用户名: 密码: 验证码:
RNAi特异性抑制NF-κB p65抗异种移植延迟性排斥反应作用的初步研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景:
     器官移植现在已经成为治疗终末期器官功能衰竭的有效手段,为缓解临床同种供体的不足,异种器官作为最可能的供体来源越来越受到重视。然而,异种器官移植作为远缘移植,其面临的排斥反应较同种移植更为强烈、复杂。异种器官移植排斥反应包括超急排(HAR)、延迟性排斥(DXR)、急性细胞性排斥(ACR)、移植物慢性失功(CGD)四个阶段。目前HAR被大量研究普遍认为已有方法(转基因猪、天然抗体抑制剂等)克服,接下来异种移植研究亟待克服的主要障碍是DXR,在这一过程中,由诱生抗体诱导的移植物Ⅱ型血管内皮细胞激活是异种移植物被排斥、功能丧失的关键。而核转录因子κB(Nuclear Factor-κB,NF-κB)对Ⅱ型血管内皮细胞激活起关键性作用。现已表明NF-κB的功能涉及到免疫反应、胸腺发育、胚胎发生、炎症和急性反应、细胞繁殖、细胞凋亡、病毒感染和其他多种病理过程。但尚未见有应用于研究心脏移植抗排斥方面。小鼠→大鼠心脏移植不发生HAR,而直接表现DXR,是研究DXR的理想动物模型。我们现拟利用RNA干扰(RNAi)技术特异性地抑制小鼠心脏核因子κB(NF-κB)的表达,以期抑制异种移植延迟性排斥反应中Ⅱ型血管内皮细胞的激活,从而克服或减弱DXR,探讨RNA干扰技术在异种器官移植中的应用前景。
     方法:
     1.设计并化学合成针对小鼠NF-κB p65的siRNA,合成时对用于转染后示踪的部分siRNA进行荧光素FAM标记。
     2.小鼠血管内皮细胞(EOMA)的体外转染。分组:(1)空白对照组(细胞内不加任何干扰因素);(2)阴性对照组(细胞转染阴性对照siRNA,即siRNA-NC);(3)实验组(细胞转染NF-κB siRNA)。于转染前一天,接种EOMA细胞,在转染后的24h~72h时提取各组细胞总RNA,行RT-PCR测定细胞内NF-κB p65 mRNA水平;提取各组细胞总蛋白,行Western blot测定NF-κB p65蛋白表达。
     3.将转染混合物(含2OD阴性对照siRNA)经颈静脉或尾静脉注入实验小鼠。48h后获取心、肺、肝、肾标本,快速冰冻切片荧光显微镜观察体内组织分布,对尾静脉途径与颈静脉途径对组织分布的影响进行比较。
     4.将转染复合物(含2OD siRNA-NC)经颈静脉注入小鼠,在从1小时到1周的五个时间点摘除心、肝、肺、肾四个器官切片行荧光显微镜检查。将2OD NF-κB p65siRNA和阳离子聚合物in vivo-jetPEI形成的复合物静脉注入成年小鼠,注射后第1、3、5、7天的五个时间点摘取心脏,提取总RNA,行Real-time PCR检查各时间点NF-κB p65mRNA水平动态变化。
     5.为分析剂量效应关系,实验分五组,每组3只小鼠,四组动物单次注射siRNA和in vivo-jetPEI复合物,siRNA量各组分别为1OD, 2OD, 3OD和4OD,in vivo-jetPEI量按N/P ratio=6和siRNA的量相应配置。其中一假手术组注射同等体积PBS溶液作对照。72h后获取小鼠心脏,行定量RT-PCR测定NF-κB p65 mRNA的表达。
     6.实验分四组,每组三只小鼠均被注射相同剂量的复合物(含2OD siRNA),实验动物的存活情况被连续观察一周。第1、3、5、7天抽血检测血清主要生化指标。
     7.分别将siRNA-NC和NF-κB p65 siRNA经in vivo-jetPEI乳化形成的复合物(含2ODsiRNA)一次性经颈静脉注入小鼠,注射后24h摘取心脏,提取总RNA,行Real-time PCR检测NF-κB p65和下游基因ICAM-1、VCAM-1、IL-1a mRNA水平。
     8.将2ODsiRNA-NC和NF-κB p65 siRNA经in vivo-jetPEI乳化形成的复合物经颈静脉转染小鼠,48h后小鼠心脏移植至大鼠颈部,观察供心存活时间、病理学改变、心脏NF-κB p65的表达和相关粘附分子、细胞因子基因mRNA水平以及大鼠体内诱生抗体移植前后水平变化。
     结果:
     1.NF-κB p65 siRNA和阴性对照siRNA均能被阳离子脂质体转染培养细胞,转染效率几近90%。RT-PCR检测发现转染NF-κB p65 siRNA后mRNA的表达水平下调明显,而转染阴性对照siRNA则无干扰效应。
     2.经尾静脉途径注射,siRNA主要分布于肝脏,心脏和肺分布极少;经颈静脉途径注射则心脏和肺可以获得较多的分布。
     3.将转染复合物(含2OD siRNA-NC)一次性经颈静脉注入小鼠,结果:在注射后1小时仅肝和肺看到荧光染色,24小时后在心、肺、肝、肾四个器官都看到了荧光染色,并在48h至72h间达到最高,1w时又见减弱。
     4.将2OD NF-κB p65 siRNA转染复合物经颈静脉注射后第1、3、5、7天的五个时间点监测到NF-κB p65基因表达均受到抑制,沉默效应大于50%,与假手术组和正常小鼠相比P<0.05。
     5.目的基因NF-κB p65mRNA表达在2OD~4OD剂量组出现明显下调(与1OD组相比较P<0.05),但各组间差别不大(P>0.05),而1OD组表达下降程度轻微(与假手术组相比P>0.05)。
     6.转染动物均存活,其活力和食欲无任何改变;除了一只小鼠在注射后第一天ALT升高至337U/L,第三天降至正常范围外,所有受试动物的主要生化指标在转染后均未受明显影响。
     7.剂量为2OD时NF-κB p65 siRNA体内转染小鼠,其心脏NF-κB p65和下游基因ICAM-1、VCAM-1、IL-1a mRNA的表达均下调。
     8.转染siRNA 48h后,小鼠心脏移植至大鼠颈部。无处理组(单纯将小鼠心脏移植到大鼠颈部)供心平均存活时间为(1.80±0.83)d。对照组(转染siRNA-NC的小鼠心脏移植到大鼠颈部)供心存活时间无延长(与无处理组比较,P>0.05),平均存活时间为(1.60±0.87)d。实验组(转染NF-κB p65 siRNA的小鼠心脏移植到大鼠颈部)见供心存活时间明显延长(与无处理组比较,*P<0.01),移植物平均存活时间为(5.17±1.63)d。
     9.供心未排斥时,对照组和实验组移植心脏光镜下可见心肌组织排列整齐,部分细胞可见轻度水肿,间质炎症细胞浸润和少量淋巴细胞浸润;电镜下血管内皮肿胀在对照组表现较明显,而实验组表现为部分内皮细胞凋亡。发生排斥时,对照组和实验组供心光镜下见心肌细胞广泛水肿,排列变紊乱,心肌组织间大量的出血,大量炎细胞和少量单个核细胞和淋巴细胞浸润;电镜下实验组和对照组一致呈现部分血管内皮细胞胞质肿胀、粗面内质网增生的激活表现。
     10.阴性对照组未排斥时供心NF-κB p65 mRNA表达升高,但与正常心肌相比P>0.05;排斥时供心NF-κB p65 mRNA高表达,与正常心肌相比较P<0.05。实验组未排斥时供心NF-κB p65 mRNA表达明显下降,与正常心肌相比较<0.05;排斥时供心NF-κB p65 mRNA仍高表达,但与正常心肌相比较P>0.05。
     11.阴性对照组供心水平在移植后较正常小鼠心脏明显升高(siNCn VS N, p<0.05; siNCp VS N, p<0.01),且排斥后较排斥前升高更明显(siNCp VS siNCn, P<0.05)。实验组供心VCAM-1 mRNA水平在移植后较正常小鼠心脏明显下降(p<0.01),排斥后表达又明显升高,高于正常水平且与正常心脏相比p<0.01。
     12.阴性对照组供心移植后ICAM-1 mRNA水平较正常小鼠心脏明显升高(p<0.05),且排斥前后无明显差别(P>0.05)。实验组供心移植后ICAM-1 mRNA水平较正常小鼠心脏明显下降(p<0.05),排斥后表达又升高,但与正常心脏相比别p>0.05。
     13.阴性对照组供心移植后IL-1a mRNA水平较正常小鼠心脏明显升高(p<0.01),且排斥前后无明显差别(P>0.05)。实验组供心移植后IL-1a mRNA水平较正常小鼠心脏明显下降(p<0.05),但排斥后表达明显升高,与正常心脏相比别p<0.01。
     14.无处理组(单纯将小鼠心脏移植到大鼠颈部)、对照组(将转染siRNA-NC的小鼠心脏移植到大鼠)、实验组(将转染NF-κB p65 siRNA的小鼠心脏移植到大鼠颈部)三组间受体外周血IgM、IgG水平在移植前、移植后均无明显差异(P>0.05);各组的IgM、IgG水平在移植后较移植前均明显升高(P<0.05)。
     结论:
     1.阳离子脂质体Lipofectamine?2000可在小鼠EOMA细胞高效转染化学合成的NF-κB p65 siRNA。
     2.细胞转染NF-κB p65 siRNA可实现内源性RNA降解,抑制相应的功能蛋白表达;本实验设计针对NF-κB p65的siRNA序列有效,适宜进行体内转染研究。
     3.颈静脉注射途径是靶向心脏体内转染研究的理想途径。
     4.颈静脉注射NF-κB p65 siRNA/in vivo-jetPEI复合物能介导ICR小鼠心脏的NF-κB p65基因表达沉默;且获得50%以上沉默效应的siRNA最小剂量为2OD。
     5. NF-κB p65 siRNA(剂量2OD)转染ICR小鼠后48h至72h心脏siRNA表达最高,是进行心脏移植的最佳时间。
     6.剂量为2OD时NF-κB p65 siRNA体内转染对ICR鼠是安全的。
     7.体内转染NF-κB p65 siRNA(剂量2OD)可抑制小鼠心脏NF-κB p65蛋白水平,实现NF-κB下游靶基因转录的有效抑制。
     8.体内转染NF-κB p65 siRNA(剂量2OD)使小鼠供心存活时间延长。
     9.体内转染NF-κB p65 siRNA(剂量2OD),小鼠供心未排斥时血管内皮细胞表现为凋亡,而发生排斥时表现为激活。
     10.体内转染NF-κB p65 siRNA(剂量2OD)可抑制心脏移植后内环境刺激下的供心NF-κB表达和下游基因ICAM-1、VCAM-1、IL-1αmRNA水平。
Background:
     Allotransplantation is nowadays a generally accepted treatment for organ failure, and xenotransplantation, i.e. transplantation of cells, tissues or organs between individuals of different species, is considered a promising, possible solution to the chronic lack of donor organs. Organs of phylogenetically-distant species are subject to much more severe and irreversible rejection reactions than that in allograft. Xenotransplantation rejection includes four stages: hyperacute rejection (HAR), delayed xenograft rejection (DXR), acute cellular rejection (ACR) and chronic graft dysfunction (CGD). It is generally acknowledged that there are methods to overcome the first major barrier of xenotransplantation (HAR), for example, the availability of transgenic pigs and antibody inhibition. The second immune barrier is the