用户名: 密码: 验证码:
COPD人肺成纤维细胞IL-6、IL-8、弹性蛋白的生成及其炎症调节的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
[目的]
     成纤维细胞是肺的重要结构细胞,并在肺组织破坏后的修复和/或重构中起着重要作用。近年来认为成纤维细胞也参与炎症反应,例如成纤维细胞在风湿性关节炎等疾病中参与局部炎症反应网络的调控。目前关于肺成纤维细胞炎症反应和修复功能关系的相关研究较少。为此,本研究拟评价慢性阻塞性肺疾病(COPD)患者肺成纤维细胞炎症因子水平、增殖能力和弹性蛋白合成的情况;在此基础上深入探讨脂多糖(LPS)、肿瘤坏死因子-α(TNF-α)、凋亡细胞、坏死细胞等常见炎症刺激对人肺成纤维细胞分泌细胞因子和增殖功能的影响,并观察低剂量茶碱的调节作用。
     [方法]
     (1)从因肺癌等手术切除标本的正常肺组织中分离培养原代人肺成纤维细胞,建立细胞株库,取第2、3代细胞进行进一步实验和检测。所有组织及其应用按照伦理学要求获取知情同意签字后实施。根据术前肺功能将研究对象分为非COPD、COPDⅠ-Ⅲ级。通过对照研究评价COPD患者肺成纤维细胞白介素(IL)-6和IL-8的mRNA和蛋白水平、增殖能力以及弹性蛋白合成。
     (2)将人肺成纤维细胞分别和1μg/ml LPS、1ng/ml TNF-α、凋亡细胞或坏死细胞共培养24h后收集培养液上清,并裂解细胞提取RNA保存备测。
     (3)在人肺成纤维细胞培养中加入凋亡细胞或坏死细胞,通过多重免疫荧光染色共聚焦显像分析肺成纤维细胞的吞噬功能。
     (4)采用逆转录实时定量聚合酶链反应(qRT-PCR)检测IL-6、IL-8、组蛋白去乙酰基酶2(HDAC2)和弹性蛋白的mRNA转录水平
     (5)使用酶联免疫吸附法(ELISA)测定细胞培养液上清中的TNF-α、IL-6、转化生长因子(TGF)-β1、TGF-β2、TGF-β3、IL-8、IL-12p70、IL-1β以及IL-10。
     (6)使用Fastin Elastin Assay定量检测弹性蛋白浓度。
     (7)用AlamarBlue(?) (AB)法检测LPS、TNF-α、IL-8、IL-6以及经LPS预处理的巨噬细胞条件培养液对人肺成纤维细胞增殖的影响。
     (8)检测低剂量茶碱(5μg/ml)对LPS引起的肺成纤维细胞IL-6、IL-8分泌、HDAC2 mRNA转录以及增殖能力的影响。
     (9)用GraphPad Prism 5.0 for Windows进行统计学分析。符合正态分布的数据以平均值±标准差表示;未通过正态分布检验的数据以中位数(最小值,最大值)表示,其中部分增殖实验结果以中位数(25%四分位数,75%四分位数)表示。根据是否正态分布以及统计分析类型选择相应的统计学方法。P<0.05为有显著性差异。
     [结果]
     (1)分离得到的原代细胞在显微镜下具有成纤维细胞的典型形态,细胞免疫荧光染色显示99%以上的细胞表达波形蛋白;而细胞角蛋白、von Willebrand因子、结蛋白染色阴性则证明无上皮细胞、间皮细胞、内皮细胞或平滑肌细胞混杂,说明原代分离的人肺成纤维细胞纯度高。
     (2)在COPD人肺成纤维细胞研究部分,根据肺功能情况分为COPD s组(包括GOLDⅡ、Ⅲ级)和对照组(包括非COPD和GOLDⅠ级),两组在年龄、性别、吸烟史方面无显著性差异。COPDs组(12例)和对照组(10例)FEV1占预计值%分别为(59.8±9.5)%和(92.3±8.4)%,FEV1/FVC%分别为(54.9±8.3)%和(73.6±10.8)%,P值均<0.001。
     (3) qRT-PCR显示COPDs组人肺成纤维细胞IL-6和IL-8的mRNA转录均显著高于对照组,与之相对应的,其蛋白分泌量也明显升高,分别为(701.6±288.0)pg/ml vs (355.7±330.8) pg/ml (P=0.02)和(754.3±297.4) pg/ml vs (373.4±243.1) pg/ml (P=0.02)。IL-6、IL-8的转录及分泌水平和FEV1占预计值%和FEV1/FVC%均呈负相关。
     (4) COPDs组人肺成纤维细胞体外增殖能力弱于对照组(1.18±0.32 vs1.63±0.22,P=0.004)。
     (5) COPDs组人肺成纤维细胞弹性蛋白mRNA代偿性表达升高[6.194(3.118,33.000) vs 2.241(0.916,22.140),P=0.0276],伴随可溶性弹性蛋白升高[(26.40±6.50)μg/ml vs (15.00±3.90)μg/ml, P=0.001)],但是不可溶性弹性蛋白无差别。
     (6)在1μg/ml LPS刺激24h后人肺成纤维细胞分泌IL-6的水平从(1156±455)pg/ml上升至(1535±439) pg/ml (P=0.0046); IL-8从(510.5±170.6) pg/ml上升至(856.5±418.8) pg/ml (P=0.0122); TGF-β1从(1188±623) pg/ml上升至(1773±847) pg/ml (P=0.0038)。IL-1β、TNF-α、IL-12p70、IL-10和TGF-β2基础分泌较低,TGF-β3测不到;其中TGF-β2有较大幅度上升(P=0.0274),IL-1β有小幅度升高(P=0.0027),IL-10从(37.6±17.9) pg/ml下降至(25.1±7.5) pg/ml (P=0.0382),而TNF-α和IL-12p70则基本无改变。
     (7)加入1ng/ml TNF-α培养24h后体外人肺成纤维细胞也出现了和LPS刺激相仿的反应,其中以IL-8上升尤为明显,具体表现为IL-6从(1066±305) pg/ml上升至(1398±466) pg/ml (P=0.0358)、IL-8从(532.3±71.7) pg/ml上升至(1660.0±389.2) pg/ml (P=0.0009)、TGF-β1从(218.9±32.6) pg/ml上升至(247.9±29.4) pg/ml (P=0.0495)。
     (8) qRT-PCR结果显示HDAC2 mRNA在人肺成纤维细胞的相对表达量在LPS刺激后从3.546(0.511,8.886)下降至1.793(0.174,3.284)(P=0.0355);TNF-α刺激后HDAC2 mRNA表达略下降,从1.057(0.090,8.886)至0.933(0.073,2.965),但无显著性差异(P=0.0625)。
     (9)人肺成纤维细胞具有吞噬周围的凋亡细胞和坏死细胞的能力,并在和凋亡细胞接触24h后IL-6从(991.9±463.8) pg/ml上升至(1616.0±216.5) pg/ml(P<0.01)。和坏死细胞共培养24h后,则出现IL-8从(371.5±57.74) pg/ml上升至(740.0±204.7) pg/ml (P<0.01); IL-1β和IL-10基础分泌水平较低,前者上升,而后者有下降,P值均小于0.05。
