用户名: 密码: 验证码:
蛋白酶体抑制剂MG-132对喉鳞癌Hep-2细胞作用的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
喉癌(laryngeal carcinoma)是头颈部常见的恶性肿瘤,其发病率及死亡率均呈逐年上升的趋势,严重威胁着人类的健康与生命。虽然手术为主,放疗与化疗为辅的综合治疗方法,使患者的5年生存率有所提高。但对于那些晚期或复发、转移的患者预后仍旧很差,手术丧失时机,而传统放化疗又由于其严重的毒、副作用常使得患者不能耐受,从而使患者的治疗受到极大的限制。因此,积极寻求喉癌治疗的新策略成为广大耳鼻咽喉科研究者面临的新课题。
     泛素-蛋白酶体通路(Ubiquitin-Proteasome Pathway,UPP)是真核细胞中内源性蛋白质选择性降解的重要途径,是调节细胞多种生物学过程如细胞周期运转、增殖、凋亡、信号传递、基因转录等的关键机制。它与人类恶性肿瘤的发生、发展密切相关。阻断UPP可以促使与肿瘤细胞增殖、分化、凋亡密切相关的多种蛋白质代谢发生紊乱,从而诱导细胞凋亡。于是蛋白酶体抑制剂作为一种新型抗肿瘤靶向治疗药物受到人们的广泛关注。硼替佐米作为第一进入临床的蛋白酶体抑制剂已经被美国食品药品监督局(FDA)批准用于难治性及复发性多发性骨髓瘤及套细胞淋巴瘤。关于肺癌及淋巴瘤的研究也已经进入临床试验阶段,但蛋白酶体抑制剂在喉癌中的研究甚少,其作用机制尚不完全清楚。信号转导与转录激活因3(STAT3,signal transducer and activator of transcription-3)是信号转导通路中的重要因子,是EGFR、IL-6/JAK、Src等多个致癌性酪氨酸激酶信号通道的汇聚的焦点,与人类恶性肿瘤的发生、发展和演进关系密切。有报道指出蛋白酶体抑制剂可诱导结直肠癌细胞中STAT3的激活。在喉癌中,蛋白酶体抑制剂对STAT3的影响尚无相关报道。我们前期的研究表明STAT3的激活与喉癌的发生、发展密切相关,抑制STAT3的激活可抑制喉癌细胞的恶性增殖及诱导凋亡。于是本研究以体外培养的人喉鳞癌Hep-2细胞株为研究对象,应用四甲基偶氮唑蓝(MTT)法、流式细胞仪、Western Blot、基因转染等技术探讨了蛋白酶体抑制剂对喉癌细胞的作用、可能机制及对STAT3的影响,并进一步联合pshSTAT3及常规化疗药物顺铂诱导喉癌细胞凋亡作用的观察,为寻找更加有效的分子靶向、多靶点联合治疗途径以及喉癌的临床治疗提供理论基础。本实验分为以下三部分:
     第一部分蛋白酶体抑制剂MG-132诱导喉癌细胞凋亡及对STAT3的影响
     目的:通过检测不同浓度及不同作用时间的蛋白酶体抑制剂MG-132对体外培养的人喉鳞癌Hep-2细胞株的增殖、周期分布、凋亡的作用及相关蛋白表达的情况,探讨蛋白酶体抑制剂对喉鳞癌细胞的作用、相关机制及对STAT3的影响。
     方法:
     1.以Hep-2细胞为实验对象,四甲基偶氮唑蓝(MTT)法检测不同浓度(0、1、2.5、5、10、20μmol/L)MG-132作用24h、48h及2.5μmol/L MG-132作用0h、12h、24h、48h、72h后细胞的增殖情况。
     2.流式细胞技术(FCM)检测不同浓度(0、1、2.5μmol/L)MG-132作用48h的细胞凋亡及2.5μmol/L MG-132作用0h、12h、24h、48h、72h后细胞凋亡及周期分布情况。
     3. Western blot检测MG-132(2.5μmol/L)作用0h、12h、24h、48h后,Hep-2细胞的p21、cyclinD1、CDK4、Bcl-2、STAT3、p-STAT3蛋白表达水平。
     结果:
     1. MTT检测显示:MG-132可以有效抑制Hep-2细胞的增殖,在本实验范围内呈浓度(24h:r=0.925,P<0.01;48h:r=0.944,P<0.01)及时间依赖性(r=0.945,P<0.01);24h的半数抑制量(IC50)=20μmol/L;48h的半数抑制量(IC50)=2.5μmol/L。
     2. FCM结果显示:细胞凋亡率随MG-132作用时间的延长及浓度的递增而上升,同样具有量效(r=0.842,P<0.01)及时效性(r=0.888,P<0.01)。Hep-2细胞的周期分布发生变化,处于G0/G1和G2/M期的细胞比例上升,S期的细胞比例下降(P<0.01)。
     3. Western blot:p21蛋白水平随着MG-132作用时间的延长而表达显著增强,cyclinD1有中等程度的下调。MG-132作用12h时,可观察到p-STAT3蛋白表达明显增强且维持在一个稳定的水平,Bcl-2蛋白也随之逐渐增强,CDK4及STAT3蛋白水平在不同时间点无明显变化。
     结论:
     1.蛋白酶体抑制剂可以有效抑制人喉鳞癌Hep-2细胞在体外的增殖并且诱导其发生凋亡,随作用浓度及时间的不同而变化,呈浓度及时间依赖性。
     2.蛋白酶体抑制剂可以诱导Hep-2细胞发生G0/G1和G2/M期的双重阻滞。
     3.蛋白酶体抑制剂对喉癌细胞作用的机制之一与p21蛋白水平的上调及cyclinD1蛋白水平的下调相关。
     4.蛋白酶体抑制剂在发挥有效作用的同时导致了关键信号分子STAT3蛋白的激活及抗凋亡家族成员Bcl-2蛋白水平的上调,从而在一定的程度上降低了药物的效能。
     第二部分蛋白酶体抑制剂联合pshSTAT3对喉癌细胞增殖与凋亡的影响
     目的:研究短发夹RNA沉默STAT3能否增强蛋白酶体抑制剂MG-132对喉癌细胞的抗肿瘤作用。
     方法:
     1.构建及扩增pshSTAT3,并经酶切和测序鉴定。
     2.研究分五组:⑴细胞对照组:未经任何处理的Hep-2细胞;⑵阴性对照质粒组:转染阴性对照质粒的Hep-2细胞;⑶MG-132组:经2.5μmol/L MG-132处理的Hep-2细胞;⑷联合组:阳性重组质粒转染+MG-132(2.5μmol/L)处理的Hep-2细胞;⑸pshSTAT3组:转染阳性重组质粒的Hep-2细胞。
     3.利用MTT和FCM两种方法分别检测不同实验组Hep-2细胞的增殖活性及凋亡率的情况。
     4. Western blot检测不同实验组Hep-2细胞p-STAT3蛋白表达的情况。
     结果:
     1.经酶切及测序结果证实,成功构建阳性重组质粒pshSTAT3。
     2.重组质粒转染Hep-2细胞情况的观察:真核表达质粒和阴性对照质粒转染Hep-2细胞后6h即可在荧光显微镜下观察到绿色荧光,转染后24h,绿色荧光逐渐增多增强,荧光倒置显微镜下观察细胞转染效率在80%以上,FCM检测转染效率为85.76%。
     3. pshSTAT3增强了MG-132对Hep-2细胞的增殖抑制作用:将阳性重组质粒或阴性对照质粒转染Hep-2细胞,转染后24h,联合或不联合2.5μmol/L MG-132,再继续培养48h,MTT法检测各组的细胞增殖抑制率。结果发现阴性对照质粒组和细胞对照组细胞的体外增殖活性无明显差异(P>0.05);联合组能显著抑制Hep-2细胞的增殖活性(抑制率:62.23±1.25%),与MG-132组、pshSTAT3组及阴性对照质粒组相比,差异均有统计学意义(P<0.01)。
     4. pshSTAT3增强了MG-132对Hep-2细胞诱导凋亡的作用:细胞转染后24h加2.5μmol/L MG-132,再继续培养48h,FCM检测各组的细胞凋亡率,结果显示联合组细胞出现明显的凋亡峰,其凋亡率(55.80±3.12%)显著高于MG-132组(41.20±3.21%)和pshSTAT3组(22.13±1.84%),差异具有统计学意义(P<0.01);阴性对照质粒组和细胞对照组间无明显差异(P>0.05)。
     5. pshSTAT3与MG-132对p-STAT3表达的影响:Western blot检测显示细胞对照组与阴性对照质粒组两组之间的p-STAT3蛋白水平无明显差异;MG-132组p-STAT3蛋白表达显著增强;联合组及pshSTAT3组p-STAT3蛋白表达明显减弱。
     结论: pshSTAT3可以抑制MG-132诱导的STAT3蛋白的激活,从而提高了蛋白酶体抑制剂MG-132对喉鳞癌细胞的抗肿瘤作用。第三部分蛋白酶体抑制剂MG-132联合化疗诱导喉癌细胞凋亡的观察目的:探讨蛋白酶体抑制剂MG-132能否增强常规化疗药物顺铂(DDP)对喉鳞癌细胞的毒性作用。
     方法:取对数期生长的Hep-2细胞分为四组:对照组、MG-132组、DDP组、DDP+ MG-132组。利用MTT和FCM两种方法分别检测不同实验组细胞的增殖及凋亡情况。
     结果:
     1. MG-132联合DDP对Hep-2细胞增殖活性的影响:不同浓度DDP(10、20、40、80μmol/L)单用或联合1μmol/L MG-132作用于Hep-2细胞48h后结果显示:在每个浓度水平上DDP组与DDP+MG-132组比较均有统计学意义(P<0.01,P<0.05)。10μmol/L DDP+MG-132组与20μmol/L DDP组、20μmol/L DDP+MG-132组与40μmol/L DDP组比较均具有统计学差异(P<0.01,P<0.05)。DDP单独作用的IC50=62.22μmol/L;当与1umol/L MG-132联合作用时,其IC50下降至27.79μmol/L。
     2. MG-132联合DDP诱导Hep-2细胞凋亡作用的观察:10μmol/L DDP单用或联合1μmol/L MG-132作用于Hep-2细胞48h后,FCM检测结果显示DDP+MG-132组诱导细胞凋亡作用最强,与对照组、DDP组、MG-132组相比均具有显著性差异(P<0.01)。
     结论:蛋白酶体抑制剂能显著增强常规化疗药物顺铂对喉鳞癌Hep-2细胞株的毒性作用,两者联合可以在有效作用发挥的同时降低DDP的应用剂量,从而减轻临床上常见的毒副作用。
Laryngeal carcinoma is a common malignant tumor of the head and neck. Recently, the incidence and mortality of laryngeal carcinoma are increasing gradually and threatens human being’s health and life seriously. Although the comprehensive treatment options including surgery, radiation therapy and chemotherapy have improved the 5-year survival rate in recent decades, the prognosis for patients with advanced, relapsed or metastatic disease is poor. Moreover, traditional radiation therapy and chemotherapy are associated with considerable adverse toxicities that can not be tolerated by patients. The effective treatment has been extremely limited. Therefore, to seek novel and valid therapeutic strategies for laryngeal cancer becomes a new challenge of the head and neck researchers.
