能在MG发病中起着重要作用。③MG胸腺Foxp3+性细胞表达CTLA-4水平显著低于正常胸腺,而TGF-β、IL-10表达则无显著改变,表明CTLA-4/B7介导的细胞接触抑制途径异常,可能系MG胸腺Treg功能降低的原因之一。④MG胸腺内TGF-βmRNA水平,以及Smad3/Smad7比值显著低于正常,并与Foxp3表达显著正相关,提示TGF水平的降低可能系MG胸腺Foxp3表达下降的原因之一。而IFN-γ表达水平上调,并与Foxp3、TGF-β呈显著负相关,可能参与MG发病。
Myasthenia Gravis(MG) is a prototypical CD4+ T cell-dependent autoimmune disease mediated by anti-acetylcholine receptor(AChR) autoantibodies affecting the neuromuscular transmission.Though characterized well,the mechanism of the autoimmune reaction is still unclear.The thymus is assumed to be the initiative site for the occurring of autoimmunity.Regulatory T cells(Treg),coming from thymus and characterized by expression of CD4+CD25+,is found to play a central role in dominant immune tolerance by inhibiting the immune response of CD4+ effective T cells.In a recent study,the CD4+CD25+Treg,which function is critically dependent on the expression of Foxp3,was found been dysfunction in myasthenic thymus.
     Aim to explore the role of Foxp3 in the thymus of MG,the HE and immunohistochemistry staining(HIS) was used to detect the expression and location of Foxp3 in myasthenic thymus and thymoma tissues;Western Blot and RT-PCR were also carried out to examine the level of Foxp3 protein and mRNA.And we also checked the frequency of Foxp3+ cells in the CD4+ or CD8+ single positive(SP) and CD4+CD8+ double positive(DP) thymocytes,as well as the expression of CTLA-4,TGF-βand IL-10, which were thought to be mediators in the suppression of immune response.At last,we explored the expressions of some cytokines such as TGF-β,IFN-γ,IL-4 and IL-10,which function as inducers of Foxp3 in the myasthenic thymus.
     The results from out study were described:1.Hyperplasic thymus(HT) from MG patients is characterized by the expansion of medullar area,lymphoid follicular and per vascular space(PVS),while some similar histological changes were found in atrophic thymus(AT) and the thymus near thymoma(Tnt).The ratio of CD25+ cell in HT and Tnt was significant higher than that in normal thymus,and Foxp3+ cell ratio was much lower in HT and AT compared with normal thymus.There was no significant difference of Foxp3 protein or mRNA expression level among HT,AT and Tnt tissues,while which was much lower than that in normal thymus but higher than that in thymoma.Moreover,significant differences of the expression was also found among different MGFA classification.2. Thymoma was characterized with hyperplastic epithelial cells with variant amount of lymphocytes.The ratio of CD25 positive cell and Foxp3 positive cell,as well as the expression of Foxp3 protein and mRNA,was much lower than that in HT and normal thymus.3.The expression of Foxp3 can be found both in CD4+,CD8+ SP and CD4+CD8+ DP thymocytes,CD4+ SP thymocytes had a higher percentage of Foxp3 expression than CD8+ SP and DP thymocyte.However,the ratio of Foxp3 in CD4+ SP thymocytes was much decreased compared with normal thymus,while no change of CD8+ SP and CD4+CD8+ DP thymocyte was found.Despite CD4 and CD8,more than half of CD25+ thymocyte was Foxp3 positive,with a sharp decreased ratio in the myasthenic thymus.4.The expression of CTLA-4 in the Foxp3 positive cell was significantly decreased in myasthenic thymus compared with normal thymus,while no change was found for the expression of TGF-β,IL-10.5.The level of TGF-βmRNA was significantly lower in myasthenic thymus than normal thymus,as well as the ratio Smad3/Smad7.Moreover, the expression of TGF-βwas significantly correlated with the expression of Foxp3 positively.We also found that the level of IFN-γmRNA,which was correlated with the expression of TGF-βand Foxp3 negatively,was much higher in HT than normal thymus or AT,Tnt and thymoma.Moreover,no significant changes was found of the expression of IL-10 and IL-4 mRNA.
     The conclusions of our study can be drawn as follows:ⅰ.There were similar pathologic changes at the medullar area of HT,AT and Tnt thymus,and the same location can also be found for Foxp3,CD25 positive cells.Moreover,there were no significant changes for the level of Foxp3 protein and mRNA among the three type of myasthenic thymus,while the expressions were much higher than that of thymoma.These kinds of changes indicated that there were some common basis for HT,AT and Tnt myasthenic thymus in the mechanisms of MG autoimmunity,which might be different from thymoma, the thymus tissue itself of MG patients combined with thymoma maybe play a similar role as HT in the autoimmune disease,ⅱ.The percentage of Foxp3 positive cells in CD4+ SP thymocytes or CD25+ thymocytes,as well as the expression of Foxp3 protein and mRNA of myasthenic thymus were significant decreased than that of normal thymus,and were significantly correlated with the MGFA clinical classification,which meant an important role of Foxp3 for the autoimmunity,ⅲ.Compared with normal thymus,the expression of CTLA-4 of Foxp3 positive cells in myasthenic hyperplasia thymus was significant decreased,which suggested that abnormal intercellular contact mediated by CTLA-4/B7 might account for the autoimmunity,ⅳ.The significant lower expression of TGF-βmRNA,as well as the ratio of Smad3/Smad7,was relevant to the expression of Foxp3.It suggested that the down-regulation of TGF might be account for the decreasing of Foxp3 expression in myasthenic thymus.In our study,an up-regulated IFN-γmRNA in myasthenic thymus suggested a important role for the occurrence of the disease.