     (10)LPS共培养48h对人肺成纤维细胞的增殖有抑制作用,并且这种抑制作用随着浓度和时间的增加而增加。当浓度达到0.1μg/ml时,抑制幅度为4%左右(P=0.0306);浓度为1μg/ml时抑制幅度约为8%(P=0.0112);作用时间达到24h时抑制作用开始具有显著性差异。TNF-α对体外人肺成纤维细胞的增殖功能的抑制作用有剂量依赖效应,10ng/ml时抑制程度约为10%(P=0.0241);IL-8和IL-6具有相似效应。经LPS预处理的巨噬细胞条件培养液对人肺成纤维细胞的增殖能力有抑制作用(P<0.05)。
     (11)在低剂量茶碱作用研究部分,IL-6从无干预对照组的(1150±426) pg/ml上升至LPS组的(1559±406) pg/ml (P<0.001);而茶碱+LPS组为(1336±400)pg/ml,较LPS组低(P<0.05)。IL-8的趋势和IL-6相似,空白对照组、LPS组、茶碱+LPS组分别为(560±205)pg/ml、(1087±359) pg/ml和(933±338)pg/ml。但是5μg/ml茶碱不影响细胞的HDAC2 mRNA水平,对1μg/ml LPS引起的HDAC2 mRNA下调也无作用。在0.1-10μg/ml的浓度范围内茶碱对人肺成纤维细胞的增殖能力无影响,而在LPS刺激的同时加入5μg/ml茶碱可以改善LPS导致的细胞增殖抑制(P<0.05)。
     [结论]
     (1) COPD患者肺成纤维细胞IL-6和IL-8的合成分泌上调,其水平和肺功能呈负相关;伴随着细胞增殖功能受损以及可溶性弹性蛋白向不可溶性弹性蛋白转化的障碍,说明人肺成纤维细胞参与COPD的炎症反应,同时修复功能受损。
     (2)在受到LPS和TNF-α刺激后,体外人肺成纤维细胞出现以IL-6、IL-8、TGF-β1升高为特征的改变;人肺成纤维细胞能够吞噬凋亡细胞和坏死细胞,并释放不同的细胞因子,前者以IL-6分泌上升为主,而后者表现为IL-8、IL-1β上升、IL-10下调,这提示人肺成纤维细胞可以随着局部环境的变化释放不同的细胞因子从而参与炎症反应的调节。LPS引起的细胞因子释放和HDAC2转录下调有关。
     (3) LPS、TNF-α、IL-6、IL-8以及经LPS预处理的巨噬细胞条件培养液对人肺成纤维细胞增殖功能有抑制作用,这说明LPS可以直接或者通过炎性细胞因子以自分泌和旁分泌的形式抑制人肺成纤维细胞的增殖能力。
     (4)低剂量茶碱能够部分阻断LPS引起的人肺成纤维细胞IL-6和IL-8分泌,并改善其对增殖能力的抑制。
OBJECTIVE
     Fibroblasts are major cells responsible for the production and maintenance of extracellular matrix. Apart from the functions in tissue repair and reconstruction, recent research has demonstrated that fibroblasts participate in the modulation of local inflammation in diseases associated with chronic inflammation such as rheumatic arthritis. Regarding the relationship between the inflammatory response and injury repair capacity of human lung fibroblasts, data is limited. The current study therefore was designed to investigate the cytokine secretion, cellular proliferation and elatin synthesis of lung fibroblasts from subjects with chronic obstructive pulmonary disease (COPD). Furthermore, the response of primary human lung fibroblasts to the common inflammatory stimuli including lipopolysaccharide (LPS), tumor necrosis factor-a (TNF-a), apoptosis cells and necrotic cells were studied. In addition, the effect of low-dose theophylline on the LPS initiated alterations in lung fibroblasts was analyzed.
     METHODS
     (1) Primary human lung fibroblasts were isolated and cultured from surgical peripheral lesion free lung tissue for further in vitro investigation. Samples were collected after written informed consent for the acquisition of material for research was obtained according to the ethnical principles. Based on preoperative lung function, the subjects were divided into non-COPD, COPD stageⅠ-Ⅲ. The mRNA and protein levels of IL-6 and IL-8 as well as proliferatory fuction and elatin systhesis of COPD lung fibroblasts were analysed using case-control design.
     (2) For the evaluation of the response to inflammatory stimuli, the primary human lung fibroblasts were co-cultured with 1μg/ml LPS, 1ng/ml TNF-α, apoptosis cells or necrotic cells for 24h resrespectively, and then the supernatants and RNA were obtained and kept for further analysis.