     The ubiquitin-proteasome pathway (UPP) is the major system responsible for degradation of intracellular proteins in eukaryotes. By controlling the levels of key proteins, it plays an essential role in multiple cellular processes, including cell cycle progression, proliferation, apoptosis, signal transduction and transcription. It is closely related to human malignancies. Blockade of UPP creates an imbalance of various regulatory proteins that control the cell function of proliferation, differentiation and apoptosis, which induces the apoptotic pathways within the cell, indicating that the proteasome inhibitor could be used as an attractive novel anticancer drug. Bortezomib (Velcade, PS-341) was the first proteasome inhibitor to receive approval from the US Food and Drug Administration for the treatment of relapsed or refractory multiple myeloma and mantle cell lymphoma. In lung cancer and lymphoma, Clinical trials with bortezomib alone or in combination are ongoing. But little has been reported of the effect of the proteasome inhibitor on laryngeal cancer cells, and the molecular mechanism is unclear so far. Signal Transducer and Activator of Transcription-3 (STAT3) is an important factor of signal transduction pathway, and is the focus of EGFR, IL-6/JAK, Src and other tyrosine kinase signal carcinogenicity channel convergents. It is constantly activated in great quantities in human tumor cells and links closly with the occurrence, development and evolution of human malignant tumor. It has been reported that the proteasome inhibitor can activate STAT3 in colorectal cancer cells. There has been no report about the effects of the proteasome inhibitor on the STAT3 protein expression in laryngeal carcinoma by now. Our previous studies have shown that the activation of STAT3 is closely related to the occurrence and development of laryngeal cancer and the suppression factor can inhibit the malignant proliferation and induced the apoptosis of cancer cells. In this study, we used human laryngeal squamous carcinoma cell line Hep-2 cultured in vitro, and MTT, Flow cytometry (FCM), Western Blot, gene transfer techniques to explore the role and the molecular mechanisms of the proteasome inhibitor MG-132. The effect of MG-132 on STAT3 was also investigated. Further more, MG-132 was combined with pshSTAT3 or cisplatin, a conventional chemotherapy drug, to observe the changes of the proliferation and apoptosis in cells. This may be helpful to find more effective molecular targets, multi-target combination therapy strategies, as well as the clinical treatment options of laryngeal cancer. This experiment scheme was separated into three parts:
     Part one The proteasome inhibitor MG-132 induced apoptosis and its effect on STAT3 in laryngeal carcinoma cell line Hep-2
     Objective: By testing the effects of MG-132 on proliferation, cell cycle distribution, apoptosis and related protein expression at different times and concentrations, we explored the role, the molecular mechanism or the effect of the proteasome inhibitor on STAT3 in human laryngeal squamous cell carcinoma cell line Hep-2 cells.
     Methods:
     1. Hep-2 cells were treated with different doses (control, 1, 2.5, 5, 10, 20μmol/L) of MG-132 for 24h or 48h. In addition, Hep-2 cells were treated with 2.5μmol/L MG-132 for varying lengths of time (control, 12h, 24h, 48h, 72h). After treatment, the effect of growth suppression on cells was evaluated with MTT assay.
     2. Hep-2 cells were treated with varying doses (control, 1, 2.5, 5μmol/L) of MG-132 for 48h, FCM was used to detect cell apoptosis. In addition, the cells were treated with 2.5μmol/L MG-132 for varying lengths of time (control, 12h, 24h, 48h or 72h). After treatment, cell apoptosis and cell cycle were detected by FCM.
     3. Western blotting was used for detecting the protein expression level of STAT3, p-STAT3, Bcl-2, p21, cyclinD1, CDK4 in cells at control, 12h, 24h, 48h after treatment.
     Results:
     1. MTT assays showed that MG-132 can effectively inhibit the proliferation of Hep-2 cells in a dose- (24h:r=0.925,P<0.01;48h:r=0.944,P<0.01) and time-dependent manner(r=0.945,P<0.01). The 50% inhibition concentration (IC50) at 24h is 20μmol/L, and at 48h is 2.5μmol/L.
     2. FCM demonstrated that apoptosis rate increased with the increasing of concentration and the time, and in a concentration- (r=0.842,P<0.01) and time-dependent manner (r=0.888,P<0.01). Analysis of cell cycle showed that the percentage of cells in G0/G1 and G2/M phase were increased and decreased in S phase cells (P<0.01).
     3. Western blot showed that MG-132 caused marked up-regulation of p21 protein. Meanwhile, a moderate down-regulation of cyclinD1 was observed in Hep-2 cells. Cells were treated with MG-132 for 12h, resulting in significantly up-regulation of the p-STAT3 protein and maintained at a stable level. The Bcl-2 protein was also moderately up-regulated following MG-132 treatment. The expression levels of STAT3 and CDK4 were not appreciably changed.
     Conclusion:
     1. Proteasome inhibition by MG-132 decreases proliferation and increases apoptosis in human laryngeal squamous cell carcinoma cell line Hep-2.
     2. Proteasome inhibition by MG-132 induces cells cycle arrest in G0/G1 and G2/M phase.
     3. The mechanism of MG-132-induced antitumor effects on Hep-2 cells involves in up-regulation of p21 and down-regulation of cyclinD1.
     4. Proteasome inhibition by MG-132 led to activate of the key signaling molecule STAT3 protein and up-regulation of the anti-apoptotic family member Bcl-2 protein, which might limit the efficacy of the anticancer agents. Part Two Antiproliferative and proapoptotic effects of combination of proteasome inhibitor with pshSTAT3 on laryngeal carcinoma cells
     Objective: To explore if inhibition of activated STAT3 by transfecting plasmid expressing short hair pin RNA (shRNA) can enhance the antitumor effect of the protease inhibitor MG-132 on human laryngeal carcinoma cells.
     Methods:
     1. Recombinant plasmid expressing short hairpin RNA targeting STAT3 was constructed and identified by enzyme digestion and sequencing. 2. Experiments were divided into five groups: control group, pshNeg group, MG-132 group, combined group, pshSTAT3 group. The recombinant expression plasmid (pshSTAT3) and negative control plasmid (pshNeg) were transfected into Hep-2 cells by Lipofectamine 2000. After 6 hours, the medium was changed, and cells were observed under inverted fluorescence microscopy. Twenty-four hours after the transfection, cells were observed again. Subsequently, the cells were left untreated or treated with 2.5μmol/L MG-132 for 48h.
     3. After treatment, cell proliferative activity and cell apoptosis rate were detected in different groups by MTT assay and FCM.