delayed or acute vascular xenograft rejection (DXR or AVR) in which the activation of endothelialⅡcells is the key factor of xenograft rejection and graft dysfunction, and the NF-κB takes an important role in the activation of endothelialⅡcells. NF-κB is often associated with immune reaction, thymus gland growth, embryogenesis, inflammation, acute reaction, cells reproduction, apoptosis, viral infection and other diverse pathological processes. Though suppression of the activation of endothelialⅡcells by inhibiting the expression of NF-κB were reported in other fields, there are few studies about NF-κB in the research of heart xenotransplantation by now. Our objective is to delay or weaken delayed xenograft rejection by suppressing the expression of target gene NF-κB using in vivo siRNA in mice.
     Methods:
     1. siRNA directed against mouse NF-κB p65 was designed and chemically synthesized based on the oligonucleotide sequences from NCBI. For image identification purpose, a part of the siRNAs were carboxyfluorescein (FAM)-labeled.
     2. EOMA cell was divided into three groups: (1) blank control group, (2) negative control group, (3) NF-κB siRNA group. One day before transfection, EOMA cell was reseeded in plate. 24h-72h after transfection, total RNA was isolated from EOMA cells using TRIzol Reagent, the expression level of NF-κB p65 mRNA was evaluated by RT-PCR. Total protein was isolated from EOMA cells, and the expression level of NF-κB p65 protein was evaluated by Western blot.
     3. To determine the tissue distribution of siRNA in mice, FAM-labeling siRNA/in vivo-jetPEI complexes (included 2 OD siRNA-NC) were injected into mice through jugular vein or tail vein, and the epifluorescence activity was examined in various organs 48h later.
     4. The mice were, via jugular vein, treated with single dose i.v. injections of NF-κB p65 siRNA/in vivo-jetPEI complex (dose: 1OD). Four different organs were dissected at five time points (from 1h to 1w) for the examinations by epifluorescence microscopy. A single dose of NF-κB p65 siRNA/in vivo-jetPEI complex (dose: 2OD) was injected into immune competent mice, then we dissected heart tissue at four time points (from 1d, 3d, 5d, to 7d) for the examination of NF-κBp65 mRNA by RT-PCR and compared the levels of NF-κBp65 mRNA at different time points.
     5. Correlate the siRNA uptake and distribution with the efficacy of RNAi in particular organs in the following experiments. The mice (3 per cohort) were, via jugular vein, treated with a single dose i.v. injections of NF-κB p65 siRNA/in vivo-jetPEI complex (dose: 1OD, 2OD, 3OD and 4OD siRNA and the volumes of in vivo-jetPEI according with the ratio of N/P =6). An additional group of mice (the sham operated group) were treated in parallel with PBS solution for unspecific effects. RT-PCR was applied to demonstrate the RNAi silencing in the heart after 72h.
     6. The mice in the research were divided into 4 groups. Three animals in each group were injected with NF-κB p65 siRNA-/in vivo-jetPEI complex (dose: 2OD). The conditions of the survival, appetite and vigor of each animal had been observed for 7 consecutive days, and a comprehensive clinical biochemistry test was performed 1, 3, 5 and 7days after injection.
     7. The mice were, via jugular vein, treated with single dose i.v. injections of siRNA/in vivo-jetPEI complex (included 2OD NF-κB p65 siRNA or siRNA-NC). RT-PCR was applied to demonstrate the RNAi silencing in the heart after 24h. The levels of NF-κBp65, ICAM-1, VCAM-1 and IL-1a mRNA were evaluated.
     8. The mice were treated with siRNA/in vivo-jetPEI complex (included 2OD NF-κB p65 siRNA or siRNA-NC) via jugular vein. 48h after mouse-to-rat cardiac heterotopic xenotransplantation in neck, survival time, pathological changes, and levels of NF-κBp65, ICAM-1, VCAM-1 and IL-1a mRNA in xenografts were investigated. Serum IgM/IgG concentration in rat before operation were compared with those after operation.
     Results:
     1. NF-κB p65 siRNA and siRNA-NC were as capable as absorbed in EOMA cells under the help of the vehicle lipofectamine2000, and the transfection efficiency is nearly 90%. Distinct from siRNA-NC, after the NF-κB p65 siRNA transfection, the silencing of gene expression in EOMA cells could be observed.
     2. Luc activity of siRNA in the liver and kidney was much higher than that in the heart and lung 48 hours after tail vein injection. In animals with jugular vein injection the Luc activity was high in the heart and lung, similar to those in the liver and kidney.
     3. A single dose of FAM fluorescently labeled siRNA-NC combined with in vivo-jetPEI (included 2OD siRNA-NC) was injected into ICR mice, and four different organs were dissected at five time points (from 1h to 1w) for the examinations by epifluorescence microscopy. An initial microscopic analysis revealed that fluorescence was detectable only in the lungs and livers 60 min post-treatment with siRNA-NC/PEI complex. The FAM-fluorescence appeared in all tissues 24h after complex treatment, though the fluorescence was not strong. The intensity of FAM-fluorescence of the four organs (heart, lung, liver and kidney) increased to the highest point between 48h and 72h after injection,and decreased again 1w after injection.