     (3) Multiple fluorescent staining and confocal microscopic technique was used to evaluate the phagocytic function of primary human lung fibroblasts.
     (4) The concentration of TNF-α, interleukin (IL)-6, IL-8, transforming growth factor (TGF)-β1, TGF-β2, TGF-β3, IL-12p70, IL-1βand IL-10 in supernatants were examined by enzyme linked immunosorbent assay (ELISA).
     (5) The mRNA transcription of IL-6, IL-8, histone deacetylase (HDAC) 2 and elastin was analyzed using reverse-transcription real-time quantitative polymerase chain reaction (qRT-PCR).
     (6) Insoluble and soluble elastin in cell culture was quantitied by Fastin Elastin Assay.
     (7) The AlamarBlue(?) (AB) assay was used for measuring cellular proliferation. The alterations in human lung fibroblast proliferation were examined after exposure to LPS, TNF-α, IL-8, IL-6 as well as conditioned medium from cultured macrophages that had been pretreated with LPS.
     (8) The effect of theophylline at the concentration of 5μg/ml on the IL-6 and IL-8 secretion, HDAC2 mRNA regulation and proliferation alteration induced by LPS was analyzed.
     (9) Statistics were performed using Prism 5 for windows. For normally distributed data, results are expressed as mean±SD. For abnormally distributed data, results are expressed as medians (range), with the exception of some proliferation data which are expressed as medians (25th percentile,75th percentile). Statistical methods were used for relavant kind of data. Differences were considered significant at the level of P<0.05.
     RESULTS
     (1) The primary cultured cells appeared to have typical morphology of fibroblast and immunostaining showed that>99% of the cells were vimentin positive. Staining with antibodies to cytokeratin, vonWillebrand factor, and desmin was negative, indicating that the cultures did not contain significant numbers of epithelial or mesothelial cells, endothelial cells, or smooth muscle cells.
     (2) Totally 22 subjects were included and divided into two groups, i.e. Controls (10 cases, including non COPD and GOLD stage 1 COPD) and COPDs (12 cases, including GOLD stage 2 and 3). The two groups were similar in age, gender and smoking status. The two groups differed significantly in lung function. As expected, the subjects in COPDs group had lower FEV1% predicted and FEV1/FVC% (p<0.001), with values as (59.8±9.5)% vs (92.3±8.4)% and (54.9±8.3)% vs (73.6±10.8)% respectively.
     (3) There was a significant increase in the expression of mRNA for IL-6 and IL-8 for human fibroblasts in COPDs group. In addition, protein levels were increased in the supernatants from the human fibroblasts in COPDs group compared with controls for IL-6 [(701.6±288.0) pg/ml vs (355.7±330.8) pg/ml, p=0.02] and for IL-8 [(754.3±297.4)pg/ml vs (373.4±243.1) pg/ml, p=0.02]. The mRNA expression and protein production of IL-6 and IL-8 was negatively correlated with FEV1 pred% and FEV1/FVC%.
     (4) The proliferation was lower in the human lung fibroblasts from COPDs group (1.18±0.32) than that from controls group (1.63±0.22) (p=0.004).
     (5) A significantly higher mRNA expression for elastin and protein level for soluble elatin was observed in human lung fibroblasts from COPDs group, however, no change was seen for insoluble elastin.
     (6) After exposure to 1μg/ml LPS for 24h, the concentration of IL-6 in human lung fibroblast supernatants increased from (1156±455) pg/ml to (1535±439) pg/ml (p=0.0046). A similar increase was observed for IL-8 [from (510.5±170.6) pg/ml to (856.5±418.8) pg/ml, p=0.0122] and TGF-β1 [(1188±623) pg/ml to (1773±847) pg/ml, p=0.0038]. The constitutional secretion of IL-1β、TNF-α、IL-12p70、IL-10 and TGF-β2 was low and TGF-β3 was undetectable. The level of TGF-β2 also increased by almost 50% with p value being 0.0274, while a small increase for IL-1β(p=0.0027). In contrast, IL-10, an anti-inflammatory cytokine, decreased from (37.6±17.9) pg/ml to (25.1±7.5) pg/ml (p=0.0382). No alteration was observed for TNF-a and IL-12p70.
     (7) In response to 24-hour incubation of 1ng/ml TNF-α, the IL-8 release by human lung fibroblasts increased by 2 folds from (532.3±71.7) pg/ml to (1660.0±389.2) pg/ml (p=0.0009). The concentration of IL-6 and TGF-β1 also went up.
     (8) A LPS induced down-regulation of HDAC2 mRNA in human lung fibroblast was shown by qRT-PCR, with the relative expression from 3.546 (0.511,8.886) to 1.793 (0.174,3.284) (p=0.0355). Atrend of down-regulation by TNF-αtreatment was also observed without statistical significance (p=0.0625).
     (9) A process of phagocytosis with apoptosis cells and necrotic cells was observed under confocal microscope. The apoptosis cells led to an increase of IL-6 in human lung fibroblasts, with the values from (991.9±463.8) pg/ml to (1616.0±216.5) pg/ml (p<0.01). For necrotic cells, a different cytokine profile was presented. Briefly, IL-8 and IL-1βwas increased and IL-10 was decreased.
     (10) LPS appeared to have an inhibitory effect on the human lung fibroblast proliferation. The inhibition was dose-dependent and time-dependent. The inhibition became significant (p<0.05) when the concentration of LPS reached 0.1μg/ml or incubation period was longer than 24h. The proliferation was inhibited by about 8%(p=0.0112) with the concentration at 1μg/ml for 24-48h. TNF-α, IL-6 and IL-8 had a significant dose-dependent inhibitory effect on the proliferation of human lung fibroblasts. The proliferation of human lung fibroblasts was consistently inhibited by LPS-pretreated macrophage conditioned medium (p<0.05).