引文
1. Vincent A, Palace J, Hilton-Jones D. Myasthenia gravis. Lancet. 2001, 357: 2122-2128.
    2. Gronseth GS, Barohn RJ. Parameter thymectomy for autoimmune myasthenia gravis (an evidence-based review): report of the Quality Standards Subcommittee of the American Academy of Neurology. Neurology. 2000,55:7-15.
    3. Manlulu A, Lee TW, Wan I, et al. Video-assisted thoracic surgery thymectomy for nonthymomatous myasthenia gravis. Chest. 2005, 128(5): 3454-3460.
    4. Berrih-Aknin S, Morel E, Gaud C, et al. Anti-AChR antibodies, thymic histology, and T cell subsets in myasthenia gravis. Neurology. 1984, 34: 66-71.
    5. Leprince C, Cohen-Kaminsky S, Berrih-Aknin S, et al. Thymic B cells from myasthenia gravis patients are activated B cells. Phenotypic and functional analysis. J Immunol. 1990,145:2115-2122.
    6. Melms A, Schalke BCG, Kirchner Th, et al. Thymus in myasthenia gravis. Isolation of T-lymphocyte lines specific for the nicotinic acetylcholine receptor from thymuses of myasthenic patients. J. Clin. Invest. 1988, 81: 902-908.
    7. Scadding GK, Vincent A, Newsom-Davis J et al. Acetylcholine receptor antibody synthesis by thymic lymphocytes: correlation with thymic histology. Neurology. 1981, 31:935-43.
    8. Schonbeck S, Padberg F, Hohlfeld R, et al. Transplantation of thymic autoimmune microenvironment to severe combined immunodeficiency mice. J. Clin. Invest. 1992, 90: 245-250.
    9. Meinl E, Klinkert WE, Wekerle H. The thymus in myasthenia gravis. Changes typical for the human disease are absent in experimental autoimmune myasthenia gravis of the Lewis rat. Am J Pathol. 1991, 139(5): 995-1008.
    10. Surh CD, Sprent J. T-cell apoptosis detected in situ during positive and negative selection in the thymus. Nature. 1994,372:100-103.
    11. Seddon B, Mason D. The third function of the thymus. Immunol Today. 2000,21: 95-99.
    12. Nishizuka Y, Sakakura T. Thymus and reproduction: sex-linked dysgenesia of the gonad after neonatal thymectomy in mice. Science. 1969, 166: 753-755.
    13. Sakaguchi S, Sakaguchi N, Asano M, et al. Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. J Immunol. 1995, 155(3): 1151-1164.
    14. Derbinski J, Schulte A, Kyewski B, et al. Promiscuous gene expression in medullary thymic epithelial cells mirrors the peripheral self. Nat Immunol. 2001, 2(11): 1032-1039.
    15. Bluestone JA, Tang Q. How do CD4+CD25+ regulatory T cells control autoimmunity?. Curr Opin Immunol. 2005, 17(6): 638-642.
    16. Lan RY, Ansari AA, Lian ZX, et al. Regulatory T cells: development, function and role in autoimmunity. Autoimmun Rev. 2005, 4(6): 351-363.
    17. Stephens LA, Mottet C, Mason D, et al. Human CD4+CD25+ thymocytes and peripheral T cells have immune suppressive activity in vitro. Eur J Immunol. 2001, 31: 1247-54.
    18. Annunziato F, Cosmi L, Liotta F, et al. Phenotype, Localization, and Mechanism of Suppression of CD4+CD25+ Human Thymocytes J Exp Med. 2002, 196(3): 379-387
    19. Dieckmann D, Plottner H, Berchtold S, et al. Ex vivo isolation and characterization of CD4+CD25+ T cells with regulatory properties from human blood. J Exp Med. 2001, 193: 1303-10.
    20. Kukreja A, Cost G, Marker J, et al. Multiple immuno-regulatory defects in type-1 diabetes. J Clin Invest. 2002,109:131-40
    21. Viglietta V, Baecher-Allan C, Weiner HL, et al. Loss of functional suppression by CD4+CD25+ regulatory T cells in patients with multiple sclerosis. J Exp Med. 2004, 199:971-979.
    22. Boyer O, Saadoun D, Abriol J, et al. CD4+CD25+ regulatory T cells deficiency in patients with hepatitis C-mixed cryoglobulinemia vasculitis. Blood. 2004, 103(3): 3428-30.