     4. After treatment, the protein expression of p-STAT3 in all groups was detected by Western blot.
     results:
     1. The recombinant expression plasmid pshSTAT3 was constructed successfully and confirmed by restriction enzyme digestion and sequencing results.
     2. The observation of transfection efficiency after recombinant plasmid transfection: After transfection with pshSTAT3 and pshNeg for 6h, green fluorescence was observed in Hep-2 cells under fluorescence microscopy. Green fluorescence gradually increased and transfection efficiency was above 80% at 24 hour post-transfection, and the transfection efficiency was 85.76% by FCM.
     3. The pshSTAT3 enhanced the inhibition effect of MG-132 on proliferation in Hep-2 cells. After treatment, MTT assay showed that the proliferation ability of Hep-2 cells was not altered in control group and pshNeg group (P>0.05). The pshSTAT3 combined with 2.5μmol/L MG-132 significantly inhibited proliferation of Hep-2 cells compared with the other group (inhibition rate: 62.23±1.25%, P <0.01).
     4. The pshSTAT3 enhanced the proapoptotic effect in Hep-2 cells induced by MG-132. After treatment, FCM showed that apoptosis rate of the pshSTAT3 plus 2.5μmol/L MG-132 group (55.80±3.12%) was significantly higher than that of the MG-132 group (41.20±3.21%) or the pshSTAT3 group (22.13±1.84%) (P<0.01). There was no significant difference between the control group and the pshNeg group (P>0.05).
     5. Expression of p-STAT3 after treatment. Western blot showed that up-regulation of p-STAT3 protein expression was observed in the MG-132 group, with its down-regulation in the combined group and the pshSTAT3 group. The expression levels of p-STAT3 were not appreciably changed in the control group and the pshNeg group.
     Conclusion: The shRNA targeting STAT3 can inhibit MG-132-induced p-STAT3 protein expression up-regulation; thereby significantly enhance the antitumor effect of protease inhibitor MG-132 on human laryngeal carcinoma cells.
     Part Three Observation on the antiproliferative and proapoptotic effects of proteasome inhibitor MG-132 combined with chemotherapy in laryngeal carcinoma cells
     Objective: Cisplatin (DDP) is commonly used as a frontline chemotherapeutic agent. Our study is to determine if proteasome inhibitor MG-132 can enhance the cytotoxicity of DDP in human laryngeal squamous carcinoma cells.
     Methods: Hep-2 cells in logarithmic phase were divided into four groups: control group, MG-132 group, DDP group, MG-132+DDP group. After 48h, cell viability in each group was determined by MTT assay, and the apoptosis rate was detected by FCM.
     Results:
     1. Varying doses of DDP with or without MG-132 affected the proliferation of Hep-2 cells. The cells were treated with varying concentrations of DDP (10, 20, 40, 80μmol/L) with or without 1μmol/L MG-132 for 48h. MTT assay showed that the combination of MG-132 with DDP can significantly enhance the proliferation inhibition of the cells at the same dose level (P<0.01, P<0.05). The cellular proliferation of 10μmol/L DDP+MG-132 group was significantly lower than that of 20μmol/L DDP group (P<0.01). Similarly, there was a significant difference between 20μmol/L DDP+MG-132 group and 40μmol/L DDP (P<0.05). The IC50 value of DDP was 62.22μmol/L, and the value descended to 27.79μmol/L when combined with 1μmol/L MG-132.
     2. DDP plus MG-132 increased the apoptosis of Hep-2 cells. The cells were treated with 10μmol/L DDP alone and with 1μmol/L MG-132 for 48h. FCM results demonstrated that the combination of DDP plus MG-132 can markedly increased the apoptosis rate (P<0.01).
     Conclusion: Proteasome inhibitor can enhance the cytotoxicity of the chemotherapy drug cisplatin in Hep-2 cells. The combination of two drugs potentiated the anticancer effect on Hep-2 cells.
引文
1黄选兆,汪吉宝.实用耳鼻咽喉科学[M].北京,人民卫生出版社, 2005, 502-503
    2 Pickart CM. Back to the future with ubiquitin [J]. Cell, 2004, 116(2): 181-190
    3 Spataro V, Norbury C, Harris AL. The ubiquitin-proteasome pathway in cancer [J]. Br J Cancer, 1998, 77(3): 448-455
    4 Roos-Mattjus P, Sistonen L. The ubiquitin-proteasome system [J]. Ann Med, 2004, 36(4): 285-295
    5 Mani A, Gelmann EP. The ubiquitin-proteasome pathway and its role in cancer [J]. J Clin Oncol, 2005, 23(21): 4776-4789
    6 Ishii Y, Waxman S, Germain D. Targeting the ubiquitin-proteasome pathway in cancer therapy [J]. Anticancer Agents Med Chem, 2007, 7(3): 359-365
    7 Rajkumar SV, Richardson PG, Hideshima T, et al. Proteasome inhibition as a novel therapeutic target in human cancer [J]. J Clin Oncol, 2005, 23(3): 630-639
    8 Bromberg JF, Wrzeszczynska MH, Devgan G, et al. Stat3 as an oncogene [J]. Cell, 1999, 98(3): 295-303
    9 Xiong H, Zhang ZG, Tian XQ, et al. Inhibition of JAK1, 2/STAT3 signaling induces apoptosis, cell cycle arrest, and reduces tumor cell invasion in colorectal cancer cells [J]. Neoplasia, 2008, 10(3): 287-297
    10 Lun M, Zhang PL, Pellitteri PK, et al. Nuclear factor-kappaB pathway as a therapeutic target in head and neck squamous cell carcinoma: pharmaceutical and molecular validation in human cell lines using Velcade and siRNA/NF-kappaB [J]. Ann Clin Lab Sci, 2005, 35(3): 251-258
    11 Mitsiades CS, McMillin D, Kotoula V, et al. Antitumor effects of the proteasome inhibitor bortezomib in medullary and anaplastic thyroid carcinoma cells in vitro [J]. J Clin Endocrinol Metab, 2006, 91(10): 4013-4021
    12 Uddin S, Ahmed M, Bavi P, et al. Bortezomib (Velcade) induces p27Kip1 expression through S-phase kinase protein 2 degradation in colorectal cancer [J]. Cancer Res, 2008, 68(9): 3379-3388
    13 Jones RJ, Chen Q, Voorhees PM, et al. Inhibition of the p53 E3 ligase HDM-2 induces apoptosis and DNA damage--independent p53 phosphorylation in mantle cell lymphoma [J]. Clin Cancer Res, 2008, 14(17): 5416-5425
    14 Li B, Dou QP. Bax degradation by the ubiquitin/proteasome-dependent pathway: involvement in tumor survival and progression [J]. Proc Natl Acad Sci, 2000, 97(8): 3850-3855
    15 Lara PN Jr, Bold RJ, Mack PC, et al. Proteasome inhibition in small-cell lung cancer: preclinical rationale and clinical applications [J]. Clin Lung Cancer, 2005, 7 Suppl 2: S67-71
    16 Li C, Li R, Grandis JR, et al. bortezomib induces apoptosis via Bim and Bik up-regulation and synergizes with cisplatin in the killing of the head and neck squamous cell carcinoma cells [J]. Mol Cancer Ther, 2008, 7(6): 1647-1655
    17 Montagut C, Rovira A, Albanell J. The proteasome: a novel target for anticancer therapy [J]. Clin Transl Oncol, 2006, 8(5):313-317
    18 Tahmatzopoulos A, Gudegast C, Stockle M, et al. Proteasome inhibitors: induction of apoptosis as new therapeutic option in prostate cancer [J]. Aktuelle Urol, 2004, 35(6): 491-496
    19 Chu S, Alexiadis M, Fuller PJ. Proteasome inhibition by bortezomib decreases proliferation and increases apoptosis in ovarian granulosa cell tumors [J]. Reprod Sci, 2009, 16(4): 397-407
    20王俊阁,李晓明,陈英会,等.信号转导子和转录激活因子3在喉癌组织中的表达及其临床意义[J].临床耳鼻咽喉-头颈外科杂志, 2007, 21(3):113-115
    21 Liu CH, Goldberg AL, Qiu XB. New insights into the role of the ubiquitin-proteasome pathway in the regulation of apoptosis [J]. Chang Gung Med J, 2007, 30(6): 469-479