     4. The mRNA levels in each group after siRNA treatment demonstrated that the NF-κB p65 mRNA levels decreased significantly (>50%) in 7 days (from 1d, 3d, 5d, to 7d), which were statistically different from the sham operated group (P<0.05).
     5. Only in the samples derived from the animals treated with 2OD~4OD siRNA, the NF-κB p65 mRNA levels were significantly reduced (>50%, P<0.05), as revealed by the respective mRNA quantification. In these three groups the expression of the target gene were inhibited similarly (P>0.05), whereas in the 1OD group the expression of NF-κB were inhibited slightly (P>0.05).
     6. Observed for 7 consecutive days after injection, the conditions of the survival, appetite and vigor of each animal had not been impaired till the observation time point. All the biochemical parameters evaluated were in the normal range as compared with those of the normal animals except the ALT value on day 1. There was a transient increase up to 337 of the ALT value on day 1 in the animals injected with complex, and the ALT value falls to a normal range 3 days after the injection.
     7. The levels of NF-κB p65, ICAM-1, VCAM-1 and IL-1a mRNA decreased markedly after the mice were treated with 2OD NF-κB p65 siRNA.
     8. The MST of xenograft in group without treatment was (1.80±0.83) d, that in control group was (1.60±0.87) d (vs. group without treatment, P>0.05). The MST of xenograft in experiment group was (5.17±1.63) d (vs. group without treatment, P<0.01).
     9. Cardiac muscle cells of xenograft before rejection in negative control group and experiment group lined up in order, light edema were seen in some cells, inflammatory cell and lymphocyte infiltration was detected. Endothelium of graft in negative control group exhibited typical swelling cytoplasm, but apoptosis in experiment group by electron microscope. Chaos and severe edema of cardiac muscle cells were seen in xenograft in negative control group and experiment group after rejection. A lot of inflammatory cells and some lymphocytes infiltrated between cardiac muscle cells. Endothelium of graft both in negative control group and experiment group exhibited typical activated appearance (swelling cytoplasm, an expansion of the rough endoplasmic reticulum, indicating that the endothelium is metabolically active and not undergoing cell death by apoptosis) by electron microscope.
     10. With siRNA-NC transfection, NF-κB p65 mRNA level of graft increased lightly in control group before rejection, vs. normal cardiac muscle, p>0.05. After rejection NF-κB p65 mRNA level of graft increased markedly, vs. normal cardiac muscle, p<0.05. With NF-κB p65 siRNA transfection, NF-κB p65 mRNA level of graft decreased markedly before rejection, vs. normal cardiac muscle, p<0.05. After rejection NF-κB p65 mRNA level of graft was yet high, but vs. normal cardiac muscle, p>0.05.
     11. The VCAM-1 mRNA level of heart in negative control group increased after transplantation (siNCn VS N, p<0.05; siNCp VS N, p<0.01; siNCp VS siNCn, P<0.05). The VCAM-1 mRNA level of heart in experiment group decreased markedly after transplantation, and increased after rejection (siP65n VS N, p<0.01; siP65p VS N, p<0.01).
     12. The ICAM-1 mRNA level of heart in negative control group increased after transplantation (siNCn VS N, p<0.05; siNCp VS N, p<0.05; siNCp VS siNCn, P>0.05). The ICAM-1 mRNA level of heart in experiment group decreased markedly after transplantation, and increased after rejection (siP65n VS N, p<0.05; siP65p VS N, p>0.05).
     13. The IL-1a mRNA level of heart in negative control group increased after transplantation (siNCn VS N, p<0.01; siNCp VS N, p<0.01; siNCp VS siNCn, P>0.05). The IL-1a mRNA level of heart in experiment group decreased markedly after transplantation, and increased after rejection (siP65n VS N, p<0.05; siP65p VS N, p<0.01)
     14. Serum IgM、IgG concentration in rats had no deference between three groups whether pre- or post-transplantation(P>0.05), and increased markedly after transplantation than pre-transplantation(P<0.05) in each group.
     Conclusions:
     1. Cationic liposome Lipofectamine? 2000 could transfect chemically synthesized siRNA to EOMA cells with high effect.
     2. Introduction of NF-κB p65 siRNA to EOMA cells could abrogate endogenenous gene expression, the siRNA designed in the experiment was functional in vitro and suitable for in vivo application.
     3. Jugular vein is an effective transfection route for gene delivery targeting for hearts.
     4. Administered with NF-κB p65 siRNA/in vivo-jetPEI complex by jugular vein injection leads to successful inhibition of expression of NF-κB p65. The minimum dose of siRNA was 2OD so that the NF-κB p65 mRNA levels decreased significantly (>50%).
     5. After 2OD NF-κB p65 siRNA administrated, the absorption of siRNA in heart of mouse increased to the highest point between 48h and 72h which was the best time for a mouse to be transplanted to a rat.
     6. It was safe to a mouse which was transfected a single dose of 2OD NF-κB p65 siRNA in vivo.
     7. Inhibition of protein transcription of NF-κB p65 by siRNA could efficiently suppress the expression of NF-κB’s target genes.
     8. Being transfected with 2 OD NF-κB p65 siRNA extended the survival time of cardiac xenograft in mouse-to-rat model.
     9. Endothelium of graft in the siRNA treated mouse exhibited evidence of apoptosis before rejection and activation after rejection.
     10. Being administered with 2 OD NF-κB p65 siRNA led to inhibition of expression of NF-κB p65 and its target genes such as ICAM-1、VCAM-1 and IL-1αunder the internal environment after cardiac xenotransplantation.
引文
1. Elbashir SM, Lendeckle W, Tuschl T. RNA interference is mediated by 21-and 22-nucleotide RNAs. Genes Dev, 2001, 15(2): 188-200
    2. Sui G, Soohoo C, Affar EB, et al. DNA vector-based RNAi technology to suppress gene expression in mammal cells. Proc Natl Acad Sci USA, 2002, 99(8): 5515-5520
    3. Lee NS, Dohjima T, Bauer G, et al. Expression of small interfering RNAs targeted against HIV-1 rev transcripts in human cells. Natural Biotechnology, 2002, 20: 500-505
    4. Brummelkamp TR, Bernards R, Agami R. A system for stable expression short interfering RNAs in mammilian cells. Science, 2002, 296: 550-553
    5. Castanotto D, Li H, Rossi JJ. Functional siRNA expression from transfected PCR products. RNA, 2002, 8(11): 1454-1460
    6. Chiu YL, Rana TM. siRNA function in RNAi: a chemical modification analysis. RNA 2003; 9: 1034-1048
    7. Czauderna F, Fechtner M, Dames S, Aygun H, Klippel A, Pronk GJ et al. Structural variations and stabilising modifications of synthetic siRNAs in mammalian cells. Nucleic Acids Res 2003; 31: 2705-2716