     (11)Human lung fibroblasts were treated with 1μg/ml LPS or 1μg/ml LPS+5μg/ml theophylline or without treatment. The concentration of IL-6 for control, LPS treatment and LPS+theophylline treatment was (1150±426) pg/ml, (1559±406) pg/ml and (1336±400) pg/ml respectively (p<0.05). For IL-8, the value for different treatment was (560±205) pg/ml, (1087±359) pg/ml and (933±338) pg/ml (p<0.05). However, the HDAC2 mRNA was not altered by low-dose theophylline. Theophylline did not affect the fibroblast proliferation at the concentration of 0.1-10μg/ml. The theophylline of 5μg/ml alleviated the inhibition by LPS on proliferation (P<0.05).
     CONCLUSIONS
     (1) Primary human lung fibroblasts from subjects with COPD have an enhanced production of IL-6 and IL-8, associated with a profile of impaired proliferation and transformation from soluable elastin to insoluble elatin. This indicates that the up-regulated inflammation in lung fibroblasts is related to its insufficiency in injury repair function.
     (2) The current data demonstrate that human lung fibroblasts have increased IL-6, IL-8 and TGF-β1 release in response to LPS and TNF-α, accompanied with a down-regulation of HDAC2 transcription. In addition, the fibroblasts responses differently in cytokines production to different inflammatory stimulus, indicating that the fibroblasts could participate in the modulation of pulmonary inflammation by producing relevant cytokines.
     (3) LPS, TNF-α, IL-6, IL-8 and conditioned medium from LPS-pretreated macrophages can inhibit the proliferation of in vitro human lung fibroblasts, suggesting that the inflammation in milieu exert an effect on the function of lung fibroblasts.
     (4) Low-dose theophylline can partly block the increased production of IL-6 and IL-8 as well as inhibited proliferation initiated by LPS.
引文
1. Global Initiative for Chronic Obstructive Lung Disease. Workshop report:global strategy for the diagnosis, management and prevention of chronic obstructive pulmonary disease [internet] (updated 2009). Available from:www.goldcopd.com.
    2. Chung KF, Adcock IM. Multifaceted mechanisms in COPD:inflammation, immunity, and tissue repair and destruction.. Eur Respir J 2008;31:1334-56.
    3. Shifren A, Mecham RP. The Stumbling Block in Lung Repair of Emphysema: Elastic Fiber Assembly. Proc Am Thorac Soc 2006;3:428-33.
    4. Smith TJ. Insights into the role of fibroblasts in human autoimmune diseases. Clinical & Experimental Immunology 2005;141:388-97.
    5. Wupeng L, Zhang B, Chang C, Yu-Keung M, Wong WSF. Dendritic cell-derived interferon-gamma-induced protein mediates tumor necrosis factor-alpha stimulation of human lung fibroblasts. PROTEOMICS 2008;8:2640-50.
    6. Togo S, Holz O, Liu X, et al. Lung fibroblast repair functions in patients with chronic obstructive pulmonary disease are altered by multiple mechanisms. Am J Respir Crit Care Med 2008; 178:248-60.
    7. Flavell SJ, Hou TZ, Lax S, Filer AD, Salmon M, Buckley CD. Fibroblasts as novel therapeutic targets in chronic inflammation. Br J Pharmacol 2008; 153 Suppl 1:S241-6.
    8. Sharafkhaneh A, Hanania NA, Kim V. Pathogenesis of emphysema:from the bench to the bedside. Proc Am Thorac Soc 2008;5:475-7.
    9. Starcher BC. Lung elastin and matrix. Chest 2000;117:229S-34S.
    10. Shifren A, Durmowicz AG, Knutsen RH, Hirano E, Mecham RP. Elastin protein levels are a vital modifier affecting normal lung development and susceptibility to emphysema. Am J Physiol Lung Cell Mol Physiol 2007;292:L778-87.
    11. Suki B, Bates JH. Extracellular matrix mechanics in lung parenchymal diseases. Respir Physiol Neurobiol 2008;163:33-43.
    12. Muller KC, Welker L, Paasch K, et al. Lung fibroblasts from patients with emphysema show markers of senescence in vitro. Respir Res 2006;7:32.
    13. Global Initiative for Chronic Obstructive Lung Disease. Workshop report:global strategy for the diagnosis, management and prevention of chronic obstructive pulmonary disease [internet] (updated 2007). Available from:www.goldcopd.com.
    14. Webber MM, Trakul N, Thraves PS, et al. A human prostatic stromal myofibroblast cell line WPMY-1:a model for stromal-epithelial interactions in prostatic neoplasia. Carcinogenesis 1999;20:1185-92.
    15. Fink L, Seeger W, Ermert L, et al. Real-time quantitative RT-PCR after laser-assisted cell picking. Nat Med 1998;4:1329-33.
    16. Al-Nasiry S, Geusens N, Hanssens M, Luyten C, Pijnenborg R. The use of Alamar Blue assay for quantitative analysis of viability, migration and invasion of choriocarcinoma cells. Hum Reprod 2007;22:1304-9.
    17. Lancaster MV, Fields RD. Antibiotic and Cytotoxic Drug Susceptibility Assays using Resazurin and Poising Agents. U.S. Patent No.5,501,959.1996.
    18. Profita M, Bonanno A, Siena L, et al. Smoke, choline acetyltransferase, muscarinic receptors, and fibroblast proliferation in chronic obstructive pulmonary disease. J Pharmacol Exp Ther 2009;329:753-63.
    19. Rao KM, Ma JY, Meighan T, Barger MW, Pack D, Vallyathan V. Time course of gene expression of inflammatory mediators in rat lung after diesel exhaust particle exposure. Environ Health Perspect 2005;113:612-7.
    20. Snider GL. Clinical relevance summary:Collagen vs elastin in pathogenesis of emphysema; cellular origin of elastases; bronchiolitis vs emphysema as a cause of airflow obstruction. Chest 2000;117:244S-6S.
    21. Ward JE, Harris T, Bamford T, et al. Proliferation is not increased in airway myofibroblasts isolated from asthmatics. Eur Respir J 2008;32:362-71.