    23. Sakaguchi S, Ono M, Setoguchi R, et al. Foxp3+CD25+CD4+ natural regulatory T cells in dominant self-tolerance and autioimmune disease Immunol Rev. 2006, 212: 8-17
    24. Fontenot JD, Gavin MA, Rudensky AY. Foxp3 programs the development and function of CD4+CD25+ regulatory T cells. Nat Immunol, 2003, 4(4):330-336
    25. Walker MR, Kasprowicz DJ, Gersuk VH, et al. Induction of FoxP3 and acquisition of T regulatory activity by stimulated human CD4+CD25- T cells. J Clin Invest. 2003, 112(9): 1437-1443.
    26. Denning TL, Qi H, Konig R, et al. CD4+ Th cells resembling regulatory T cells that inhibit chronic colitis differentiate in the absence of interactions between CD4 and class II MHC. J Immunol. 2003, 171(5): 2279-2286.
    27. Cosmi L, Liotta F, Lazzeri E, et al. Human CD8+CD25+ thymocytes share phenotypic and functional features with CD4+CD25+ regulatory thymocytes. Blood, 2003, 102(12): 4107-4114.
    28. Xystrakis E, Dejean AS, Bernard I, et al. Identification of a novel natural regulatory CD8 T-cell subset and analysis of its mechanism of regulation. Blood. 2004, 104(10): 3294-3301.
    29. Khattri R, Cox T, Yasayko SA, et al. An essential role for Scurfin in CD4+CD25+ T regulatory cells. Nat Immunol, 2003, 4(4): 337-342.
    30. Zheng SG, Wang JH, Gray JD, et al. Natural and induced CD4+CD25+ cells educate CD4+CD25- cells to develop suppressive activity: the role of IL-2, TGF-beta, and IL-10. J Immunol. 2004, 172(9): 5213-5221.
    31. Ochs HD, Ziegler SF, Torgerson TR. FOXP3 acts as a rheostat of the immune response. Immunol Rev, 2005, 203: 156-164.
    32. Cao D, Borjesson O, Larsson P, et al. FOXP3 identifies regulatory CD25bright CD4+ T cells in rheumatic joints. Scand J Immunol. 2006, 63(6): 444-452.
    33. Venken K, Hellings N, Hensen K, et al. Secondary progressive in contrast to relapsing-remitting multiple sclerosis patients show a normal CD4+CD25+ regulatory T-cell function and FOXP3 expression. J Neurosci Res. 2006, 83(8): 1432-1446.
    34. Sun Y, Qiao J, Lu CZ, et al. Increase of circulating CD4+CD25+ T cells in myasthenia gravis patients with stability and thymectomy. Clin Immunol. 2004, 112(3): 284-9.
    35. Balandina A, Lecart S, Dartevelle P, et al. Functional defect of regulatory CD4+CD25+ T cells in the thymus of patients with autoimmune myasthenia gravis. Blood. 2006, 105(2): 735-741
    36.Vincent A.Unravelling the pathogenesis of myasthenia gravis.Nat Rev Immunol.2002,2(10):797-804
    37.Gronseth GS,Barohn RJ.Thymectomy for Myasthenia Gravis.Curr Treat Options Neurol.2002,4(3):203-209
    38.Levinson AI,Zheng Y,Gaulton G,et al.Intrathymic expression of neuromuscular acetylcholine receptors and the immunpathogenesis of myasthenia gravis.Immunol Res.2003,27(2-3):399-408.
    39.Conti-Fine BM,Milani M,Kaminski HJ.Myasthenia gravis:past,present,and future.J Clin Invest.2006,16(11):2843-2854
    40.Sakaguchi S.Regulatory T cells:key controllers of immunologic self-tolerance.Cell.2001,101:455-458.
    41.章军建.重症肌无力.神经病学.张晓琴,章军建.主编.武汉:武汉大学出版社.2001.263.
    42.Alfred J Ⅲ,Richard JB,Raina ME,et al.Myasthenia Gravis:recommendations for clinical research standards.Ann Thorac Surg.2000,70:327-334.
    43.Wekerle H.The thymus in myasthenia gravis.Ann N Y Acad Sci.1993,681:47-55.
    44.Norris EH.The thymoma and thymic hyperplasia in myasthenia gravis with observations on the general pathology.Am J Pathol.1936,27:421-433.
    45.Roncador G,Brown PJ,Maestre L,et al.Analysis of FOXP3 protein expression in human CD4+CD25+ regulatory T cells at the single-cell level.Eur J Immunol.2005,35(6):1681-1691.
    46.Suto Y,Araga S,Sakuma K,et al.Myasthenia gravis with thymus hyperplasia and pure red cell aplasia.J Neurol Sci.2004,224(1-2):93-956.
    47.Kuks JB,Oosterhuis HJ,Limburg PC,et al.Anti-acetylcholine receptor antibodies decrease after thymectomy in patients with myasthenia gravis.Clinical correlations.J Autoimmun.1991,4:197-211.
    48.Sempowski G,Thomasch J,Gooding M,et al.Effect of thymectomy on human peripheral blood T cell pools in myasthenia gravis.J Immunol.2001,166(4):2808-2817.