    22 Schwartz AL, Ciechanover A. The ubiquitin-proteasome pathway and pathogenesis of human diseases [J]. Annu Rev Med, 1999, 50: 57-74
    23 Meiners S, Ludwig A, Stangl V, et al. Proteasome inhibitors: poisons and remedies [J]. Med Res Rev, 2008, 28(2): 309-327
    24 Kazi A, Lawrence H, Guida WC, et al. Discovery of a novel proteasome inhibitor selective for cancer cells over non-transformed cells [J]. Cell Cycle, 2009, 8(12): 1940-1951
    25 Adams J. The development of proteasome inhibitors as anticancer drugs [J]. Cancer Cell, 2004, 5(5): 417-421
    26 D'Alessandro A, Pieroni L, Ronci M, et al. Proteasome inhibitors therapeutic strategies for cancer [J]. Recent Pat Anticancer Drug Discov, 2009, 4(1): 73-82
    27 Kisselev AF, Goldberg AL. Proteasome inhibitors: from research tools to drug candidates [J]. Chem Biol, 2001, 8(8): 739-758
    28 Wang Y, Rishi AK, Puliyappadamba VT, et al. Targeted proteasome inhibition by Velcade induces apoptosis in human mesothelioma and breast cancer cell lines [J]. Cancer Chemother Pharmacol, 2009 Dec 4. [Epub ahead of print]
    29 Bazzaro M, Lee MK, Zoso A, et al. Ubiquitin-proteasome system stress sensitizes ovarian cancer to proteasome inhibitor-induced apoptosis [J]. Cancer Res, 2006, 66(7): 3754 - 3763
    30孙国敬,钱俊杰,孟祥兵,等.蛋白酶体抑制MG132诱导HL-60细胞凋亡前G2/M期阻滞及机制[J],癌症, 2004, 23(10):1144-1148
    31李艳凤,张强,朱大海.泛素介导的蛋白质降解与肿瘤发生[J].遗传, 2006, 28(12):1591-1596
    32 Huang C, Huang K, Wang C, et al. Overexpression of mitogen-activated protein kinase kinase 4 and nuclear factor-kappaB in laryngeal squamous cell carcinoma: a potential indicator for poor prognosis [J]. Oncol Rep, 2009, 22(1): 89-95
    33 Nakajima K, Yamanaka Y, Nakae K, et al. A central role for Stat3 in IL-6-induced regulation of growth and differentiation in M1 leukemia cells[J]. EMBO J, 1996, 15: 3651-3658
    34 Buettner R, Mora LB, Jove R. Activated STAT signaling in human tumors provides novel molecular targets for therapeutic intervention [J]. Clin Cancer Res. 2002, 8(4): 945-954
    35 Buettner R, Mora LB. Jove R. Activated Stat signaling in human tumors provides novel molecular targets for therapeutic intervention [J]. Clin Cancer Res, 2002, 8(4): 945-954
    36 Malek RL, Halvorsen SW. Ciliary neurotrophic factor and phorbol ester each decrease selected STAT3 pools in neuroblastoma cells by proteasome-dependent mechanisms [J]. Cytokine, 1999, 11(3): 192-199
    37 Daino H, Matsumura I, Takada K, et al. Induction of apoptosis by extracellular ubiquitin in human hematopoietic cells: possible involvement of STAT3 degradation by proteasome pathway in interleukin6-dependent hematopoietic cells [J]. Blood, 2000, 95(8): 2577-2585
    38 Hideshima T, Chauhan D, Hayashi T, et al. Proteasome inhibitor PS-341 abrogates IL-6 triggered signaling cascades via caspase-dependent downregulation of gp130 in multiple myeloma [J]. Oncogene, 2003, 22: 8386-8393
    39 Changyou LI, Yan Zang, Malabika Sen, et al. Bortezomib up-regulations activated signal transducer and activator of transcription-3 and synergizes with inhibitors of signal transducer and activator of transcription-3 to promote head and neck squamous cell carcinoma cell death [J]. Mol Cancer Ther, 2009, 8(8): 2211-2220
    1 Mani A, Gelmann EP. The ubiquitin-proteasome pathway and its role in cancer [J]. J Clin Oncol, 2005, 23(21): 4776-4789
    2 Fennell DA, Chacko A, Mutti L. BCL-2 family regulation by the 20S proteasome inhibitor bortezomib [J]. Oncogene, 2008, 27(9): 1189-1197
    3 Jung JE, Kim HS, Lee CS, et al. STAT3 inhibits the degradation of HIF-1alpha by pVHL-mediated ubiquitination [J]. Exp Mol Med, 2008, 40(5): 479-485
    4 Lun M, Zhang PL, Pellitteri PK, et al. Nuclear factor-kappaB pathway as a therapeutic target in head and neck squamous cell carcinoma: pharmaceutical and molecular validation in human cell lines using Velcade and siRNA/NF-kappaB [J]. Ann Clin Lab Sci, 2005, 35(3): 251-258
    5 Li C, Li R, Grandis JR, et al. bortezomib induces apoptosis via Bim and Bik up-regulation and synergizes with cisplatin in the killing of the head and neck squamous cell carcinoma cells [J]. Mol Cancer Ther, 2008, 7(6): 1647-1655
    6 Gao LF, Zhang L, Hu J, et al. Down-regulation of signal transducer and activator of transcription 3 expression using vector based small interfering RNAs suppresses growth of human prostate tumor in vivo [J]. Clin Cancer Res, 2005, 11(17): 6333-6341
    7 Takeda K, Akira S. STAT family of transcription factors in cytokine- mediated biological responses [J]. Cytokine Growth Factor Rev, 2000, 11(3): 199-207
    8 Yu H, Jove R. The stats of cancer-new molecular targets come of age [J]. Nat Rev Cancer, 2004, 4(2): 97-105
    9 Li L, Shaw PE. Autocrine-mediated activation of STAT3 correlates with cell proliferation in breast carcinoma lines [J]. J Biol Chem, 2002, 277(20):17397-17405
    10 Epling-Burnette PK, Liu JH, Catlett-Falcone R, et al. Inhibition of STAT3 signaling leads to apoptosis of leukemic large granular lymphocytes anddecreased Mcl-1 expression [J]. J Clin Invest, 2001, 107(3): 351-362
    11 Song JI, Grandis JR. STAT signaling in head and neck cancer [J]. Oncogene, 2000, 19(21): 2489-2495
    12 Turkson J. STAT proteins as novel targets for cancer drug discovery [J]. Expert Opin Ther Targets. 2004, 8(5): 409-422
    13 Lee TL, Yeh J. Friedman J, et al. A signal network involving coactivated NF-κappaB and STAT3 and altered p53 modulates BAX/BCL-XL expression and promotes cell survival of head and neck squamous cell carcinomas [J]. Int J Cancer, 2008, 122(9): 1987-1998
    14王俊阁,李晓明,陈英会,等.信号转导和转录激活因子3在喉癌组织中的表达及临床意义[J].临床耳鼻咽喉头颈外科杂志, 2007, 21(3):113-115
    15王俊阁,李晓明,路秀英. Jak激酶抑制剂AG490联合顺铂对喉癌细胞stat3信号转导通路的抑制作用[J].第四军医大学学报, 2007, 28(21): 1930-1932
    16王海茹,李晓明,路秀英. RNAi沉默STAT3基因提高喉癌放疗疗效的动物实验研究[J].中华耳鼻咽喉头颈外科杂志, 2009, 44(7): 561-566
    17 Li X, Wang H, Lu X, et al. STAT3 blockade with shRNA enhances radiosensitivity in Hep-2 human laryngeal squamous carcinoma cells [J]. Oncol Rep, 2010, 23(2): 345-353
    18 Allen D, Kenna PF, Palfi A, et al. Development of strategies for conditional RNA interference [J]. J Gene Med, 2007, 9(4):287-298
    19 Fuchs U, Borkhardt A. The application of siRNA technology to cancer biology discovery [J]. Adv Cancer Res, 2007, 96: 75-102
    20郭慧,杜波,李晓明,等.携EGFP的STAT3载体构建、表达及其对HEP-2细胞的增殖抑制作用[J].山东医药, 2008, 48(3):18-32
    21 Changyou LI, Yan Zang, Malabika Sen, et al. Bortezomib up-regulations activated signal transducer and activator of transcription-3 and synergizes with inhibitors of signal transducer and activator of transcription-3 to promote head and neck squamous cell carcinoma cell death [J]. Mol Cancer Ther, 2009, 8(8): 2211-2220
    1 Adams J, Palombella VJ, Sausville EA, et al. Proteasome inhibitors: a novel class of potent and effective antitumor agents [J]. Cancer Res, 1999, 59(11): 2615-2622
    2 Ma MH, Yang HH, Parker K, et al. The proteasome inhibitor PS-341 markedly enhances sensitivity of multiple myeloma tumor cells to chemotherapeutic agents [J]. Clin Cancer Res, 2003, 9(3): 1136-1144
    3李真真,靖大道,丁红华.蛋白酶体抑制剂单用或联合顺铂对人胃癌细胞的抑制效应[J].胃肠病学, 2008, 13(12):733-736
    4 Bae SH, Ryoo HM, Kim MK, et al. Effects of the proteasome inhibitor bortezomib alone and in combination with chemotherapeutic agents in gastric cancer cell lines [J]. Oncol Rep, 2008, 19(4):1027-1032