    22. Wise SG, Weiss AS. Tropoelastin. The International Journal of Biochemistry & Cell Biology 2009;41:494-7.
    23. Deslee G, Woods JC, Moore CM, et al. Elastin expression in very severe human COPD. Eur Respir J 2009;34:324-31.
    24. Michel O. Role of lipopolysaccharide (LPS) in asthma and other pulmonary conditions. Journal of Endotoxin Research 2003;9:293-300.
    25. Mizutani N, Fuchikami J, Takahashi M, Nabe T, Yoshino S, Kohno S. Pulmonary Emphysema Induced by Cigarette Smoke Solution and Lipopolysaccharide in Guinea Pigs. Biol Pharm Bull 2009;32:1559-64.
    26. Meng QR, Gideon KM, Harbo SJ, et al. Gene Expression Profiling in Lung Tissues from Mice Exposed to Cigarette Smoke, Lipopolysaccharide, or Smoke Plus Lipopolysaccharide by Inhalation. Inhalation Toxicology 2006;18:555-68.
    27. Land SC, Darakhshan F. Thymulin evokes IL-6-C/EBPbeta regenerative repair and TNF-alpha silencing during endotoxin exposure in fetal lung explants. Am J Physiol Lung Cell Mol Physiol 2004;286:L473-87.
    28. Freudenberg MA, Tchaptchet S, Keck S, et al. Lipopolysaccharide sensing an important factor in the innate immune response to Gram-negative bacterial infections: Benefits and hazards of LPS hypersensitivity. Immunobiology 2008;213:193-203.
    29. Kent LM, Smyth LJC, Plumb J, et al. Inhibition of Lipopolysaccharide-Stimulated Chronic Obstructive Pulmonary Disease Macrophage Inflammatory Gene Expression by Dexamethasone and the p38 Mitogen-Activated Protein Kinase Inhibitor N-cyano-N'-(2-{[8-(2,6-difluorophenyl)-4-(4-fluoro-2-methylphenyl)-7-oxo-7,8-dihy dropyrido[2,3-d] pyrimidin-2-yl]amino}ethyl)guanidine (SB706504). J Pharmacol Exp Ther 2009;328:458-68.
    30. Wright JL, Cosio M, Churg A. Animal models of chronic obstructive pulmonary disease. Am J Physiol Lung Cell Mol Physiol 2008;295:L1-15.
    31. Vernooy JHJ, Dentener MA, van Suylen RJ, Buurman WA, Wouters EFM. Long-Term Intratracheal Lipopolysaccharide Exposure in Mice Results in Chronic Lung Inflammation and Persistent Pathology. Am J Respir Cell Mol Biol 2002;26:152-9.
    32. Kharitonov SA, Sjobring U. Lipopolysaccharide challenge of humans as a model for chronic obstructive lung disease exacerbations. Contrib Microbiol 2007;14:83-100.
    33. Toward TJ, Broadley KJ. Goblet Cell Hyperplasia, Airway Function, and Leukocyte Infiltration after Chronic Lipopolysaccharide Exposure in Conscious Guinea Pigs:Effects of Rolipram and Dexamethasone. J Pharmacol Exp Ther 2002;302:814-21.
    34. Lee KM, Renne RA, Harbo SJ, Clark ML, Johnson RE, Gideon KM.3-Week Inhalation Exposure to Cigarette Smoke and/or Lipopolysaccharide in AKR/J Mice. Inhalation Toxicology:International Forum for Respiratory Research 2007;19:23-35.
    35. Fukumoto A, Nonaka M, Ogihara N, Pawankar R. Induction of TARC production by lipopolysaccharide and interleukin-4 in nasal fibroblasts. Int Arch Allergy Immunol 2008;145:291-7.
    36. Nonaka M, Pawankar R, Fukumoto A, Ogihara N, Sakanushi A, Yagi T. Induction of eotaxin production by interleukin-4, interleukin-13 and lipopolysaccharide by nasal fibroblasts. Clin Exp Allergy 2004;34:804-11.
    37. Nonaka M, Pawankar R, Saji F, Yagi T. Distinct expression of RANTES and GM-CSF by lipopolysaccharide in human nasal fibroblasts but not in other airway fibroblasts. Int Arch Allergy Immunol 1999;119:314-21.
    38. Xing Z, Jordana M, Braciak T, Ohtoshi T, Gauldie J. Lipopolysaccharide induces expression of granulocyte/macrophage colony-stimulating factor, interleukin-8, and interleukin-6 in human nasal, but not lung, fibroblasts:evidence for heterogeneity within the respiratory tract. Am J Respir Cell Mol Biol 1993;9:255-63.
    39. He Z, Zhu Y, Jiang H. Toll-like receptor 4 mediates lipopolysaccharide-induced collagen secretion by phosphoinositide3-kinase-akt pathway in fibroblasts during acute lung injury. Journal of Receptors and Signal Transduction 2009;29:119-25.
    40. Barnes PJ. Theophylline in chronic obstructive pulmonary disease:new horizons. Proc Am Thorac Soc 2005;2:334-9; discussion 40-1.
    41. Kobayashi M, Nasuhara Y, Betsuyaku T, et al. Effect of low-dose theophylline on airway inflammation in COPD. Respirology 2004;9:249-54.
    42. Iiboshi H, Ashitani J-i, Katoh S, et al. Long-term treatment with theophylline reduces neutrophils, interleukin-8 and tumor necrosis factor-[alpha] in the sputum of patients with chronic obstructive pulmonary disease. Pulmonary Pharmacology & Therapeutics 2007;20:46-51.
    43. Cosio BG, Tsaprouni L, Ito K, Jazrawi E, Adcock IM, Barnes PJ. Theophylline restores histone deacetylase activity and steroid responses in COPD macrophages. J Exp Med 2004;200:689-95.