    1. Rolland AP. From genes to gene medicines: recent advances in nonviral gene delivery. Crit Rev Ther Drug Carrier Syst. 1998, 15(2): 143-198
    2. Sato T, Ishii T, Okahata Y, et al. In vitro gene delivery mediated by chitosan, effect of pH, serum and molecular mass of chitosan on transfection efficiency. Biomaterials, 2001, 22(15): 2075-2080
    3. Anderson WF. Human gene therapy. Science, 1992, 256: 808-815
    4. Hug P, Sleight RG. Liposomes for the transformation of eukaryotic cells Biochim Biophys Acta, 1991, 1097: 1-17
    5. Ledley FD. Non-viral Gene Therapy. Curr Opin Biotechnol. 1994, 5: 626-636
    6. Mulligan RC. The basic science of gene therapy. Science, 1993, 260: 926-932
    7. Legendre JY, Szoka FC Jr. Delivery of plasmid DNA into mammalian cell lines using pH-sensitive liposomes: comparison with cationic liposomes. Pharm Res, 1992, 9(10): 1235-1242
    8. Crystal RG. Transfer of genes to humans: Early lessons and obstacles to success. Science, 1995, 270: 404-410
    9. Temin HM. Safety considerations in somatic gene therapy of human disease with retrovirus vectors. Hum. Gene Ther, 1990, 1: 111-123
    10. Byrnes AP, Rusby JE, Wood MJA, et al. Adenovirus gene transfer causes inflammation in the brain. Neuroscience, 1995, 66: 1015-21
    11. Hoffmann LM, Maguire AM, Bennett J. Cell-mediated immune response and stability of intraocular transgene expression after adenovirus mediated delivery. Invest Ophthalmol Vis Sci, 1997, 38: 2224-2233
    12. Li S, Ma Z. Nonviral gene therapy. Curr Gene Ther, 2001, 1: 201-226 13. Niidome T, Huang L. Gene therapy progress and prospects: nonviral vectors. Gene Therapy, 2002, 9: 1647-1652
    13. Niidome T, Huang L. Gene therapy progress and prospects: nonviral vectors. Gene Ther, 2002, 9: 1647-1652
    14. Wu GY, Wu CH. Delivery systems for gene therapy. Biotherapy, 1991, 3: 87-95
    15. Pari GS, Keown WA. Experimental strategies in efficient transfection of mammalian cells: calcium phosphate and DEAE-dextran. Methods Mol Biol, 1997, 62: 301-316
    16. Smith JG, Walzem RL, German JB. Liposomes as agents of DNA transfer. Biochim Biophys Acta, 1993, 1154: 327-340
    17. Niidome T, Huang L. Gene therapy progress and prospects: non-viral vectors. Gene Ther, 2002, 9: 1647-1652
    18. Mark ED. Non-viral gene delivery systems. Curr Opin Biotechnol, 2002, 13: 128-131
    19. Gao X, Huang L. Cationic liposome-mediated gene transfer. Gene Ther, 1995, 2: 710-722
    20. Verma IM, Somia N. Gene Therapy-Promises, problems and prospects. Nature, 1997, 389: 239-242
    21. Felgner PI, Gadek TR, Holm M, et al. Lipofection: a highly efficient, lipid-mediated DNA-transfection procedure. Proc Natl Acad Sci USA, 198, 84: 7413-7417
    22. Niidome T, Urakawa M, Sato H, et al. Gene transfer into hepatoma cells mediated by galactose-modified alpha-helical peptides, Biomaterials, 2000, 17: 1811- 1819
    23. Gustafsson J , Arvidson G, Karlsson G, et al . Complexes between cationic liposomes and DNA visualized by cryo-TEM. Biochim Biophys Acta, 1995, 1235 (2): 305-312
    24. Farthood H , Serbina N , Huang L. The role of dioleoyl phosphatidylethanolamine in cationic liposome mediated gene transfer. Biochim Biophys Acta, 1995 , 1235 (2): 289-295
    25. Djurovic S, Iversen N, Jeansson S, et al. Comparison of nonviral transfection and adeno-associated viral transduction on cardiomyocytes. Mol Biotechnol, 2004, 28(1): 21-32
    26. Kiefer K, Clement J, Garidel P, et al. Transfection efficiency and cytotoxicity of nonviral gene transfer reagents in human smooth muscle and endothelial cells. Pharm Res, 2004, 21(6): 1009-1017
    27. Akita H, Ito R, Khalil IA, et al. Quantitative three-dimensional analysis of the intracellular trafficking of plasmid DNA transfected by a nonviral gene deliverysystem using confocal laser scanning microscopy. Mol Ther, 2004, 9(3): 443-451
    28. Radisavljevic Z. Nitric oxide suppression triggers apoptosis through the FKHRL1 (FOXO3A)/ROCK kinase pathway in human breast carcinoma cells. Cancer, 2003, 97(5): 1358-1363
    29. Tucker TA, Varga K, Bebok Z, et al. Transient transfection of polarized epithelial monolayers with CFTR and reporter genes using efficacious lipids. Am J Physiol Cell Physiol, 2003, 284(3): C791-804
    30. Niedzinski EJ, Fujii SK, Lizarzaburu ME, et al. A versatile linker for non-toxic polyamine-mediated DNA transfection. Molecular Therapy, 2002, 6(2): 279-286.
    31. Nowling T, Desler M, Kuszynski C, et al. Transfection of embryonal carcinoma cells at high efficiency using liposome-mediated transfection. Mol Reprod Dev, 2002, 63(3): 309-317
    32. Uchida E, Mizuguchi H, Ishii-Watabe A, et al. Comparison of the efficiency and safety of non-viral vector-mediated gene transfer into a wide range of human cells. Biol Pharm Bull, 2002, 25(7): 891-897
    33. Fominaya J, Gasset M, Garcia R, et al. An optimized amphiphilic cationic peptide as an efficient non-viral gene delivery vector. J Gene Med, 2000, 2(6): 455-64
    34. Thompson CD, Frazier-Jessen MR, Rawat R, et al. Evaluation of methods for transient transfection of a murine macrophage cell line, RAW 264.7. Biotechniques, 1999, 27(4): 824-826, 828-830, 832
    35. Weber M, Moller K, Welzeck M, et al. Short technical reports. Effects of lipopolysaccharide on transfection efficiency in eukaryotic cells. Biotechniques, 1995, 19(6): 930-940
    36. Jaaskelainen I, Monkkonen J, Urtti A. Oligonucleotide-cationic liposome interactions. A physicochemical study. Biochim Biophys Acta, 1994, 1195: 115-123
    37. Xu Y, Szoka FC Jr. Mechanism of DNA release from cationic liposome/DNA complexes used in cell transfection. Biochemistry, 1996, 35: 5616-5623
    38. Eastman SJ, Tousignant JD, Lukason MJ, et al. Optimization of formulations and conditions for the aerosol delivery of functional cationic lipid: DNA complexes.Hum Gene Ther, 1997, 8: 313-322
    39. Cotten M, Baker A, Saltik M, et al. Lipopolysaccharide is a frequent contaminant of plasmid DNA preparations and can be toxic to primary human cells in the presence of adenovirus. Gene Therap 1994, 1: 239-246
    40. White D, Butler B, Creswell D, et al. Wizard PureFection plasmid DNA purification system: the new standard in isolating transfection grade plasmid DNA. Promega Notes, 1998, 68: 2-6
    41. Wiesenhofer B, Kaufmann WA, Humpel C. Improved lipid-mediated gene transfer in C6 glioma cells and primary glial cells using FuGene?. Journal of Neuroscience Methods, 1999, 92: 145-152
    42. Weber M, Moller K, Welzeck M, et al. Short technical reports. Effects of lipopolysaccharide on transfection efficiency in eukaryotic cells. Biotechniques, 1995, 19(6): 930-940
    43. Ourlin JC, Vilarem MJ, Daujat M et al. Lipid-mediated transfection of normal adult human hepatocytes in primary culture. Anal Biochem, 1997, 247: 34-44.