    49.Itoh M,Takahashi T,Sakaguchi N,et al.Thymus and autoimmunity:Production of CD25+CD4+ naturally anergic and suppressive T cells as a key function of the thymus in maintaining immunologic self-tolerance. J Immunol. 1999, 162:5317-5326.
    50. Liotta F, Cosmi L, Romagnani P, et al. Functional features of human CD25+ regulatory thymocytes. Microbes Infect. 2005,7(7-8): 1017-1022
    51. Shevach EM. CD4+ CD25+ suppressor T cells: more questions than answers. Nat Rev Immunol. 2002, 2(6): 389-400.
    52. Shevach EM. Regulatory T cells in autoimmunity. Annu Rev Immunol. 2000, 18: 423-449
    53. Cupedo T, Nagasawa M, Weijer K, et al. Development and activation of regulatory T cells in the human fetus. Eur J Immunol. 2005, 35: 383-390
    54. Watanabe N, Wang Y, Lee HK, et al. Hassall's corpuscles instruct dendritic cells to induce CD4+CD25+ regulatory T cells in human thymus. Nature. 2005, 436: 1181-1185
    55. Fu YX, Chaplin DD. Development and maturation of secondary lymphoid tissue. Annu Rev Immunol. 1999, 17: 399-433
    56. Shevach, E.M. Regulatory/suppressor T cells in health and disease. Arthritis Rheum. 2004, 50: 2721-2724
    57. Baecher-Allan C, Brown C, Freeman GJ, et al. CD4+CD25high regulatory cells in human peripheral blood. J. Immunol. 2001,167:1245-1253
    58. Sakaguchi S. Naturally arising Foxp3-expression CD25+CD4+ regulatory T cells in immunological tolerance to self and non-self. Nat Immunol. 2005, 6(4):345-352
    59. ZieglerSF. FOXP3: of mice and men. Annu Rev Immunol. 2006,24:209-226
    60. Alvarado-Sanchez B, Hernandez-Castro B, Portales-Perez D, et al. Regulatory T cells in patients with systemic lupus erythematosus. J Autoimmun. 2006, 27(2): 110-118.
    61. Luther C, Poeschel S, Varga M, et al. Decreased frequency of intrathymic regulatory T cells in patients with myasthenia-associated thymoma. J Neuroimmuno. 2005, 164: 124-128.
    62. Piccirillo CA, Thornton AM. Cornerstone of peripherial tolerance: naturally occuring CD4+CD25+ regulatory T cells. Trends Immunol. 2004, 25(7): 374-380
    63. Chatenoud L, Bach JF. Adaptive human regulatory T cells_ myth or reality. J Clin Invest. 2006, 116(9): 2325-2327
    64. Fehervari Z, Sakaguchi S. Control of Foxp3+ CD25+CD4+ regulatory cell activation and function by dendritic cells.Int Immunol.2004,16(12):1769-1780.
    65.Keesey JC.Clinical evaluation and management of myasthenia gravis.Muscle Nerve.2004,29:484-505
    66.Fehervari Z,Sakaguchi S.CD4+ Tregs and immune control.J Clin Invest.2004,114(9):1209-1217
    67.胡大伟,陈顺乐,沈南,等.三色法流式细胞术检测胞内细胞因子的建立.上海免疫学杂志.1999,19(5):280-283
    68.Asano M,Toda M,Sakaguchi N,et al.Autoimmune disease as a consequence of developmental abnormality of a T cell subpopulation J Exp Med.1996,184(2):387-396
    69.Blair PJ,Bultman SJ,Haas JC,et al.CD4+CD8-T cells are the effector cells in disease pathogenesis in the scurfy(sf) mouse.J Immunol.1994,153(8):2764-2774.
    70.Brunkow ME,Jeffery EW,Hjerrild KA,et al.Disruption of a new forkhead/winged-helix protein,scurfin,results in the fatal lymphoproliferative disorder of the scurfy mouse.Nat Genet.2001,27(1):68-73.
    71.Bacchetta R,Passerini L,Gambineri E,et al.Defective regulatory and effector T cell functions in patients with FOXP3 mutations.J Clin Invest.2006,116(6):1713-1722.
    72.Huan J,Culbertson N,Spencer L,et al.Decreased FOXP3 levels in multiple sclerosis patients.J Neurosci Res.2005,81(1):45-52.
    73.Waldmann TA.The interleukin-2 receptor.J Biol Chem.1991,266(5):2681-2684.
    74.Bout-Jordan H,Salomon BL,Thompson HL,et al.Costimulation contrals diabets by altering the balance of pathogenic and regulatory T cells.J Clin Invest,2004,114:979-987.
    75.Oderup C,Cederbom L,Makowska A,et al.Cytotoxic T lymphocyte antigen-4-dependent down-modulation of costimulatory molecules on dendritic cells in CD4+ CD25+ regulatory T-cell-mediated suppression.Immunology.2006,118(2):240-249.
    76.Kasprowicz DJ,Droin N,Soper DM,et al.Dynamic regulation of FoxP3 expression controls the balance between CD4+ T cell activation and cell death.Eur J Immunol.2005,35:3424-3432.