    5 Mitsiades CS, McMillin D, Kotoula V, et al. Antitumor effects of the proteasome inhibitor bortezomib in medullary and anaplastic thyroid carcinoma cells in vitro [J]. J Clin Endocrinol Metab, 2006, 91(10): 4013-4021
    6 Nawroki ST, Sweeney-Gotsch B, Takamori R, et al. The proteasome inhibitor bortezomib enhances the activity of docetaxel in orthotopic human pancreatic tumor xenografts [J]. Mol Cancer Ther, 2004, 3(1): 59-70
    7 Schinkel AH, Borst P. Multidrug resistance mediated by P-glyco-protein [J]. Semin Cancer Biol, 1991, 2(4): 213-226
    8王维,罗和生.核因子-κB抑制剂逆转人胃癌细胞对长春新碱耐药性的研究[J].中华肿瘤杂志, 2005, 27(6):335-338
    9 Mimnaugh EG, Yunmbam MK, Li Q, et a1. Prevention of cisplatin-DNA adduct repair and potentiation of cisplatin-induced apoptosis in ovarian carcinoma cells by proteasome inhibitor [J]. Biochem Pharmacol, 2000, 60(9): 1343-1354
    10 Ishii Y, Waxman S, Germain D. Targeting the ubiquitin-proteasome pathway in cancer therapy [J]. Anticancer Agents Med Chem, 2007, 7(3): 359-365
    11 Russo SM, Tepper JE, Baldwin AS Jr, et al. Enhancement of radiosensitivity by proteasome inhibition: implications for a role of NF-kappaB [J]. Int J Radiat Oncol Biol Phys, 2001, 50(1): 183-193
    12 Cusack JC Jr, Liu R, Houston M, et al. Enhanced chemosensitivity to CPT-11 with proteasome inhibitor PS-341: implications for systemic nuclear factor-kappaB inhibition [J]. Cancer Res, 2001, 61(9): 3535-3540
    13 An J, Sun Y, Fisher M, et al. Maximal apoptosis of renal cell carcinoma by the proteasome inhibitor bortezomib is nuclear factor-κB dependent [J]. Mol Cancer Ther, 2004, 3(6):727-736
    14 M?ynarczuk-Bia?y I, Roeckmann H, Kuckelkorn U, et al. Combined effect of proteasome and calpain inhibition on cisplatin-resistant human melanoma cells [J]. Cancer Res, 2006, 66(15):7598-7605
    15 Bentires-Alj M, Barbu V, Fillet M, et a1. NF-κB transcription factor induces drug resistance through MDR1 expression in cancer cells [J]. Oncogene, 2003, 22(1): 90-97
    16廖爱军,杨威,付蓓蓓,等.不同浓度硼替佐米对K567/DNR细胞株NF-κB, I-κB及P-gp的表达的影响[J].第四军医大学学报, 2009, 30(15): 1379-1382
    17 Fekete MR, McBride WH, Pajonk F. Anthracyclines, proteasome activity and muti-drug-resistance [J]. BMC Cancer, 2005, 5:114
    18杨迪生,李高舜,叶招明,等.顺铂联合蛋白酶体抑制剂杀伤骨肉瘤细胞的研究.浙江大学学报(医学版)[J], 2005, 34(5):395-399
    19 Fujita T, Doihara H, Washio K, et al. Proteasome inhibitor bortezomib increases PTEN expression and enhances trastuzumab-induced growth inhibition in trastuzumab-resistant cells [J]. Anticancer Drugs, 2006, 17(4): 455-462
    20 Fribley AM, Evenchik B, Zeng Q, Proteasome inhibitor PS-341 induces apoptosis in cisplatin-resistant squamous cell carcinoma cells by induction of Noxa [J]. J Biol Chem, 2006, 281(42):31440-31447
    21 Nawrocki ST, Carew JS, Pino MS, et al. Bortezomib sensitizes pancreatic cancer cells to endoplasmic reticulum stress-mediated apoptosis [J].Cancer Res, 2005, 65(24): 11658-11666
    22 Jordan P, Carmo-Fonseca M. Molecular mechanisms involved in cisplatin cytotoxicity [J]. Cell Mol Life Sci, 2000, 57(8-9):1229-1235
    23 Li C, Li R, Grandis JR, et al. bortezomib induces apoptosis via Bim and Bik up-regulation and synergizes with cisplatin in the killing of the head and neck squamous cell carcinoma cells [J]. Mol Cancer Ther, 2008, 7(6):1647-1655
    1 Pickart CM. Back to the future with ubiquitin [J]. Cell, 2004, 116(2): 181-190
    2 Koepp DM, Harper JW, Elledge SJ. How the cyclin became a cyclin: Regulated proteolysis in the cell cycle [J]. Cell, 1999, 97(4): 431-434
    3 Schwartz LM, Myer A, Kosz L, et al. Activation of polyubiquitin gene expression during developmentally programmed dell death [J]. Neuron, 1990, 5(4): 411-419
    4 Ghosh S, May MJ, Kopp EB. NF-kappa B and Rel proteins: Evolutionarily conserved mediators of immune responses [J]. Annu Rev Immunol, 1998, 16: 225-260
    5 Rock KL, Goldberg AL. Degradation of cell proteins and the generation of MHC classI-presented peptides [J]. Annu Rev Immunol, 1999, 17: 739-799
    6 Roos-Mattjus P, Sistonen L. The ubiquitin-proteasome system [J]. Ann Med, 2004, 36(4): 285-295
    7 Schwartz AL, Ciechanover A. The ubiquitin-proteasome pathway and pathogenesis of human diseases [J]. Annu Rev Med, 1999, 50: 57-74
    8 Mani A, Gelmann EP. The ubiquitin-proteasome pathway and its role in cancer [J]. J Clin Oncol, 2005, 23(21): 4776-4789
    9 Meiners S, Ludwig A, Stangl V, et al. Proteasome inhibitors: poisons and remedies [J]. Med Res Rev, 2008, 28(2): 309-327
    10 Daino H, Matsumura I, Takada K, et al. Induction of apoptosis by extracellular ubiquitin in human hematopoietic cells: possible involvement of STAT3 degradation by proteasome pathway in interleukin6-dependent hematopoietic cells [J]. Blood, 2000, 95(8): 2577-2585
    11 Konda K, Kaelin WG Jr. The von Hippel-Lindau tumor suppressor gene [J]. Exp cell Res, 2001, 264(1): 117-125
    12 Alessandrini A, Chiaur DS, Pagano M. Regulation of the cyclin-dependent kinase inhibitor p27 by degradation and phosphorylation [J]. Leukemia, 1997, 11(3): 342-345
    13 Lloyd RV, EricksonL A, Jin L, et al. p27kip1: a multifunctiona cyclin-dependent kinase inhibitor with prognostic significance in human cancers [J]. Am J Pathol, 1999, 154(2): 313-323
    14 Hara T, Kamura T, Nakayama K, et al. Degradation of p27 (Kip1) at the G(0)-G(1) transition mediated by a Skp2-independent ubiquitination pathway [J]. J Biol Chem, 2001, 276(52): 48937-48943
    15 Musat M, Korbonits M, Pyle M, et al. The expression of the F-box protein Skp2 is negatively associated with p27 expression in human pituitary tumors [J]. Pituitary, 2002, 5(4): 235-242
    16 Uddin S, Ahmed M, Bavi P, et al. Bortezomib (Velcade) induces p27Kip1 expression through S-phase kinase protein 2 degradation in colorectal cancer [J]. Cancer Res, 2008, 68(9): 3379-3388
    17 Uddin S, Hussain A, Ahmed M, et al. S-phase kinase protein 2 is an attractive therapeutic target in a subset of diffuse large B-cell lymphoma [J]. J Pathol, 2008, 216(4): 483-494
    18 Hattori T, Isobe T, Abe K, et al. Pirh2 promotes ubiquitin-dependent degradation of the cyclin-dependent kinase inhibitor p27Kip1 [J]. Cancer Res, 2007, 67(22): 10789-10795
    19 Bazzaro M, Lee MK, Zoso A, et al. Ubiquitin-proteasome system stress sensitizes ovarian cancer to proteasome inhibitor-induced apoptosis [J]. Cancer Res, 2006, 66(7): 3754-3763
    20孙国敬,钱俊杰,孟祥兵,等.蛋白酶体抑制MG132诱导HL-60细胞凋亡前G2/M期阻滞及机制[J].癌症, 2004, 23(10):1144-1148
    21 Lim JH, Chang YC, Park YB, et al. Transcriptional repression of E2F gene by proteasome inhibitors in human osteosarcoma cells [J]. Biochem Biophys Res Commun, 2004, 318(4): 868-872
    22 Levine AJ, Momand J, Finlay CA. The P53 tumor suppressor gene [J]. Nature, 1991, 351(6326):453-456
    23 Takimoto R, Niitsu Y. Tumor suppressor gene p53 and molecular targeting therapy [J]. Gan To Kagaku Ryoho, 2004, 31(9):1309-1313
    24 Maki CG, Huibregtse JM, Howley PM. In vivo ubiquitination andproteasome-mediated degradation of p53 [J]. Cancer Res, 1996, 56(11):2649-2654
    25 Kubbutat MH, Jones SN, Vousden KH. Regulation of P53 stability by Mdm2 [J]. Nature, 1997, 387(6630): 299-303
    26 Corcoran CA, Huang Y, Sheikh MS. The p53 paddy wagon: COP1, Pirh2 and MDM2 are found resisting apoptosis and growth arrest [J]. Cancer Biol Ther, 2004, 3(8): 721-725