    44. Ito K, Lim S, Caramori G, et al. A molecular mechanism of action of theophylline: Induction of histone deacetylase activity to decrease inflammatory gene expression. Proc Natl Acad Sci U S A2002;99:8921-6.
    45. Yoshimura T, Kurita C, Yamazaki F, et al. Effects of roxithromycin on proliferation of peripheral blood mononuclear cells and production of lipopolysaccharide-induced cytokines. Biol Pharm Bull 1995;18:876-81.
    46. Tokuda M, Sakuta T, Fushuku A, Torii M, Nagaoka S. Regulation of Interleukin-6 Expression in Human Dental Pulp Cell Cultures Stimulated with Prevotella intermedia Lipopolysaccharide. Journal of Endodontics 2001;27:273-7.
    47. Olman MA, White KE, Ware LB, et al. Pulmonary Edema Fluid from Patients with Early Lung Injury Stimulates Fibroblast Proliferation through IL-1{beta}-Induced IL-6 Expression. J Immunol 2004;172:2668-77.
    48. Nagaoka S, Tokuda M, Sakuta T, et al. Interleukin-8 gene expression by human dental pulp fibroblast in cultures stimulated with Prevotella intermedia lipopolysaccharide. Journal of Endodontics 1996;22:9-12.
    49. Chambers RC, Leoni P, Kaminski N, Laurent GJ, Heller RA. Global Expression Profiling of Fibroblast Responses to Transforming Growth Factor-{beta} 1 Reveals the Induction of Inhibitor of Differentiation-1 and Provides Evidence of Smooth Muscle Cell Phenotypic Switching. Am J Pathol 2003;162:533-46.
    50. Mukhopadhyay S, Hoidal JR, Mukherjee TK. Role of TNFalpha in pulmonary pathophysiology. Respir Res 2006;7:125.
    51. Biswas SK, Lopez-Collazo E. Endotoxin tolerance:new mechanisms, molecules and clinical significance. Trends in Immunology 2009;30:475-87.
    52. Lawless MW, Norris KS, O'Byrne J, Gray SG. Targeting histone deacetylases for the treatment of disease. Journal of Cellular and Molecular Medicine 2009;13:826-52.
    53. Adcock IM, Tsaprouni L, Bhavsar P, Ito K. Epigenetic regulation of airway inflammation. Curr Opin Immunol 2007;19:694-700.
    54. Rajendrasozhan S, Yang S-R, Edirisinghe I, Yao H, Adenuga D, Rahman I. Deacetylases and NF-I°B in Redox Regulation of Cigarette Smoke-Induced Lung Inflammation:Epigenetics in Pathogenesis of COPD. Antioxidants & Redox Signaling 2008; 10:799-812.
    55. Ito K, Ito M, Elliott WM, et al. Decreased Histone Deacetylase Activity in Chronic Obstructive Pulmonary Disease. N Engl J Med 2005;352:1967-76.
    56. de Ruijter AJ, van Gennip AH, Caron HN, Kemp S, van Kuilenburg AB. Histone deacetylases (HDACs):characterization of the classical HDAC family. Biochem J 2003;370:737-49.
    57. Marwick JA, Kirkham PA, Stevenson CS, et al. Cigarette smoke alters chromatin remodeling and induces proinflammatory genes in rat lungs. Am J Respir Cell Mol Biol 2004;31:633-42.
    58. Yao H, Edirisinghe I, Rajendrasozhan S, et al. Cigarette smoke-mediated inflammatory and oxidative responses are strain-dependent in mice. Am J Physiol Lung Cell Mol Physiol 2008;294:L1174-86.
    59. Biswas S, Rahman I. Modulation of steroid activity in chronic inflammation:A novel anti-inflammatory role for curcumin. Molecular Nutrition & Food Research 2008;52:987-94.
    60. Yang SR, Chida AS, Bauter MR, et al. Cigarette smoke induces proinflammatory cytokine release by activation of NF-kappaB and posttranslational modifications of histone deacetylase in macrophages. Am J Physiol Lung Cell Mol Physiol 2006;291:L46-57.
    61. Barnes PJ. Role of HDAC2 in the pathophysiology of COPD. Annu Rev Physiol 2009;71:451-64.
    62. Ito K, Caramori G, Lim S, et al. Expression and activity of histone deacetylases in human asthmatic airways. Am J Respir Crit Care Med 2002; 166:392-6.
    63. Cosio BG, Mann B, Ito K, et al. Histone acetylase and deacetylase activity in alveolar macrophages and blood mononocytes in asthma. Am J Respir Crit Care Med 2004;170:141-7.
    64. Barnes PJ. Targeting histone deacetylase 2 in chronic obstructive pulmonary disease treatment. Expert Opinion on Therapeutic Targets 2005;9:1111-21.
    65. Ito K, Yamamura S, Essilfie-Quaye S, et al. Histone deacetylase 2-mediated deacetylation of the glucocorticoid receptor enables NF-{kappa}B suppression. J Exp Med 2006;203:7-13.
    66. Retamales I, Elliott WM, Meshi B, et al. Amplification of inflammation in emphysema and its association with latent adenoviral infection. Am J Respir Crit Care Med 2001;164:469-73.
    67. Chen J, Luo J, Li B, Ran P. ElA Has No Effect on LPS-Induced IL-6 Secretion in Rat Alveolar Epithelial Cells. Respiration 2009;78:84-92.
    68. Haller D, Holt L, Kim SC, Schwabe RF, Sartor RB, Jobin C. Transforming Growth Factor-{beta}1 Inhibits Non-pathogenic Gramnegative Bacteria-induced NF-{kappa} B Recruitment to the Interleukin-6 Gene Promoter in Intestinal Epithelial Cells through Modulation of Histone Acetylation. J Biol Chem 2003;278:23851-60.
    69. Suuronen T, Huuskonen J, Pihlaja R, Kyrylenko S, Salminen A. Regulation of microglial inflammatory response by histone deacetylase inhibitors. Journal of Neurochemistry 2003;87:407-16.