    77.Belghith M,Bluestone JA,Barriot S,et al.TGF-beta-dependent mechanisms mediate restoration of self-tolerance induced by antibodies to CD3 in overt autoimmune diabetes. Nat Med 2003, 9: 1202-1208
    78. Nakamura K, Kitani A, Strober W. Cell contact-dependent immunosuppression by CD4+CD25+ regulatory T cells is mediated by cell surface-bound transforming growth factor-h. J Exp Med 2001, 194: 629-644.
    79. Chen ML, Pittet MJ, Gorelik L, et al. Regulatory T cells suppress tumor-specific CD8 T cell cytotoxicity through TGF-beta signals in vivo. Proc Natl Acad Sci U S A 2005, 102: 419-424.
    80. Huber S, Schramm C, Lehr HA, et al. TGF-beta signaling is required for the in vivo expansion and immunosuppressive capacity of regulatory CD4+ CD25+ T cells. J Immunol. 2004, 173: 6526-6531.
    81. Aruna BV, Sela M, Mozes E. Suppression of myasthenogenic responses of a T cell line by a dual altered peptide ligand by induction of CD4+CD25+ regulatory cells. Proc Natl Acad Sci U S A. 2005, 102(29): 10285-10290.
    82. Buer J, Lanoue A, Franzke A, et al. Interleukin 10 secretion and impired effector function of major histocompatibility complex class II -restricted T cells anergized in vivo. J Exp Med. 1998, 187(2): 177-183.
    83. Klein L, Khazaie K, von Boehmer H. In vivo dynamics of antigen-specific regulatory T cells not predicted from behavior in vitro. Proc Natl Acad Sci U S A. 2003, 100(15): 8886-8891.
    84. Asseman C, Mauze S, Leach MW, et al. An Essential Role for Interleukin 10 in the Function of Regulatory T Cells. J Exp Med. 1999; 190(7): 995-1004.
    85. Suri-Payer E, Cantor H. Differential cytokine requirements for regulation of autoimmune gastritis and colitis by CD4(+)CD25(+) T cells. J Autoimmun. 2001 Mar;16(2):115-23.
    86. Fantini MC, Becker C, Monteleone G, et al. Cutting edge: TGF-beta induces a regulatory phenotype in CD4+CD25- T cells through Foxp3 induction and down-regulation of Smad7. J Immunol. 2004, 172(9): 5149-5153.
    87. Rentzos M, Cambouri C, Rombos A, et al. IL-15 is elevated in serum and cerebrospinal fluid of patients with multiple sclerosis. J Neurol Sci. 2006, 241(1-2): 25-29
    88. Fragoso-Loyo H, Richaud-Patin Y, Orozco-Narvaez A, et al. Interleukin-6 and chemokines in the neuropsychiatric manifestations of systemic lupus erythematosus. Arthritis Rheum. 2007, 56(4): 1242-1250.
    89. Boraschi D, Dinarello CA. IL-18 in autoimmunity: review. Eur Cytokine Netw. 2006, 17(4): 224-252.
    90. Meraouna A, Cizeron-Clairac G, Panse RL, et al. The chemokine CXCL13 is a key molecule in autoimmune myasthenia gravis Blood. 2006, 108(2): 432-440
    91. Poea-Guyon S, Christadoss R, Le-Panse R, et al. Effects of Cytokines on Acetylcholine Receptor Expression: Implications for Myasthenia Gravis. J Immunol. 2005, 174(10): 5941-5949
    92. Feferman T, Maiti PK, Berrih-Aknin S, et al. Overexpression of IFN-Induced Protein 10 and Its Receptor CXCR3 in Myasthenia Gravis. J Immunol. 2005, 174(9): 5324-5331
    93. Fantini MC, Becker C, Tubbe I, et al. Transforming growth factor beta induced FoxP3+ regulatory T cells suppress Th1 mediated experimental colitis. Gut. 2006, 55(5): 671-680
    94. Jin Y, Fuller L, Esquenazi V, et al. Induction of auto-reactive regulatory T cells by stimulation with immature autologous dendritic cells. Immunol Invest. 2007, 36(2): 213-232.
    95. Nakamura K, Kitani A, Fuss I, et al. TGF-beta 1 plays an important role in the mechanism of CD4+CD25+ regulatory T cell activity in both humans and mice. J-Immunol. 2004, 172(2): 834-42.
    96. Aruna BV, Sela M, Mozes E. Down-regulation of T cell responses to AChR and reversal of EAMG manifestations in mice by a dual altered peptide ligand via induction of CD4+ CD25+ regulatory cells. J Neuroimmunol. 2006, 177(1-2): 63-75.
    97. Licona P, Chimal-Monroy J, Soldevila G. Inhibins are the major activin ligands expressed during early thymocyte development. Dev Dyn. 2006,235(4): 1124-1132.
    98. McKarns SC, Schwartz RH, Kaminski NE. Smad3 is essential for TGF-beta 1 to suppress IL-2 production and TCR-induced proliferation, but not IL-2-induced proliferation. J Immunol. 2004, 172(7): 4275-84.
    99. Letterio JJ. TGF-beta signaling in T cells: roles in lymphoid and epithelial neoplasia. Oncogene. 2005, 24(37): 5701-5712.