    44. Dokka S, Toledo D, Shi X, et al. High-efficiency gene transfection of macrophages by lipoplexes. Int J Pharm, 2000, 206: 97-104
    45. Simoes S, Slepushkin V, Pretzer E, et al. Transfection of human macrophages by lipoplexes via the combined use of transferrin and pH-sensitive peptides. J Leukoc Biol, 1999, 65: 270– 279
    46. Mislick KA, Baldeschwieler JD. Evidence for the role of proteoglycans in cation-mediated gene transfer. Proc Natl Acad Sci U S A, 1996, 93: 12349-12354
    47. Felgner JH, Kumar R, Sridhar CN, et al. Enhanced gene delivery and mechanism studies with a novel series of cationic lipid formulations, J. Biol. Chem, 1994, 269: 2550-2561
    48. Filion MC, Phillips NC. Toxicity and immunomodulatory activity of liposomal vectors formulated with cationic lipids toward immune effector cells. Biochim Biophys Acta, 1997, 1329: 345- 356
    49. Elbashir SM, Harborth J, Lendeckel W, et al. Duplexes of 21-nucleotide RNAsmediate RNA interference in cultured mammalian cells. Nature, 2001, 411: 494-498
    50. Gitlin L, Karelsky S, Andino R. Short Interfering RNA Confers Intracellular Antiviral Immunity in Human Cells. Nature, 2002, 418: 430-434
    51. Yu JY, DeRuiter SL, Turner DL. RNA Interference by Expression of Short-interfering RNAs and Hairpin RNAs in Mammalian Cells. Proc Nat Acad Sci USA, 2002, 99: 6047-6052
    1. Fire A, Xu S, Montogomery MK, et al. Potent and specific genetic inforference by double-stranded RNA in Caenorhabditis elegans. Nature, 1998, 391(6669): 806-811
    2. Robertson HD, Webster RE, Zinder ND. Purification and properties of ribonucleaseⅢfrom Escherichia coli. J Biol Chem, 1968, 243: 82-91
    3. Lisa JS, John JR. Approaches for the sequence-specific knockdown of mRNA. Nature Biotechnology, 2003, 21(12): 1457-1465
    4. Jorgensen R. Altered gene expression in plants due to trans interaction betweenhohologous genes. Trends Biotechnol, 1990, 8: 340-344
    5. Schwarz DC, Hutvagner G, Haley B, et al. Evidence that siRNAs function as guard, not primers in the Drosophila and human RNAi pathways. Mol Cell, 2002, 10: 537-548
    6. Chiu YL, Rana TM. RNAi in human cells: basic structural and functional features of small interfering RNA. Mol Cell, 2002, 10: 549-561
    7. Lipardi C, Wei Q, Paterson BM. RNAi as random degradative PCR: siRNA primers conver mRNA into dsRNAs that are degrate new siRNAs. Cell, 2001, 107: 297-307
    8. Myslinski E, Ame JC, Krol A, et al. An unusually compact external promoter for RNA polymeraseⅢtranscription of the human H1RNA gene.Nucleic Acids Res, 2001, 29: 2502-2509
    9. Gil J, Esteban M. Induction of apoptosis by the dsRNA-dependent protein kinase (PKR): Mechanism of action. Apoptosis, 2000, 5: 107-114
    10. Caplen NJ, Parrish S, Imani F, et al. Specific inhibition of gene expression by small double-stranded RNAs in invertebrates and vertebrate systems. Proc Natl Acad Sci USA, 2001, 98: 9746-9747
    11. Elbashir SM, Harborth J, Lendeckel W, et al. Duplexes of 21-23 nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature, 2001, 411: 494-498
    1. Eliyahu H, Servel N, Domb AJ, Barenholz Y. Lipoplex-induced hemagglutination: potential involvement in intravenous gene delivery. Gene Therapy 2002; 9: 850-858.
    2. Loisel S, Le Gall C, Doucet L, Ferec C, Floch V. Contribution of plasmid DNA to hepatotoxicity after systemic administration of lipoplexes. Hum Gene Ther 2001; 12: 685-696.
    3. Tousignant JD, Gates AL, Ingram LA, Johnson CL, Nietupski JB, Cheng SH et al. Comprehensive analysis of the acute toxicities induced by systemic administration of cationic lipid: plasmid DNA complexes in mice. Hum Gene Ther 2000; 11: 2493-2513.
    4. Mislick, K. A. & Baldeschwieler, J. D. Evidence for the role of proteoglycans in cation-mediated gene transfer. Proc Natl Acad Sci U S A 93, 12349-54. (1996).
    5. Behr, J. P. The proton sponge - A trick to enter cells the viruses did not exploit. CHIMIA 51, 34-36 (1997).
    6. Boussif, O. et al. A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo:polyethylenimine. Proc Natl Acad Sci U S A 92, 7297-301 (1995)
    7. Ohana, P. et al. Regulatory sequences of the H19 gene in DNA based therapy of bladder cancer. Gene Ther Mol Biol 8, 181-192 (2004).
    8. Bragonzi, A. et al. Comparison between cationic polymers and lipids in mediating systemic gene delivery to the lungs. Gene Ther 6, 1995-2004 (1999).
    9. Demeneix, B. A., Ghorbel, M. & Goula, D. Optimizing polyethylenimine-based gene transfer into mammalian brain for analysis of promoter regulation and protein function. Methods Mol Biol 133, 21-35 (2000)
    10. Goula, D. et al. Size, diffusibility and transfection performance of linear PEI/DNA complexes in the mouse central nervous system. Gene Ther 5, 712-717 (1998).
    11. Ouatas, T., Le Mevel, S., Demeneix, B. A. & de Luze, A. T3-dependent physiological regulation of transcription in the Xenopus tadpole brain studied by polyethylenimine based in vivo gene transfer. Int J Dev Biol 42, 1159-1164 (1998).
    12. Aoki, K. et al. Polyethylenimine-mediated gene transfer into pancreatic tumor dissemination in the murine peritoneal cavity. Gene Ther 8, 508-514 (2001)
    13. Louis, M. H. et al. Intraperitoneal linear polyethylenimine (L-PEI)-mediated gene delivery to ovarian carcinoma nodes in mice. Cancer Gene Ther 13, 367-374 (2006).
    14. Ferrari, S. et al. Polyethylenimine shows properties of interest for cystic fibrosis gene therapy. Biochim Biophys Acta 1447, 219-225 (1999).
    15. Chemin, I. et al. Liver-directed gene transfer: a linear polyethlenimine derivative mediates highly efficient DNA delivery to primary hepatocytes in vitro and in vivo. J Viral Hepat 5, 369-375 (1998).
    16. Johansson, A., Nowak, G., Moller, C. & Harper, P. Non-viral delivery of the porphobilinogen deaminase cDNA into a mouse model of acute intermittent porphyria. Mol Genet Metab 82, 20-26 (2004).
    17. Zou SM, Erbacher P, Remy JS, Behr JP. Systemic linear polyethylenimine (L-PEI)-mediated gene delivery in the mouse. J Gene Med 2000 Mar-Apr;2(2):128-34.
    18. Chiu YL, Rana TM. siRNA function in RNAi: a chemical modification analysis. RNA 2003; 9: 1034-1048.
    19. Czauderna F, Fechtner M, Dames S, Aygun H, Klippel A, Pronk GJ et al. Structuralvariations and stabilising modifications of synthetic siRNAs in mammalian cells. Nucleic Acids Res 2003; 31: 2705-2716.