    70. Tsaprouni LG, Ito K, Adcock IM, Punchard N. Suppression of lipopolysaccharide-and tumour necrosis factor-α-induced interleukin (IL)-8 expression by glucocorticoids involves changes in IL-8 promoter acetylation. Clinical and Experimental Immunology 2007; 150:151-7.
    71. Xia Z, Wang G, Ge S, Tian J. Alpha 1-antitrypsin and alpha 1-acid glycoprotein reduce the sensitivity of human dermal fibroblast to endotoxin. Chin J Traumatol 2001;4:199-203.
    72. Hill SJ, Ebersole JL. The effect of lipopolysaccharide on growth factor-induced mitogenesis in human gingival fibroblasts. J Periodontol 1996;67:1274-80.
    73. Bartold PM, Narayanan AS, Page RC. Platelet-derived growth factor reduces the inhibitory effects of lipopolysaccharide on gingival fibroblast proliferation. J Periodontal Res 1992;27:499-505.
    74. McIntosh JC, Mervin-Blake S, Conner E, Wright JR. Surfactant protein A protects growing cells and reduces TNF-alpha activity from LPS-stimulated macrophages. Am J Physiol 1996;271:L310-9.
    75. Fireman E, Aderka D, Efraim SB, Greif J, Wallach D, Topilsky M. Suppressive effect of TNF-alpha and IL-1 on alveolar fibroblast proliferation in sarcoidosis. Mediators Inflamm 1992; 1:319-22.
    1. Global Initiative for Chronic Obstructive Lung Disease. Workshop report:global strategy for the diagnosis, management and prevention of chronic obstructive pulmonary disease [internet] (updated 2009). Available from:www.goldcopd.com.
    2. 中华医学会呼吸病学分会慢性阻塞性肺疾病学组。COPD诊治指南(2007年修订版)。
    3. Barnes PJ. The cytokine network in asthma and chronic obstructive pulmonary disease. The Journal of Clinical Investigation 2008;118:3546-56.
    4.王胜,徐凤珍,陈余清。慢性阻塞性肺疾病患者痰液炎症细胞计数与分类及其意义。临床内科杂志2006;23:385-7。
    5. Aaron SD, et al. Granulocyte inflammatory markers and airway infection during acute exacerbation of chronic obstructive pulmonary disease. Am J Respir Crit Care Med 2001; 163:349-355.
    6. Gan WQ, Man SF, Senthilselvan A, Sin DD. Association between chronic obstructive pulmonary disease and systemic inflammation:a systematic review and a meta-analysis. Thorax 2004;59:574-80.
    7. Brogger J, Steen VM, Eiken HG, Gulsvik A, Bakke P. Genetic association between COPD and polymorphisms in TNF, ADRB2 and EPHX1. Eur Respir J 2006;27:682-8.
    8. Ishii T, Matsuse T, Teramoto S, et al. Neither IL-1beta, IL-1 receptor antagonist, nor TNF-alpha polymorphisms are associated with susceptibility to COPD. Respir Med 2000;94:847-51.
    9. Antoniu SA. Challenges in targeting TNF alpha in asthma and COPD. Curr Opin Investig Drugs 2009; 10:404-6.
    10. Demirjian L, Abboud RT, Li H, Duronio V. Acute effect of cigarette smoke on TNF-alpha release by macrophages mediated through the erkl/2 pathway. Biochim Biophys Acta 2006; 1762:592-7.
    11. Parr DG, White AJ, Bayley DL, Guest PJ, Stockley RA. Inflammation in sputum relates to progression of disease in subjects with COPD:a prospective descriptive study. Respir Res 2006;7:136.
    12. Cordoba-Lanus E, de-Torres JP, Lopez-Aguilar C, et al. Association of IL-6 gene polymorphisms and COPD in a Spanish population. Respir Med 2008;102:1805-11.
    13. Rossi GA. COPD patients or "healthy smokers":is IL-8 synthesis and release the borderline? Respiration 2003;70:457-9.
    14. Hollander C, Sitkauskiene B, Sakalauskas R, Westin U, Janciauskiene SM. Serum and bronchial lavage fluid concentrations of IL-8, SLPI, sCD14 and sICAM-1 in patients with COPD and asthma. Respir Med 2007;101:1947-53.
    15. Borrill ZL, Starkey RC, Singh SD. Variability of exhaled breath condensate leukotriene B4 and 8-isoprostane in COPD patients. Int J Chron Obstruct Pulmon Dis 2007;2:71-6.
    16. Marian E, Baraldo S, Visentin A, et al. Up-regulated membrane and nuclear leukotriene B4 receptors in COPD. Chest 2006;129:1523-30.
    17. Profita M, Giorgi RD, Sala A, et al. Muscarinic receptors, leukotriene B4 production and neutrophilic inflammation in COPD patients. Allergy 2005;60:1361-9.
    18. Biernacki WA, Kharitonov SA, Barnes PJ. Increased leukotriene B4 and 8-isoprostane in exhaled breath condensate of patients with exacerbations of COPD. Thorax 2003;58:294-8.
    19. Fabbri LM, Rabe KF. From COPD to chronic systemic inflammatory syndrome? Lancet 2007;370:797-9.
    20. Agusti AG, Noguera A, Sauleda J, Sala E, Pons J, Busquets X. Systemic effects of chronic obstructive pulmonary disease. Eur Respir J 2003;21:347-60.
    21. Sevenoaks MJ, Stockley RA. Chronic Obstructive Pulmonary Disease, inflammation and co-morbidity-a common inflammatory phenotype? Respir Res 2006;7:70.
    22. Agusti A, MacNee W, Donaldson K, Cosio M. Hypothesis:does COPD have an autoimmune component? Thorax 2003;58:832-4.
    23. Cosio MG, Saetta M, Agusti A. Immunologic Aspects of Chronic Obstructive Pulmonary Disease. N Engl J Med 2009;360:2445-54.