    100. Kim HP, Kim BG, Letterio J, et al. Smad-dependent cooperative regulation of interleukin 2 receptor alpha chain gene expression by T cell receptor and transforming growth factor-beta. J Biol Chem. 2005, 280(40): 34042-34047.
    101. Horwitz MS, Evans CF, McGavern DB, et al. Primary demyelination in transgenic mice expressing interferongamma. Nat Med. 1997,3:1037-1041.
    102. Olsson, T. Critical influences of the cytokine orchestration on the outcome of myelin antigenspecific T-cell autoimmunity in experimental autoimmune encephalomyelitis and multiple sclerosis. Immunol. Rev. 1995, 144: 245-268.
    103. Wang Z, Hong J, Sun W, et al. Role of IFN-γ in induction of Foxp3 and conversion of CD4+CD25- T cells to CD4+ Tregs. J Clin Invest. 2006, 116(9): 2434-2441
    104. Khattri R, Kasprowicz DJ, Cox T, et al, The amount of scurfin protein determines peripheral T cell number and responsiveness. J Immunol. 2001, 167: 6312-6320.
    105. Kasprowicz DJ, Smallwood PS, Tyznik AJ, et al. Scurfin (FoxP3) controls T-dependent immune responses in vivo through regulation of CD4+ T cell effector function. J Immunol. 2003, 171(3): 1216-1223.
    1 Godfrey VL, Wilkinson JE, Russell LB. X-linked lymphoreticular disease in the scurfy(sf) mutant mouse. Am J Pathol. 1991, 138(6): 1379-1387
    2 Blair PJ, Bultman SJ, Haas JC, et al. CD4+CD8- T cells are the effector cells in disease pathogenesis in the scurfy(sf) mouse. J Immunol. 1994, 153(8): 3764-3774
    3 Tivol EA, Borriello F, Schweitzer AN, et al. Loss of CTLA-4 leads to massive lymphoproliferation and fatal multiorgan tissue destruction, revealing a critical negative regulatory role of CTLA-4. Immunity. 1995, 3: 541-547.
    4 Brunkow ME, Jeffery EW, Hjerrild KA, et al. Disruption of a new forkhead/winged-helix protein, scurfin, results in the fatal lymphoproliferative disorder of the scurfy mouse. Nat Genet. 2001, 27(1): 68-73
    5 Wildin RS, Smyk-Pearson SK, Filipovich AH. Clinical and molecular features of the immuno-dysregulation, polyendocrinopathy, enteropathy, X linked (IPEX) syndrome. J Med Genet. 2002, 39(8): 537-545.
    6 Schubert LA, Jeffery E, Zhang Y, et al. Scurfin (FOXP3) acts as a repressor of transcription and regulates T cell activation. J Biol Chem. 2001, 276(40): 37672-37679.
    7 Kaestner K, Knochel W, Martinez D. Unified nomenclature for the winged-helix/forkhead transcription factors. Genes Dev. 2000,14: 142-146
    8 Carson BD, Lopes JE, Soper DM, et al. Insights into transcriptional regulation by FOXP3. Front Biosci. 2006, 11. 1607-1619.
    9 ZieglerSF. FOXP3: of mice and men. Annu Rev Immunol. 2006,24:209-226.
    10 Yagi H, Nomura T, Nakamura K, et al. Crucial role of FOXP3 in the development and function of human CD25+CD4+ regulatory T cells. Int Immunol. 2004, 16: 1643-1656
    11 Fontenot JD, Gavin MA, Rudensky AY. Foxp3 programs the development and function of CD4+CD25+ regulatory T cells. Nat Immunol. 2003, 4(4): 330-336
    12 Walker MR, Kasprowicz DJ, Gersuk VH, et al. Induction of FoxP3 and acquisition of T regulatory activity by stimulated human CD4+CD25- T cells. J Clin Invest. 2003, 112(9): 1437-1443.
    13 Fantini MC, Becker C, Monteleone G, et al. Cutting edge: TGF-beta induces a regulatory phenotype in CD4+CD25- T cells through Foxp3 induction and down-regulation of Smad7. J Immunol. 2004, 172(9): 5149-5153.
    14 Denning TL, Qi H, Konig R, et al. CD4+ Th cells resembling regulatory T cells that inhibit chronic colitis differentiate in the absence of interactions between CD4 and class II MHC. J Immunol. 2003,171(5): 2279-2286.
    15 Cosmi L, Liotta F, Lazzeri E, et al. Human CD8+CD25+ thymocytes share phenotypic and functional features with CD4+CD25+ regulatory thymocytes. Blood. 2003, 102(12): 4107-4114
    16 Xystrakis E, Dejean AS, Bernard I, et al. Identification of a novel natural regulatory CD8 T-cell subset and analysis of its mechanism of regulation. Blood. 2004, 104(10): 3294-3301.