    20. Bach FH, Robson SC, Ferran C, et al. Endothelial cell activation and thromboregulation during xenograft rejection. Immunol Rev, 1994, 141: 5-30
    21. Blakely ML, Van Der Werf WJ, Berndt MC, et al. Activation of intragraft endothelial mononuclear cells during discordant xenograft rejection. Transplantation, 1994, 58: 1059-1066
    22. Robson SC, Candinas D, Hancock WW, et al. Role of endothelial cells in transplantation (review). Int Arch Allergy Immunol, 1995, 106: 305- 322
    1. Zwaginga JJ, Sixma JJ, de Groot PG. Activation of endothelial cells induces platelet thrombus formation on their matrix: studies of new in vitro thrombosis model with low molecular weight heparin as anticoagulant. Arterioscler Thromb Vasc Biol, 1990 , 10: 49-61
    2. Absher E, Labarrere CA, Carter C, et al. The endothelial heparan sulfate-antithrombin III natural anticoagulant pathway in normal and transplanted human kidneys. Transplantation, 1992, 53: 828-834
    3. Collins T, Palmer HJ, Whitley MZ, et al. A common theme in endothelial activation: Insights from the structural analysis of the genes for E-selectin and VCAM-1. Trends Cardiovasc Med, 1993, 3: 92-97
    4. Cotran RS, Pober JS. Endothelial activation and inflammation. Prog. Immunol, 1989, 8: 747-754
    5. Bach FH, Blakely ML, Van der Werf WJ, et al. Xenotransplantation: problems posed by endothelial cell activation. Transplant Proc, 1994, 26(2): 1029-1030
    6. Hirokawa K, Aoki N. Regulatory mechanisms for thrombomodulin expression in human umbilical vein endothelial cells in vitro. J Cell Physiol, 1991, 147: 157-165
    7. Platt JL, Vercellotti GM, Lindman BJ, et al. Release of heparan sulfate from endothelial cells. Implications for pathogenesis of hyperacute rejection. J Exp Med, 1990, 171: 1363-1368
    8. Heckmann M, Pirthauer M. Granulocytes enhance adhesion of peripheral blood mononuclear cells to dermal endothelial cells. Journal of Dermatological Science, 1998, 17 (1): 75-81
    9. Quinlan KL, Song IS, Naik SM, et al. VCAM-1 expression on human dermal microvascular endothelial cells is directly and specifically up-regulated by substance P. The Journal of Immunology, 1999, 162 (3): 1656-1661
    10. Fuchs J, Zollner TM, Kaufmann R, et al. Redox-modulated pathways in inflammatory skin diseases. Free Radical Biology & Medicine, 2001, 30 (4): 337-353
    11. Weber C, Erl W, Pietsch A, et al. Antioxidants inhibit monocyte adhesion by suppressing nuclear factor-κB mobilization and induction of vascular cell adhesion molecule-1 in endothelial cells stimulated to generate radicals. Arteriosclerosis and Thrombosis, 1994, 14 (10): 1665-1673
    12. Khan BV, Harrison DG, Olbrych MT, et al. Nitric oxide regulates vascular cell adhesion molecule 1 gene expression and redox-sensitive transcriptional events in human vascular endothelial cells. Proceedings of the National Academy of Sciences of the United States of America, 1996, 93 (17): 9114-9119
    13. Rahman A, Kefer J, Bando M, et al. E-selectin expression in human endothelial cells by TNF-ainduced oxidant generation and NF-nB activation. American Journal of Physiology, 1998, 275: L533-L544
    14. May JM, Ghosh S. Signal transduction through NF-κB. Immunol Today, 1998, 19: 80-88
    15. Finco TS, Baldwin AS. Mechanistic aspects of NF-κB regulation: the emerging role of phosphorylation and proteolysis. Immunity, 1995, 3: 263-272
    16. Pendurthi UR, Williams JT, Rao LVM. Resveratrol, a polyphenolic compound found in wine, inhibits tissue factor expression in vascular cells. A possible mechanism for the cardiovascular benefits associated with moderate consumption of wine.Arterioscler Thromb Vasc Biol, 1999, 19: 419- 426
    17. Pendurthi UR, Meng F, Mackman N. Mechanism of resveratrol-mediated suppression of tissue factor gene expression. Thromb Haemost, 2002, 87: 155-162
    18. Baeuerle, PA, Henkel T. Function and activation of NF-kB in the immune system. Annu Rev Immunol, 1994, 12, 141-179
    19. Stangl V, Gunther C, Jarrin A, et al. Homocysteine inhibits TNF-alpha-induced endothelial adhesion molecule expression and monocyte adhesion via nuclear factor-kappaB dependent pathway. Biochem Biophys Res Commun, 2001, 280(4): 1093-1100
    20. Fries JW, Williams AJ, Atkins RC, et al. Expression of VCAM-1 and E-selectin in an in vivo model of endothelial activation. Am J Pathol, 1993, 143: 725 - 737
    21. Panes J, Perry MA, Erson DC, et al. Regional differences in constitutive and induced ICAM-1 expression in vivo. Am J Physiol, 1995, 269: H1955 - H1964
    22. Henniger DD, Panés J, Eppihimer M, et al. Cytokine-induced VCAM-1 and ICAM-1 expression in different organs of the mouse. J Immunol, 1997, 158: 1825-1832
    23. Bach FH, Robson SC, Winkler H, et al. Endothelial cell activation and thromboregulation during xenograft rejection. Immunol Rew, 1994, 141: 5-30
    24. Bach FH, Robson SC, Winkler H, et al. Barriers to xenotransplantation. Nature Medicine, 1995, 1: 869-873
    25. Drews J. Immunopharmacology principles and perspectives. Basel: F. Hoffmann-La Roche Ltd, 1990, 66-71, 209-237
    26. Holzknecht ZE, Kuypers KL, Plummer TB, et al. Apoptosis and Cellular Activation in the Pathogenesis of Acute Vascular Rejection. Circ Res, 2002 Dec 13;91(12):1135-41
    1. Ye Y, Niekrasz M, Kosanke S, et al. The pig as a potential organ donor for man. A study of potentially transferable disease from donor pig to recipient man. Transplantation 1994; 57: 694-703.
    2. Sachs DH. The pig as a potential xenograft donor. Vet Immunol Immunopathol 1994; 43: 185.
    3. Sachs DH. The pig as a xenograft donor. Pathol Biol 1994; 42: 217.
    4. Calne RY. Organ transplantation between widely disparate species. Transplant Proc 1970; 2: 550.
    5. Galili U, Shohet SB, Kobrin E, Stults CLM, Macher BA. Man, apes and Old World monkeys differ from other mammals in the expression of [alpha]-galactosyl epitopes on nucleated cells. J Biol Chem 1988; 263, 17755.
    6. Oriol R, Ye Y, Koren E, Cooper DKC. Carbohydrate antigens of pig tissues reacting with human natural antibodies as potential targets for hyperacute vascular rejection in pig-to-man organ xenotransplantation. Transplantation 1993; 56, 1433.
    7. Oriol R, Candelier JJ, Taniguchi S, Peters L, Cooper DKC. Major oligosaccharide epitopes found in tissues of 23 animal species, potential donors for organ xenotransplantation. Transplant Proc 1996; 28: 794.
    8. Good AH, Cooper DKC, Malcolm AJ, et al. Identification of carbohydrate structures that bind human anti-porcine antibodies: implications for discordant xenografting in humans. Transplant Proc 1992; 24, 559.
    9. Cooper DKC, Good AH, Koren E, et al. Identification of [alpha]galactosyl and other carbohydrate epitopes that are bound by human anti-pig antibodies: relevance to discordant xenografting in man. Transpl Immunol 1993; 1: 198.
    10. Sandrin MS, Vaughan HA, Dabkowski PL, McKenzie IFC. Anti-pig IgM antibodies in human serum react predominantly with Gal[alpha](1-3)Gal epitopes. Proc Natl Acad Sci USA 1993; 90: 11391
    11. Galili U. Interaction of the natural anti-Gal antibody with [alpha]galactosyl epitopes: a major obstacle for xenotransplantation in humans. Immunol Today 1993; 14: 480.
    12. White DJG. hDAF transgenic pig organs: are they concordant for human transplantation? Xeno 1996; 4:50.
    13. Zaidi A, Friend P, Schmoeckel M, et al. Hyperacute rejection is not consistent after pig to primate renal xenotransplantation [Abstract 053]. Paper presented at the Fourth International Congress for Xenotransplantation, Nantes, France, 1997.
    14. Alexandre GPJ, Gianello P, Latinne D, et al. Plasmapheresis and splenectomy in experimental renal xenotransplantation. In: Hardy MA, ed. Xenograft 25. 1989: 259.
    15. Gianello PR, Latinne D, Alexandre GPJ. Pig-to-baboon renal xenografts. Xeno 1995; 3: 26.
    16. Neethling FA, Koren E, Ye Y, et al. Protection of pig kidney (PK15) cells from the cytotoxic effect of anti-pig antibodies by [alpha]-galactosyl oligosaccharides. Transplantation 1994; 57: 959
    17. Neethling FA, Joziasse D, Bovin N, Cooper DKC, Oriol R. The reducing end of [alpha]Gal oligosaccharides contributes to their efficiency in blocking natural antibodies of human and baboon sera. Transpl Int 1996; 9: 98.
    18. Neethling FA, Kujundzic M, Koren E, Cooper DKC. Variability of anti-[alpha]Gal antibodies in human and baboon sera [Abstract 147]. J Heart Lung Transplant 1995; 14: S72.
    19. Ohta K, Tanaka N, Orita K. Discordant liver xenograft transplantation. Transplant Proc 1994; 26: 2435.
    20. Taniguchi S, Neethling FA, Kobayashi T, et al. The ratite (ostrich, emu) as potential heart donors for humans: immunologic considerations. Transplant Proc 1996; 28: 561.
    21. Taniguchi S, Neethling FA, Oriol R, et al. Ratites (ostrich, emu) as potential heart donors for human: immunologic, anatomic, and physiologic considerations. Xenotransplantation 1996; 3, 252.
    22. Dalmasso AP, Vercellotti GM, Fischel RJ, et al. Mechanism of complement activation in the hyperacute rejection of porcine organs transplanted into primate recipients. AmJ Pathol 1992; 140: 1157.
    23. Collins BH, Cotterell AH, McCurry KR, et al. Cardiac xenografts between primate species provide evidence for the [alpha]-galactosyl determinant in hyperacute rejection. J Immunol 1995; 154: 5500.