    27 Jones RJ, Chen Q, Voorhees PM, et al. Inhibition of the p53 E3 ligase HDM-2 induces apoptosis and DNA damage--independent p53 phosphorylation in mantle cell lymphoma [J]. Clin Cancer Res, 2008, 14(17): 5416-5425
    28 Lagrange M, Charbonnier S, Orfanoudakis G, et al. Binding of human papillomavirus 16 E6 to p53 and E6AP is impaired by monoclonal antibodies directed against the second zinc-binding domain of E6 [J]. J Gen Virol, 2005, 86(Pt 4): 1001-1007
    29 Sheng Y, Laister RC, Lemak A, et al. Molecular basis of Pirh2-mediated p53 ubiquitylation [J]. Nat Struct Mol Biol, 2008, 15(12): 1334-1342
    30 Jones RJ, Chen Q, Voorhees PM, et al. Inhibition of the p53 E3 ligase HDM-2 induces apoptosis and DNA damage--independent p53 phosphorylation in mantle cell lymphoma [J]. Clin Cancer Res, 2008, 14(17): 5416-5425
    31 Inoue J, Gohda J, Akiyama T, et al. NF-kappaB activation in development and progression of cancer [J]. Cancer Sci, 2007, 98(3):268-274
    32 Huang TT, Wuerzberger-Davis SM, Seufzer BJ, et al. NF-kappaB activation by camptothecin. A linkage between nuclear DNA damage and cytoplasmic signaling events [J]. J Biol Chem, 2000, 275(13): 9501-9509
    33 Russo SM, Tepper JE, Baldwin AS Jr, et al. Enhancement of radiosensitivity by proteasome inhibition: implications for a role of NF-kappaB [J]. Int J Radiat Oncol Biol Phys, 2001, 50(1): 183-193
    34 Cusack JC Jr, Liu R, Houston M, et al. Enhanced chemosensitivity to CPT-11 with proteasome inhibitor PS-341: implications for systemicnuclear factor-kappaB inhibition [J]. Cancer Res, 2001, 61(9): 3535-3540
    35 Rodriguez MS, Wright J, Thompson J, et al. Identification of lysine residues required for signal-induced ubiquitination and degradation of I kappa B-alpha in vivo [J]. Oncogene, 1996, 12(11): 2425-2435
    36 .Coux O, Goldberg AL. Enzymes catalyzing ubiquitination and proteolytic processing of the p105 precursor of nuclear factor kappaB1 [J]. J Biol Chem, 1998, 273(15): 8820-8828
    37 Wu L, Pu Z, Feng J, et al. The ubiquitin-proteasome pathway and enhanced activity of NF-kappaB in gastric carcinoma [J]. J Surg Oncol, 2008, 97(5): 439-444
    38 Lun M, Zhang PL, Pellitteri PK, et al. Nuclear factor-kappaB pathway as a therapeutic target in head and neck squamous cell carcinoma: pharmaceutical and molecular validation in human cell lines using Velcade and siRNA/NF-kappaB [J]. Ann Clin Lab Sci, 2005, 35(3): 251-258
    39 Mitsiades CS, McMillin D, Kotoula V, et al. Antitumor effects of the proteasome inhibitor bortezomib in medullary and anaplastic thyroid carcinoma cells in vitro [J]. J Clin Endocrinol Metab, 2006, 91(10): 4013-4021
    40王庆伟,刘宏,梁业民,等.硼替佐米对喉鳞状细胞癌细胞的放射增敏作用的体内外研究[J].中华耳鼻咽喉头颈外科杂志, 2008, 43(6):456-459
    41 Li B, Dou QP. Bax degradation by the ubiquitin/proteasome-dependent pathway: involvement in tumor survival and progression [J]. Proc Natl Acad Sci, 2000, 97(8): 3850-3855
    42 Zhang XM, Lin H, Chen C, et al. Inhibition of ubiquitin-proteasome pathway activates a caspase-3-like protease and induces Bcl-2 cleavage in human M-07e leukaemic cells [J]. Biochem J, 1999, 340 (1): 127-133
    43 Lara PN Jr, Bold RJ, Mack PC, et al. Proteasome inhibition in small-cell lung cancer: preclinical rationale and clinical applications [J]. Clin Lung Cancer, 2005, 7 Suppl 2: S67-71
    44 Zhong Q, Gao W, Du F, et al. Mule/ARF-BP1, a BH3-only E3 ubiquitinligase, catalyzes the polyubiquitination of Mcl-1 and regulates apoptosis [J]. Cell, 2005, 121(7): 1085-1095
    45 Li C, Li R, Grandis JR, et al. bortezomib induces apoptosis via Bim and Bik up-regulation and synergizes with cisplatin in the killing of the head and neck squamous cell carcinoma cells [J]. Mol Cancer Ther, 2008, 7(6): 1647-1655
    46 Yan XB, Yang DS, Gao X, et al. Caspase-8 dependent osteosarcoma cell apoptosis induced by proteasome inhibitor MG132 [J]. Cell Biol Int, 2007, 31(10): 1136-1143
    47 SUFAN R I, JEWETTMA, OHHM. The role of von HippelLindau tumor suppressor protein and hypoxia in renal clear cell carcinoma [J]. Am J Physiol Renal Physiol, 2004, 287(1):1-6
    48 Jung JE, Kim HS, Lee CS, et al. STAT3 inhibits the degradation of HIF-1alpha by pVHL-mediated ubiquitination [J]. Exp Mol Med, 2008, 40(5): 479-485
    49 Nakajima K, Yamanaka Y, Nakae K, et al. A central role for Stat3 in IL-6-induced regulation of growth and differentiation in M1 leukemia cells [J]. EMBO J, 1996, 15: 3651-3658
    50 Malek RL, Halvorsen SW. Ciliary neurotrophic factor and phorbol ester each decrease selected STAT3 pools in neuroblastoma cells by proteasome-dependent mechanisms [J]. Cytokine, 1999, 11(3): 192-199
    51 Xiong H, Zhang ZG, Tian XQ, et al. Inhibition of JAK1, 2/STAT3 signaling induces apoptosis, cell cycle arrest, and reduces tumor cell invasion in colorectal cancer cells [J]. Neoplasia, 2008, 10(3):287-297
    52 Ungureanu D, Silvennoinen O. SLIM trims STATs: ubiquitin E3 ligases provide insights for specificity in the regulation of cytokine signaling [J]. Sci STKE, 2005, 2005(304): pe49
    53 Tanaka T, Soriano MA, Grusby MJ. SLIM is a nuclear ubiquitin E3 ligase that negatively regulates STAT signaling [J]. Immunity, 2005, 22(6): 729-736
    54 Ungureanu D, Saharinen P, Junttila I, et al. Regulation of Jak2 through theubiquitin-proteasome pathway involves phosphorylation of Jak2 on Y1007 and interaction with SOCS-1 [J]. Mol Cell Biol, 2002, 22(10):3316-3326
    55 Callus BA, Mathey-Prevot B. Interleukin-3 induced activation of the JAK/STAT pathway is prolonged by proteasome inhibitors [J]. Blood, 1998, 91(9): 3182-3192
    56 Rajkumar SV, Richardson PG, Hideshima T, et al. Proteasome inhibition as a novel therapeutic target in human cancer [J]. J Clin Oncol, 2005, 23(3): 630-639
    1 Hoeller D, Dikic I. Targeting the ubiquitin system in cancer therapy [J]. Nature, 2009, 458(7237): 438-444
    2 Rajkumar SV, Richardson PG, Hideshima T, et al. Proteasome inhibition as a novel therapeutic target in human cancer [J]. J Clin Oncol, 2005, 23(3): 630-639
    3 Adams J, Behnke M, Chen S W, et al. Potent and selective inhibitors of the proteasome : dipeptidyl boronic acids [J]. Bioorg Med Chem Lett, 1998, 8(4): 333-338
    4 Kisselev AF, Goldberg AL. Preteasome inhibitors: from research tools to drug candidates [J]. Chem Biol, 2001, 8(8): 739-758
    5 Groll M, Berkers CR, Ploegh HL, et al. Crystal structure of the boronic acid-based proteasome inhibitor bortezomib in complex with the yeast 20S proteasome [J]. Structure, 2006, 14(3): 451-456
    6 Kessler BM, Tortorella D, Altun M, et al. Extended peptide-based inhibitors efficiently target the proteasome and reveal overlapping specificities of the catalytic beta-subunits [J]. Chem Biol, 2001, 8(9): 913-929
    7 Groll M, Koguchi Y, Huber R, et al. Crystal structure of the 20S proteasome: TMC-95A complex: a non-covalent proteasome inhibitor [J]. J Mol Biol, 2001, 311(3): 543-548
    8 Richardson PG, Barlogie B, Berenson J, et al. A Phase 2 study of bortezomib in relapsed, refractory myeloma [J]. N Engl J Med, 2003, 348(26): 2609-2617
    9 Jagannath S, Barlogie B, Berenson J, et al. A phase 2 study of two doses of bortezomib in relapsed or refractory myeloma [J]. Br J Haematol, 2004, 127(2): 165-172