    17 Zheng Y, Rudensky AY. Foxp3 in control of the regulatory T cell lineage. Nat Immunol. 2007, 8(5): 457-462.
    18 Khattri R, Cox T, Yasayko SA, et al. An essential role for Scurfin in CD4+CD25+ T regulatory cells. Nat Immunol. 2003, 4(4): 337-342
    19 Nordstrom I, Nurkkala M, Collins LV, et al. CD8+ T-cells suppress antigen-specific and allogeneic CD4+ T-cell responses to herpes simplex virus type 2-infected human dendritic cells. Viral Immunol. 2005,18(4): 616-626.
    20 Bienvenu B, Martin B, Auffray C, et al. Peripheral CD8+CD25+ T lymphocytes from MHC class II-deficient mice exhibit regulatory activity. J Immunol. 2005, 175(1): 246-253.
    21 Zheng SG, Wang JH, Gray JD, et al. Natural and induced CD4+CD25+ cells educate CD4+CD25- cells to develop suppressive activity: the role of IL-2, TGF-beta, and IL-10. J Immunol. 2004, 172(9): 5213-5221.
    22 Chen W, Jin W, Hardegen N, et al. Conversion of peripheral CD4+CD25- naive T cells to CD4+CD25+ regulatory T cells by TGF-beta induction of transcription factor Foxp3. J Exp Med. 2003, 198(12): 1875-1886.
    23 Kasprowicz DJ, Smallwood PS, Tyznik AJ, et al. Scurfin (FoxP3) controls T-dependent immune responses in vivo through regulation of CD4+ T cell effector function. J Immunol. 2003, 171(3): 1216-1223.
    24 Bettelli E, Dastrange M, Oukka M. Foxp3 interacts with nuclear factor of activated T cells and NF-kappa B to repress cytokine gene expression and effector functions of T helper cells. Proc Natl Acad Sci U S A. 2005, 102(14): 5138-5143.
    25 Bacchetta R, Passerini L, Gambineri E, et al. Defective regulatory and effector T cell functions in patients with FOXP3 mutations. J Clin Invest. 2006, 116(6): 1713-1722.
    26 Sakaguchi S, Sakaguchi N, Asano M, et al. Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. J Immunol. 1995, 155: 1151-1164.
    27 Wu Y, Borde M, Heissmeyer V, et al. FOXP3 controls regulatory T cell function through cooperation with NFAT. Cell. 2006, 126(2): 375-387
    28 Heissmeyer V, Macian F, Im SH, et al. Calcineurin imposes T cell unresponsiveness through targeted proteolysis of signaling proteins. Nat Immunol. 2004, 5: 255-265
    29 Marson A, Kretschmer K, Frampton GM, et al. Foxp3 occupancy and regulation of key target genes during T-cell stimulation. Nature. 2007, 445(7130): 931-935.
    30 Rudensky AY, Gavin M, Zheng Y FOXP3 and NFAT: Partners in Tolerance. Cell. 2006, 126(2): 253-256.
    31 Grant C, Oh U, Fugo K, et al. Foxp3 represses retroviral transcription by targeting both NF-kappaB and CREB pathways. PLoS Pathog. 2006, 2(4): e33.
    32 Choi BM, Pae HO, Jeong YR, et al. Critical role of heme oxygenase-1 in Foxp3-mediated immune suppression. Biochem Biophys Res Commun. 2005, 327(4): 1066-1071.
    33 Kasprowicz DJ, Droin N, Soper DM, et al. Dynamic regulation of FoxP3 expression controls the balance between CD4(+) T cell activation and cell death. Eur J Immunol. 2005, 35(12): 3424-3432
    34 Jordan MS, Boesteanu A, Naji A, et al. Thymic selection of CD4+CD25+ regulatory T cells induced by an agonist self-peptide. Nat Immunol, 2001, 2(4): 301-306
    35 Apostolou I, Sarukhan A, Klein L, et al. Origin of regulatory T cells with known specificity for antigen. Nat Immunol. 2002, 3(8): 756-763.
    36 Fontenot JD, Rasmussen JP, Williams LM, et al. Regulatory T cell lineage specification by the forkhead transcription factor foxp3. Immunity. 2005, 22(3): 329-341.
    37 Koonpaew S, Shen S, Flowers L, et al. LAT-mediated signaling in CD4+CD25+ regulatory T cell development. J Exp Med. 2006,203(1): 119-129
    38 Fontenot JD, Rasmussen JP, Gavin MA, et al. A function for interleukin 2 in Foxp3-expressing regulatory T cells. Nat Immunol. 2005, 6(11): 1142-1151.
    39 Zorn E, Nelson EA, Mohseni M, et al. IL-2 regulates FOXP3 expression in human CD4+CD25+ regulatory T cells through a STAT-dependent mechanism and induces the expansion of these cells in vivo. Blood. 2006, 108(5): 1571-1579
    40 Peng Y, Laouar Y, Li MO, et al. TGF-β regulates in vivo expansion of Foxp3-expressing CD4+CD25+ regulatory T cells responsible for protection against diabetes. Proc Natl Acad Sci USA. 2004, 101(13): 4572-4577
    41 Cobbold SP, Castejon R, Adams E, et al. Induction of Foxp3+ regulatory T cells in the periphery of T cell receptor transgenic mice tolerized to transplants. J Immunol. 2004, 172(10): 6003-6010
    42 Piccirllo CA, Letterio JJ, Mizuhara H, et al. CD4+CD25+ regulatory T cells can mediate suppressor function in the absence of transforming growth factor beta 1 production and responsiveness. J Exp Med. 2002, 196(2): 237-246
    43 Marie JC, Letterio JJ, Gavin M, et al. TGF-betal maintains suppressor function and Foxp3 expression in CD4+CD25+ regulatory T cells. J Exp Med. 2005, 201(7): 1061-1067.