    24. Rose AG, Cooper DKC, Human PA, Reichenspurner H, Reichart B. Histopathology of hyperacute rejection of the heart: experimental and clinical observations in allografts and xenografts. J Heart Transplant 1991; 10: 223.
    25. Rose AG, Cooper DKC. A histopathologic grading system of hyperacute (humoral, antibody-mediated) cardiac xenografts and allograft rejection. J Heart Lung Transplant 1996; 15: 804.
    26. Rose AG. Histopathology of cardiac xenograft rejection. In: Cooper DKC, Kemp E, Platt JL, White DJG. Xenotransplantation, 2nd ed. Heidelberg: Springer, 1997: 255.
    27. Makowka L, Cramer DV, Hoffman A, Sher L, Podesta L. Pig liver xenografts as a temporary bridge for human allografting. Xeno 1993; 1: 27.
    28. Makowka L, Wu GD, Hoffman A, et al. Immunohistopathologic lesions associated with the rejection of a pig-to-human liver xenograft. Transplant Proc 1994; 26: 1074.
    29. Makowka L, Cramer DV, Hoffman A, et al. The use of a pig liver xenograft for temporary support of a patient with fulminant hepatic failure. Transplantation 1995; 59: 1654.
    30. Lou Y, Mieles L, Kosanke S, Cooper DKC. Histopathology of liver xenotransplantation in the nonhuman primate. In: Cooper DKC, Kemp E, eds. Xenotransplantation, 2nd ed. Heidelberg: Springer, 1997: 286.
    31. 30a. Kozlowski T, Shimizu A, Lambrigts D, et al. Porcine organ transplantation in baboons undergoing a tolerance induction regimen and antibody adsorption. Transplantation (in press).
    32. Shimizu A, Kozlowski T, Ierino FL, Cooper DKC, Sachs DH, Colvin RB. Widespread destruction of vascular capillary network with endothelial cell apoptosis in delayed xenograft rejection [Abstract P293]. Paper presented at the Fourth International Congress on Xenotransplantation, Nantes, France, 1997.
    33. Shah AS, O'Hair DP, Kaplon RJ, et al. Absence of hyperacute rejection in pig-to-primate double lung xenografts [Abstract 188]. J Heart Lung Transplant 1995; 14: S83.
    34. Shah AS, Itescu S, Michler RE. Immunobiology of pig-to-baboon lung xenotransplantation. In: Cooper DKC, Kemp E, eds. Xenotransplantation, 2nd ed. Heidelberg: Springer, 1997: 456.
    35. Pierson RN III, Pino-Chavez G. Experimental lung xenografting. In: Cooper DKC, Kemp E, eds. Xenotransplantation, 2nd ed. Heidelberg: Springer, 1997: 463.
    36. Platt JL, Fischel RJ, Matas AJ, Reif SA, Bolman RM, Bach FH. Immunopathology of hyperacute xenograft rejection in a swine-to-primate model. Transplantation 1991; 52: 214.
    37. Hancock WW. Immunopathology of discordant xenograft rejection. In: Cooper DKC, Kemp E, eds. Xenotransplantation, 2nd ed. Heidelberg: Springer, 1997: 303.
    38. Yeatman M, Daggett CW, Parker WR, Davis RD, Platt JL. Immunopathology of swine-to-primate pulmonary xenotransplantation [Abstract P317]. Paper presented at the Fourth International Congress for Xenotransplantation, Nantes, France, 1997.
    39. Taniguchi S, Cooper DKC. Clinical xenotransplantation: past, present and future. Ann R Coll Surg Engl 1997; 79: 13.
    40. Auchincloss H Jr. Xenogeneic transplantation. Transplantation 1988; 46: 1.
    41. Ye Y, Cooper DKC. Experimental xenotransplantation in non-human primates using distantly related donor species. In: Cooper DKC, et al., eds. Xenotransplantation, 1st ed. Heidelberg: Springer, 1991: 389.
    42. Bach FH, Robson SC, Winkler H, et al. Barriers to xenotransplantation. Nat Med 1995; 1: 869.
    43. Bach FH, Winkler H, Ferran C, Hancock WW, Robson SC. Delayed xenograft rejection. Immunol Today 1996; 17: 379.
    44. Goodman DJ, Millan MT, Ferran C, Bach FH. Mechanisms of delayed xenograft rejection. In: Cooper DKC, Kemp E, eds. Xenotransplantation, 2nd ed. Heidelberg: Springer, 1997: 77.
    45. Auchincloss H Jr. Why is cell-mediated xenograft rejection so strong? Xeno 1995; 3: 19.
    46. Moses RD, Auchincloss H Jr. Mechanisms of cellular xenograft rejection. In: Cooper DKC, Kemp E, eds. Xenotransplantation, 2nd ed. Heidelberg: Springer, 1997: 140.
    47. Cooper DKC, Koren E, Oriol R. Genetically engineered pigs. Lancet 1993; 342: 682.
    48. Sandrin MS, Fodor WL, Mouhtouris E, et al. Enzymatic remodeling of the carbohydrate surface of a xenogenic cell substantially reduces human antibody binding and complement-mediated cytolysis. Nat Med 1995; 1: 1261.
    49. Koike C, Hayashi S, Yokoyami I, et al. Converting [alpha]Gal epitope of pig into H antigen. Transplant Proc 1996; 28: 553.
    50. Koike C, Kannagi R, Takuma Y, et al. Introduction of [alpha](1,2)-fucosyltransferase and its effect on [alpha]Gal epitopes in transgenic pig. Xenotransplantation 1996; 3: 81.
    51. Sharma A, Okabe JF, Burch P, Platt JL, Logan JS. Reduction in the level of Gal(alpha1,3) Gal in transgenic mice and pigs by the expression of an alpha(1,2) fucosyltransferase. Proc Natl Acad Sci USA 1996; 93: 7190.
    52. Shinkel TA, Chen C-G, Salvaris E, et al. Changes in cell surface glycosylation in [alpha]1,3-galactosyltransferase knockout and [alpha]1,2-fucosyltransferase transgenic mice. Transplantation 1997; 64:197.
    53. Sandrin MS, Fodor WL, Mouhtouris E, et al. Enzymatic remodeling of the carbohydrate surface of a xenogenic cell substantially reduces human antibody binding and complement-mediated cytolysis. Nat Med 1995; 1: 1261.
    54. Bach FH, Turman MA, Vercellotti GM, Platt JL, Dalmasso AP. Accommodation: a working paradigm for progressing toward clinical discordant xenografting. Transplant Proc 1991; 23: 205.
    55. Bach FH, Platt JL, Cooper DKC. Accomodation: the role of natural antibody and complement in discordant xenograft rejection. In: Cooper DKC, et al., eds. Xenotransplantation, 1st ed. Heidelberg: Springer, 1991: 82. Alexandre GP, SquiffletJP, De Bruyere M, et al. Splenectomy as a prerequisite for successful human ABO-incompatible renal transplantation. Transplant Proc 1985; 17: 138.
    56. Alexandre GPJ, Squifflet JP, De Bruyere M, et al. Present experiences in a series of 26 ABO-incompatible living donor renal allografts. Transplant Proc 1987; 19: 4538.
    57. Palmer A, Taube D, Welsh K, et al. Removal of anti-HLA antibodies by extracorporeal immunoadsorption to enable renal transplantation. Lancet 1989; 1: 10.
    58. Cooper DKC, Ye Y, Niekrasz M, et al. Specific intravenous carbohydrate therapy-a new concept in inhibiting antibody-mediated rejection: experience with ABO-incompatible cardiac allografting in the baboon. Transplantation 1993; 56: 769.
    59. Lexer GH, Cooper DKC, Wicomb WN. Cardiac transplantation using discordant xenografts in a nonhuman primate model. Transplant Proc 1987; 19: 1153.
    60. Cooper DKC, Human PA, Lexer G, Rose AG, Rees J, Keraan M, DuToit E. Effects of cyclosporine and antibody adsorption on pig cardiac xenograft survival in the baboon. J Heart Transplant 1988; 7: 238.
    61. Meyer C, Romain N, Ravanat C, et al., Porcine kidney grafts with Von Willebrand disease transplanted in baboons [Abstract 0194]. Paper presented at the Fourth International Congress for Xenotransplantation, Nantes, France, 1997.