    10 Richardson PG, Sonneveld P, Schuster MW, et al. Bortezomib or high-dose dexamethasone for relapsed multiple myeloma [J]. N Engl J Med, 2005, 352(24):2487-2498
    11 Orlowski RZ, Voorhees PM, Garcia RA, et al. Phase 1 trial of the proteasome inhibitor bortezomib and pegylated liposomal doxorubicin in patients with advanced hematologic malignancies [J]. Blood, 2005, 105(8): 3058-3065
    12 Ciolli S, Leoni F, Gigli F, et al. Low dose Velcade, thalidomide and dexamethasone (LD-VTD): an effective regimen for relapsed and refractory multiple myeloma patients [J]. Leuk Lymphoma, 2006, 47(1): 171-173
    13 Berenson JR, Yang HH, Sadler K, et al. Phase I/II trial assessing bortezomib and melphalan combination therapy for the treatment of patients with relapsed or refractory multiple myeloma [J]. J Clin Oncol, 2006, 24(6):937-944
    14 Davies FE, Wu P, Jenner M, et al. The combination of cyclophosphamide, velcade and dexamethasone induces high response rates with comparable toxicity to velcade alone and velcade plus dexamethasone [J]. Haematologica, 2007, 92(8): 1149-1150
    15 Chanan-Khan A, Miller KC, Musial L, et al. Bortezomib in combination with pegylated liposomal doxorubicin and thalidomide is an effective steroid independent salvage regimen for patients with relapsed or refractory multiple myeloma: results of a phase II clinical trial [J]. Leuk Lymphoma, 2009, 50(7): 1096-1101
    16 Kim YK, Sohn SK, Lee JH, et al. Clinical efficacy of a bortezomib, cyclophosphamide, thalidomide, and dexamethasone (Vel-CTD) regimen in patients with relapsed or refractory multiple myeloma: a phase II study [J]. Ann Hematol, 2010, 89(5): 475-482
    17高珊,付蓉,关晶,等. VDZ方案治疗多发性骨髓瘤疗效观察[J].肿瘤, 2009, 29(6):585-588
    18 Leonard JP, Furman RR, Coleman M. Proteasome inhibition with bortezomib: a new therapeutic strategy for non-Hodgkin's lymphoma [J]. Int J Cancer, 2006, 119(5): 971-979
    19 O'Connor OA, Wright J, Moskowitz C, et al. Phase II clinical experiencewith the novel proteasome inhibitor bortezomib in patients with indolent non-Hodgkin's lymphoma and mantle cell lymphoma [J]. J Clin Oncol, 2005, 23(4): 676-684
    20 Goy A, Younes A, McLaughlin P, et al. Phase II study of proteasome inhibitor bortezomib in relapsed or refractory B-cell non-Hodgkin's lymphoma [J]. J Clin Oncol, 2005, 23(4): 667-675
    21 Fisher RI, Bernstein SH, Kahl BS, et al. Multicenter phase II study of bortezomib in patients with relapsed or refractory mantle cell lymphoma [J]. J Clin Oncol, 2006, 24(30): 4867-4874
    22 Belch A, Kouroukis CT, Crump M, et al. A phase II study of bortezomib in mantle cell lymphoma: the National Cancer Institute of Canada Clinical Trials Group trial IND.150 [J]. Ann Oncol, 2007, 18(1): 116-121
    23 Wang M, Han XH, Zhang L, et al. Bortezomib is synergistic with rituximab and cyclophosphamide in inducing apoptosis of mantle cell lymphoma cells in vitro and in vivo [J]. Leukemia, 2008, 22(1):179-185
    24 Alinari L, White VL, Earl CT, et al. Combination bortezomib and rituximab treatment affects multiple survival and death pathways to promote apoptosis in mantle cell lymphoma [J]. MAbs, 2009, 1(1): 31-40
    25 Barr PM, Fu P, Lazarus HM, et al. Phase I trial of fludarabine, bortezomib and rituximab for relapsed and refractory indolent and mantle cell non-Hodgkin lymphoma [J]. Br J Haematol, 2009, 147(1): 89-96
    26 Weigert O, Weidmann E, Mueck R, et al. A novel regimen combining high dose cytarabine and bortezomib has activity in multiply relapsed and refractory mantle cell lymphoma - long-term results of a multicenter observation study [J]. Leuk Lymphoma, 2009, 50(5): 716-722
    27 Zhao X, Qiu W, Kung J, et al. Bortezomib induces caspase-dependent apoptosis in Hodgkin lymphoma cell lines and is associated with reduced c-FLIP expression: a gene expression profiling study with implications for potential combination therapies [J]. Leuk Res, 2008, 32(2): 275-285
    28 Blum KA, Johnson JL, Niedzwiecki D, et al. Single agent bortezomib in the treatment of relapsed and refractory Hodgkin lymphoma: cancer andleukemia Group B protocol 50206 [J]. Leuk Lymphoma, 2007, 48(7): 1313-1319
    29 Meli M, D'Alessandro N, Tolomeo M, et al. NF-kappaB inhibition restores sensitivity to Fas-mediated apoptosis in lymphoma cell lines [J]. Ann N Y Acad Sci, 2003, 1010: 232-236
    30 Guzman ML, Swiderski CF, Howard DS, et al. Preferential induction of apoptosis for primary human leukemic stem cells [J]. Proc Natl Acad Sci U S A, 2002, 99(25):16220-16225
    31 Horton TM, Gannavarapu A, Blaney SM, et al. Bortezomib interactions with chemotherapy agents in acute leukemia in vitro [J]. Cancer Chemother Pharmacol, 2006, 58(1): 13-23
    32 Fuchs O, Provaznikova D, Marinov I, et al. Antiproliferative and proapoptotic effects of proteasome inhibitors and their combination with histone deacetylase inhibitors on leukemia cells [J]. Cardiovasc Hematol Disord Drug Targets, 2009, 9(1): 62-77
    33孙立石,洪振亚,韩志强,等.硼替佐米联用组蛋白去乙酰化酶抑制剂诱导血液肿瘤细胞凋亡的效率[J].华中科技大学学报(医学版), 2008, 37(2):185-188, 203
    34 Cortes J, Thomas D, Koller C, et al. Phase I study of bortezomib in refractory or relapsed acute leukemias [J]. Clin Cancer Res, 2004, 10(10): 3371-3376
    35 Horton TM, Pati D, Plon SE, et al. A phase 1 study of the proteasome inhibitor bortezomib in pediatric patients with refractory leukemia: a Children's Oncology Group study [J]. Clin Cancer Res, 2007, 13(5): 1516-1522
    36 Attar EC, De Angelo DJ, Supko JG, et al. Phase I and pharmacokinetic study of bortezomib in combination with idarubicin and cytarabine in patients with acute myelogenous leukemia [J]. Clin Cancer Res, 2008, 14(5): 1446-1454
    37 Kelley TW, Alkan S, Srkalovic G, et al. Treatment of human chronic lymphocytic leukemia cells with the proteasome inhibitor bortezomibpromotes apoptosis [J]. Leuk Res, 2004, 28(8): 845-850
    38 Duechler M, Shehata M, Schwarzmeier JD, et al. Induction of apoptosis by proteasome inhibitors in B-CLL cells is associated with downregulation of CD23 and inactivation of Notch2 [J]. Leukemia, 2005, 19(2): 260-267
    39 Pahler JC, Ruiz S, Niemer I, et al. Effects of the proteasome inhibitor, bortezomib, on apoptosis in isolated lymphocytes obtained from patients with chronic lymphocytic leukemia [J]. Clin Cancer Res, 2003, 9(12): 4570-4577
    40 Faderl S, Rai K, Gribben J, et al. Phase II study of single-agent bortezomib for the treatment of patients with fludarabine-refractory B-cell chronic lymphocytic leukemia [J]. Cancer, 2006, 107(5): 916-924
    41 Smolewski P, Duechler M, Linke A, et al. Additive cytotoxic effect of bortezomib in combination with anti-CD20 or anti-CD52 monoclonal antibodies on chronic lymphocytic leukemia cells [J]. Leuk Res, 2006, 30(12): 1521-1529
    42 Yu C, Friday BB, Lai JP, et al. Cytotoxic synergy between the multikinase inhibitor sorafenib and the proteasome inhibitor bortezomib in vitro: induction of apoptosis through Akt and c-Jun NH2-terminal kinase pathways [J]. Mol Cancer Ther, 2006, 5(9): 2378-2387
    43 Yu C, Rahmani M, Conrad D, et al. The proteasome inhibitor bortezomib interacts synergistically with histone deacetylase inhibitors to induce apoptosis in Bcr/Abl+ cells sensitive and resistant to STI571 [J]. Blood, 2003, 102(10): 3765-3774