    44 Zheng SG, Wang J, Wang P, et al. IL-2 is essential for TGF-beta to convert naive CD4+CD25- cells to CD25+Foxp3+ regulatory T cells and for expansion of these cells. J Immunol. 2007,178(4): 2018-2027.
    45 Tai X, Cowan M, Feigenbaum L, et al. CD28 costimulation of developing thymocytes induces Foxp3 expression and regulatory T cell differentiation independently of interleukin 2. Natlmmunol. 2005, 6(2): 152-162
    46 Zheng SG, Wang JH, Stohl W, et al. TGF-beta requires CTLA-4 early after T cell activation to induce FoxP3 and generate adaptive CD4+CD25+ regulatory cells. J Immunol. 2006, 176(6): 3321-3329.
    47 Wang Z, Hong J, Sun W, et al. Role of IFN-γ in induction of Foxp3 and conversion of CD4+CD25- T cells to CD4+ Tregs. J Clin Invest. 2006,116(9): 2434-2441
    48 Kohm AP, Williams JS, Miller SD, et al. Cutting Edge: Ligation of the glucocorticoid-induced TNF receptor enhance autoreactive CD4+ T cell activation and experimental autoimmune encephalomyelitis. J Immunol. 2004,172(8): 4686-4690
    49 Kanamaru F, Youngnak P, Hashiguchi M, et al. Costimulation via glucocorticoid-induced TNF receptor in both conventional and CD25+ regulatory CD4+ T cells. J Immunol. 2004, 172(12): 7306-7314
    50 Wildin RS, Freitas A. IPEX and FOXP3: Clinical and research perspectives. J Autoimmun. 2005, 25: 56-62
    51 Ochs HD, Ziegler SF, Torgerson TR. FOXP3 acts as a rheostat of the immune response. Immunol Rev, 2005,203:156-164.
    52 Bennett CL, Brunkow ME, Ramsdell F, et al. A rare polyadenylation signal mutation of the FOXP3 gene (AAUAAA-->AAUGAA) leads to the IPEX syndrome. Immunogenetics. 2001, 53(6): 435-439.
    53 De Benedetti F, Insalaco A, Diamanti A, et al. Mechanistic associations of a mild phenotype of immunodysregulation, polyendocrinopathy, enteropathy, x-linked syndrome. Clin Gastroenterol Hepatol. 2006,4(5): 653-9
    54 Haas J, Hug A, Viehover A, et al. Reduced suppressive effect of CD4+CD25high regulatory T cells on the T cell immune response against myelin oligodendrocyte glycoprotein in patients with multiple sclerosis. Eur J Immunol. 2005, 35(11): 3343-52.
    55 Huan J, Culbertson N, Spencer L, et al. Decreased FOXP3 levels in multiple sclerosis patients. J Neurosci Res. 2005, 81(1): 45-52.
    56 Venken K, Hellings N, Hensen K, et al. Secondary progressive in contrast to relapsing-remitting multiple sclerosis patients show a normal CD4+CD25+ regulatory T-cell function and FOXP3 expression. J Neurosci Res. 2006, 83(8): 1432-1446.
    57 Bassuny WM, Ihara K, Sasaki Y, et al. A functional polymorphism in the promoter/enhancer region of the FOXP3/Scurfin gene associated with type 1 diabetes. Immunogenetics. 2003,55(3): 149-156.
    58 Zavattari P, Deidda E, Pitzalis M, et al. No association between variation of the FOXP3 gene and common type 1 diabetes in the Sardinian population. Diabetes. 2004,53(7): 1911-1914.
    59 Herman AE, Freeman GJ, Mathis D, et al. CD4+CD25+ T regulatory cells dependent on ICOS promote regulation of effector cells in the prediabetic lesion. J Exp Med. 2004, 199(11): 1479-1489.
    60 Jaeckel E, von Boehmer H, Manns MP. Antigen-specific FoxP3-transduced T-cells can control established type 1 diabetes. Diabetes. 2005, 54(2):306-310.
    61 Alvarado-Sanchez B, Hernandez-Castro B, Portales-Perez D, et al. Regulatory T cells in patients with systemic lupus erythematosus. J Autoimmun. 2006, 27(2): 110-118.
    62 Sun Y, Qiao J, Lu CZ, et al. Increase of circulating CD4+CD25+ T cells in myasthenia gravis patients with stability and thymectomy. Clin Immunol. 2004, 112(3): 284-289.
    63 Balandina A, Lecart S, Dartevelle P, et al. Functional defect of regulatory CD4+CD25+ T cells in the thymus of patients with autoimmune myasthenia gravis. Blood. 2006, 105(2): 735-741

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700