    24. Celli BR, Cote CG, Marin JM, et al. The body-mass index, airflow obstruction, dyspnea, and exercise capacity index in chronic obstructive pulmonary disease. N Engl J Med 2004;350:1005-12.
    25. Ozol D, Aysan T, Solak ZA, Mogulkoc N, Veral A, Sebik F. The effect of inhaled corticosteroids on bronchoalveolar lavage cells and IL-8 levels in stable COPD patients. Respir Med 2005;99:1494-500.
    26. Adcock IM, Tsaprouni L, Bhavsar P, Ito K. Epigenetic regulation of airway inflammation. Curr Opin Immunol 2007; 19:694-700.
    27. Barnes PJ. Role of HDAC2 in the pathophysiology of COPD. Annu Rev Physiol 2009;71:451-64.
    28. Ito K, Ito M, Elliott WM, et al. Decreased Histone Deacetylase Activity in Chronic Obstructive Pulmonary Disease. N Engl J Med 2005;352:1967-76.
    29. Kobayashi M, Nasuhara Y, Betsuyaku T, et al. Effect of low-dose theophylline on airway inflammation in COPD. Respirology 2004;9:249-54.
    30. Iiboshi H, Ashitani J-i, Katoh S, et al. Long-term treatment with theophylline reduces neutrophils, interleukin-8 and tumor necrosis factor-[alpha] in the sputum of patients with chronic obstructive pulmonary disease. Pulmonary Pharmacology & Therapeutics 2007;20:46-51.
    31. Cosio BG, Tsaprouni L, Ito K, Jazrawi E, Adcock IM, Barnes PJ. Theophylline restores histone deacetylase activity and steroid responses in COPD macrophages. J Exp Med 2004;200:689-95.
    32. Rennard SI et al. The safety and efficacy of infliximab in moderate-to-severe chronic obstructive pulmonary disease. Am J Respir Crit Care Med 2007; 175:926-934.
    33. Dentener MA et al. Effect of infliximab on local and systemic inflammation in chronic obstructive pulmonary disease:a pilot study. Respiration 2008; 76:275-282. doi:10.1159/000117386.
    34. Mahler DA, Huang S, Tabrizi M, et al. Efficacy and safety of a monoclonal antibody recognizing interleukin-8 in COPD:a pilot study. Chest 2004; 126:926-934.
    35. Rajendrasozhan S, Yang S-R, Edirisinghe I, Yao H, Adenuga D, Rahman I. Deacetylases and NF-I°B in Redox Regulation of Cigarette Smoke-Induced Lung Inflammation:Epigenetics in Pathogenesis of COPD. Antioxidants & Redox Signaling 2008;10:799-812.
    36. Barnes PJ. Targeting histone deacetylase 2 in chronic obstructive pulmonary disease treatment. Expert Opinion on Therapeutic Targets 2005;9:1111-21.
    37. Ito K, Yamamura S, Essilfie-Quaye S, et al. Histone deacetylase 2-mediated deacetylation of the glucocorticoid receptor enables NF-{kappa}B suppression. J Exp Med 2006;203:7-13.
    38. Galasinski SC, Resing KA, Goodrich JA, Ahn NG. Phosphatase inhibition leads to histone deacetylases 1 and 2 phosphorylation and disruption of corepressor interactions. J Biol Chem 2002;277:19618-26.
    39. Adenuga D, Yao H, March TH, Seagrave J, Rahman I. Histone Deacetylase 2 Is Phosphorylated, Ubiquitinated, and Degraded by Cigarette Smoke. Am J Respir Cell Mol Biol 2009;40:464-73.
    40. Nott A, Watson PM, Robinson JD, Crepaldi L, Riccio A. S-Nitrosylation of histone deacetylase 2 induces chromatin remodelling in neurons. Nature 2008;455:411-5.
    41. Marwick JA, Kirkham PA, Stevenson CS, et al. Cigarette smoke alters chromatin remodeling and induces proinflammatory genes in rat lungs. Am J Respir Cell Mol Biol 2004;31:633-42.
    42. Yang SR, Chida AS, Bauter MR, et al. Cigarette smoke induces proinflammatory cytokine release by activation of NF-kappaB and posttranslational modifications of histone deacetylase in macrophages. Am J Physiol Lung Cell Mol Physiol 2006;291:L46-57.
    43. Marwick JA, Caramori G, Stevenson CS, et al. Inhibition of PI3Kdelta restores glucocorticoid function in smoking-induced airway inflammation in mice. Am J Respir Crit Care Med 2009;179:542-8.
    44. Koch A, Giembycz M, Ito K, et al. Mitogen-Activated Protein Kinase Modulation of Nuclear Factor-{kappa} B-Induced Granulocyte Macrophage-Colony-Stimulating Factor Release from Human Alveolar Macrophages. Am J Respir Cell Mol Biol 2004;30:342-9.
    45. Musikacharoen T, Yoshikai Y, Matsuguchi T. Histone Acetylation and Activation of cAMP-response Element-binding Protein Regulate Transcriptional Activation of MKP-M in Lipopolysaccharide-stimulated Macrophages. J Biol Chem 2003;278:9167-75.
    46. Ito K, Hanazawa T, Tomita K, Barnes PJ, Adcock IM. Oxidative stress reduces histone deacetylase 2 activity and enhances IL-8 gene expression:role of tyrosine nitration. Biochemical and Biophysical Research Communications 2004;315:240-5.
    47. Biswas S, Rahman I. Modulation of steroid activity in chronic inflammation:A novel anti-inflammatory role for curcumin. Molecular Nutrition & Food Research 2008;52:987-94.
    48. Barnes PJ. Emerging pharmacotherapies for COPD. Chest 2008;134:1278-86.
    49. Ouagued M, Martin-Chouly CA, Brinchault G, et al. The novel phosphodiesterase 4 inhibitor, CI-1044, inhibits LPS-induced TNF-alpha production in whole blood from COPD patients. Pulm Pharmacol Ther 2005; 18:49-54.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700