    44 Gatto S, Scappini B, Pham L, et al. The proteasome inhibitor PS-341 inhibits growth and induces apoptosis in Bcr/Abl-positive cell lines sensitive and resistant to imatinib mesylate [J]. Haematologica, 2003, 88(8): 853-863
    45 Hu Z, Pan XF, Wu FQ, et al. Synergy between proteasome inhibitors and imatinib mesylate in chronic myeloid leukemia [J]. PLoS One, 2009, 4(7):e6257
    46 Fanucchi MP, Fossella FV, Belt R, et al. Randomized phase II study ofbortezomib alone and bortezomib in combination with docetaxel in previously treated advanced non-small-cell lung cancer [J]. J Clin Oncol, 2006, 24(31): 5025-5033
    47 Davies AM, Ruel C, Lara PN, et al. The proteasome inhibitor bortezomib in combination with gemcitabine and carboplatin in advanced non-small cell lung cancer: a California Cancer Consortium Phase I study [J]. J Thorac Oncol, 2008, 3(1): 68-74
    48 Davies AM, Chansky K, Lara PN Jr, et al. Bortezomib plus gemcitabine/carboplatin as first-line treatment of advanced non-small cell lung cancer: a phase II Southwest Oncology Group Study (S0339) [J]. J Thorac Oncol, 2009, 4(1):87-92
    49 Davies AM, Ho C, Metzger AS, et al. Phase I study of two different schedules of bortezomib and pemetrexed in advanced solid tumors with emphasis on non-small cell lung cancer [J]. J Thorac Oncol, 2007, 2(12): 1112-1116
    50 Wu WK, Sung JJ, Wu YC, et al. Bone morphogenetic protein signalling is required for the anti-mitogenic effect of the proteasome inhibitor MG-132 on colon cancer cells [J]. Br J Pharmacol, 2008, 154(3): 632-638
    51 Pitts TM, Morrow M, Kaufman SA, et al. Vorinostat and bortezomib exert synergistic antiproliferative and proapoptotic effects in colon cancer cell models [J]. Mol Cancer Ther, 2009, 8(2): 342-349
    52 Mackay H, Hedley D, Major P, et al. A phase II trial with pharmacodynamic endpoints of the proteasome inhibitor bortezomib in patients with metastatic colorectal cancer [J]. Clin Cancer Res, 2005, 11(15): 5526-5533
    53 Kozuch PS, Rocha-Lima CM, Dragovich T, et al. Bortezomib with or without irinotecan in relapsed or refractory colorectal cancer: results from a randomized phase II study [J]. J Clin Oncol, 2008, 26(14): 2320-2326
    54 Caponigro F, Lacombe D, Twelves C, et al. An EORTC phase I study of Bortezomib in combination with oxaliplatin, leucovorin and 5-fluorouracil in patients with advanced colorectal cancer [J]. Eur J Cancer, 2009, 45(1):48-55
    55 Kondagunta GV, Drucker B, Schwartz L, et al. Phase II trial of bortezomib for patients with advanced renal cell carcinoma [J]. J Clin Oncol, 2004, 22(18): 3720-3725
    56 Davis NB, Taber DA, Ansari RH, et al. Phase II trial of PS-341 in patients with renal cell cancer: a University of Chicago phase II consortium study [J]. J Clin Oncol, 2004, 22(1): 115-119
    57 Yu C, Friday BB, Lai JP, et al. Cytotoxic synergy between the multikinase inhibitor sorafenib and the proteasome inhibitor bortezomib in vitro: induction of apoptosis through Akt and c-Jun NH2-terminal kinase pathways [J]. Mol Cancer Ther, 2006, 5(9): 2378-2387
    58 An J, Rettig MB. Epidermal growth factor receptor inhibition sensitizes renal cell carcinoma cells to the cytotoxic effects of bortezomib [J]. Mol Cancer Ther, 2007, 6(1): 61-69
    59 Nawrocki ST, Carew JS, Pino MS, et al. Bortezomib sensitizes pancreatic cancer cells to endoplasmic reticulum stress-mediated apoptosis [J]. Cancer Res, 2005, 65(24): 11658-11666
    60 Bazzaro M, Lee MK, Zoso A, et al. Ubiquitin-proteasome system stress sensitizes ovarian cancer to proteasome inhibitor-induced apoptosis [J]. Cancer Res, 2006, 66(7): 3754-3763
    61 Bazzaro M, Lin Z, Santillan A, et al. Ubiquitin proteasome system stress underlies synergistic killing of ovarian cancer cells by bortezomib and a novel HDAC6 inhibitor [J]. Clin Cancer Res, 2008, 14(22): 7340-7347
    62 Wu WK, Sung JJ, Yu L, et al. Proteasome inhibitor MG-132 lowers gastric adenocarcinoma TMK1 cell proliferation via bone morphogenetic protein signaling [J]. Biochem Biophys Res Commun, 2008, 371(2): 209-214
    63 Tahmatzopoulos A, Gudegast C, Stockle M., et al. Proteasome inhibitors: induction of apoptosis as new therapeutic option in prostate cancer [J]. Aktuelle Urol, 2004, 35(6): 491-496
    64 Wang Y, Rishi AK, Puliyappadamba VT, et al. Targeted proteasome inhibition by Velcade induces apoptosis in human mesothelioma and breastcancer cell lines [J]. Cancer Chemother Pharmacol, 2009, Dec 4. [Epub ahead of print]
    65 Lun M, Zhang PL, Pellitteri PK, et al. Nuclear factor-kappaB pathway as a therapeutic target in head and neck squamous cell carcinoma: pharmaceutical and molecular validation in human cell lines using Velcade and siRNA/NF-kappaB [J]. Ann Clin Lab Sci, 2005, 35(3): 251-258
    66 Mitsiades CS, McMillinD, KotoulaV, et al. Antitumor effects of the proteasome inhibitor bortezomib in medullary and anaplastic thyroid carcinoma cells in vitro [J]. J Clin Endocrinol Metab, 2006, 91(10): 4013-4021
    67 Allen C, Saigal K, Nottingham L, et al. Bortezomib-induced apoptosis with limited clinical response is accompanied by inhibition of canonical but not alternative nuclear factor-kappaB subunits in head and neck cancer [J]. Clin Cancer Res, 2008, 14(13): 4175-4185
    68 Fribley A, Zeng Q, Wang CY. Proteasome inhibitor PS-341 induces apoptosis through induction of endoplasmic reticulum stress-reactive oxygen species in head and neck squamous cell carcinoma cells [J]. Mol Cell Biol, 2004, 24(22): 9695-9704
    69 Wagenblast J, Hambek M, Baghi M, et al. Effect of bortezomib on EGFR expression in head and neck squamous cell carcinoma cell lines [J]. Anticancer Res, 2008, 28(2A): 687-692
    70 Wagenblast J, Baghi M, Arnoldner C, et al. Cetuximab enhances the efficacy of bortezomib in squamous cell carcinoma cell lines [J]. J Cancer Res Clin Oncol, 2009, 135(3): 387-393
    71 Duan J, Friedman J, Nottingham L, et al. Nuclear factor-kappaB p65 small interfering RNA or proteasome inhibitor bortezomib sensitizes head and neck squamous cell carcinomas to classic histone deacetylase inhibitors and novel histone deacetylase inhibitor PXD101 [J]. Mol Cancer Ther, 2007, 6(1): 37-50
    72 Li C, Li R, Grandis JR, et al. bortezomib induces apoptosis via Bim and Bik up-regulation and synergizes with cisplatin in the killing of the headand neck squamous cell carcinoma cells [J]. Mol Cancer Ther, 2008, 7(6): 1647-1655
    73 Wagenblast J, Hambek M, Baghi M, et al. Antiproliferative activity of bortezomib alone and in combination with cisplatin or docetaxel in head and neck squamous cell carcinoma cell lines [J]. J Cancer Res Clin Oncol, 2008, 134(3): 323-330
    74 Wagenblast J, Baghi M, Arnoldner C, et al. Effects of combination treatment of bortezomib and dexamethasone in SCCHN cell lines depend on tumor cell specificity [J]. Oncol Rep, 2008, 20(5): 1207-1211
    75王庆伟,刘宏,梁业民,等.硼替佐米对喉鳞状细胞癌细胞的放射增敏作用的体内外研究[J].中华耳鼻咽喉头颈外科杂志, 2008, 43(6):456-459
    76 Van Waes C, Chang AA, Lebowitz PF, et al. Inhibition of nuclear factor-kappaB and target genes during combined therapy with proteasome inhibitor bortezomib and reirradiation in patients with recurrent head-and-neck squamous cell carcinoma [J]. Int J Radiat Oncol Biol Phys, 2005, 63(5): 1400-1412

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700