    62. Calne RY, White HJO, Herbertson BM, et al. Pig-to-baboon liver xenografts. Lancet 1968; 1: 1176.
    63. Calne RY, Davis DR, Pena JR, et al. Hepatic allografts and xenografts in primates. Lancet 1970; 1: 103.
    64. Kozlowski T, Monroy R, Xu Y, et al. Anti-[alpha]Gal antibody response to porcine bone marrow in unmodified baboons and baboons conditioned for tolerance induction. Transplantation 1998; 66: 176.
    65. Kobayashi T, Taniguchi S, Ye Y, et al. Delayed xenograft rejection in C3-depleted discordant (pig-to-baboon) cardiac xenografts treated with cobra venom factor. Transplant Proc 1996; 28: 560.
    66. Kobayashi T, Taniguchi S, Neethling FA, et al. Delayed xenograft rejection of pig-to-baboon cardiac transplants after cobra venom factor therapy. Transplantation1997; 64: 1255.
    67. Fukushima N, Bouchart F, Gundry SR, et al. The role of anti-pig antibody in pig-to-baboon cardiac xenotransplant rejection. Transplantation 1994; 57: 923.
    68. Matsumiya G, Gundry SR, Nehlsen-Cannarella S, et al. Serum interleukin-6 level after cardiac xenotransplantation in primates. Transplant Proc 1997; 29: 916.
    69. Zaidi A, Bhatti FNK, Schmoeckel M, et al. Immunosuppressive effect of splenectomy on hDAF transgenic pig to primate renal xenotransplantation [Abstract]. Paper presented to the British Transplantation Society, October 1997.
    70. Michler RE, Yano OJ, Xu H, et al. Prolonged survival of pig pulmonary xenografts in unmodified primate recipients [Abstract 53]. J Heart Lung Transplant 1993; 12: S78.
    71. Kaplon RJ, Platt JL, Kwiatkowski PA, et al. Absence of hyper-acute rejection in pig-to-primate orthotopic pulmonary xenografts. Transplantation 1995; 59: 410.
    72. Yeatman M, Daggett CW, Byrne GW, Logan JS, Platt JL, Davis RD. Complement-mediated pulmonary xenograft injury [Abstract 283]. J Heart Lung Transplant 1997; 16: 111.
    73. Yeatman M, Daggett CW, Platt JL, Davis RD. Depletion of complement delays but does not prevent acute pulmonary xenograft injury [Abstract P116]. Paper presented at the Fourth International Congress for Xenotransplantation, Nantes, France, 1997.
    74. Blum M, Chang A, Collins B, Knaus S, Christman B, Pierson RN. The effect of nitric oxide and thromboxane blockade on pulmonary vascular resistance in a pig to primate lung transplant model [Abstract 290]. Paper presented at the Fourth International Congress for Xenotransplantation, Nantes, France 1997.
    75. Kaplon RJ, Michler RE, Xu H, Kwiatkowski PA, Edwards NM, Platt JL. Absence of hyperacute rejection in newborn pig-to-baboon cardiac xenografts. Transplantation 1995; 59: 1.
    76. Minanov OP, Itescu S, Kwiatkowski P, et al. Effects of triple immunosuppression in pig-to-newborn baboon cardiac xenotransplantation [Abstract 279]. J Heart Lung Transplant 1997; 16: 110.
    77. Minanov OP, Itescu S, Neethling FA, et al. Anti-Gal IgG anti-bodies in sera ofnewborn humans and baboons and its significance in pig xenotransplantation. Transplantation 1997; 63: 182.
    78. Michler RE, Xu H, O'Hair DP, et al. Newborn discordant cardiac xenotransplantation in primates: a model of natural antibody depletion. Transplant Proc 1996; 28: 651.
    79. Neethling F, Cooper DKC, Xu H, Michler RE. Newborn baboon serum anti-[alpha]galactosyl antibody levels and cytotoxicity to cultured pig kidney (PK15) cells [Letter]. Transplantation 1995; 60: 520.
    80. Galili U, Minanov OP, Michler RE, Stone KR. High affinity anti-Gal IgG in chronic rejection of xenografts. Xenotransplantation 1997; 4: 127.
    81. Minanov OP, Artrip JH, Szabolcs M, et al. Effects of triple immunosuppression in pig-to-newborn baboon cardiac xenotransplantation [Abstract 289]. Paper presented at the Fourth International Congress for Xenotransplantation, Nantes, France, 1997.
    82. Kawauchi M, Nakajima J, Takeda M, Ono M, Lee M-C, Oka T. When in the infancy hyperacute rejection against pig heart occurs? [Abstract P301] Paper presented at the Fourth International Congress for Xenotransplantation, Nantes, France, 1997.
    83. Fischel RJ, Bolman RM, Platt JL, et al. Removal of IgM anti-endothelial antibodies results in prolonged cardiac xenograft survival. Transplant Proc 1990; 22, 1077.
    84. Fischel RJ, Platt JL, Matas AJ, et al. Prolonged survival of a discordant cardiac xenograft in a rhesus monkey. Transplant Proc 1991; 23: 589.
    85. Fischel RJ, Matas AJ, Platt JL, et al. Cardiac xenografting in the pig-to-rhesus monkey model: manipulation of antiendothelial antibody prolongs survival. J Heart Lung Transplant 1992; 11: 965.
    86. Dalmasso AP, Vercellotti GM, Fischel RJ, et al. Mechanism of complement activation in the hyperacute rejection of porcine organs transplanted into primate recipients. Am J Pathol 1992; 140: 1157.
    87. Fischel RJ, Matas AJ, Perty E, et al. Plasma exchange, organ perfusion, and immunosuppression reduce "natural" antibody levels as measured by binding to xenogeneic endothelial cells and prolong discordant xenograft survival. Transplant Proc 1992; 24: 574.
    88. Roslin MS, Zisbrod Z, Burack JH, et al. Fifteen-day survival in pig-to-baboon heterotopic cardiac xenotransplantation. Transplant Proc 1992; 24: 572.
    89. Xu H, Hancock WW, Matsumiya G, et al. Inhibition of natural anti-Gal antibody production in a pig-to-baboon cardiac xenograft model by total lymphoid irradiation [Abstract 267]. Paper presented at the Fourth International Congress for Xenotransplantation, Nantes, France, 1997.
    90. Kawauchi M, Takeda M, Matsumoto J, Furuse A. Cardiac xenotransplantation from pig to Japanese monkey with splenectomy, tacrolimus, filtration plasmapheresis and nafamstat mesilate. Transplant Proc 1994; 26: 1076.
    91. Sablinski T, Latinne D, Gianello P, et al. Xenotransplantation of pig kidneys to nonhuman primates: I. Development of the model. Xenotransplantation 1995; 2: 264.
    92. Tanaka M, Latinne D, Gianello P, et al. Xenotransplantation from pig to cynomolgus monkey: the potential for overcoming xenograft rejection through induction of chimerism. Transplant Proc 1994; 26: 1326.
    93. Latinne D, Gianello P, Smith CV, et al. Xenotransplantation from pig to cynomolgus monkey: an approach toward tolerance induction. Transplant Proc 1993; 25: 336.
    94. Sablinski T, Gianello PR, Bailin M, et al. Pig-to-monkey bone marrow and kidney xenotransplantation. Surgery 1997; 121: 381.
    95. Kozlowski T, Fuchimoto Y, Monroy R, et al. Apheresis and column absorption for specific removal of Gal-[alpha]-1,3Gal natural antibodies in a pig-to-baboon model. Transplant Proc 1997; 29: 961.
    96. Leventhal JR, John R, Fryer JP, et al. Removal of baboon and human anti-porcine IgG and IgM natural antibodies by immunoadsorption. Transplantation 1995; 59: 294.
    97. Taniguchi S, Neethling FA, Korchagina EY, et al. In vivo immunoadsorption of anti-pig antibodies in baboons using a specific Gal[alpha]1-3Gal column. Transplantation 1996; 62: 1379.
    97a. Kozlowski T, Ierino FL, Lambrigts D, et al. Depletion of anti-Gal[alpha]1-3Gal antibody in baboons by specific immunoaffinity columns. Xenotransplantation 1998; 5:122.
    98. Cooper DKC, Cairns TDH, Taube DH. Extracorporeal immunoadsorption of anti-pig antibody in baboons using [alpha]Gal oligosaccharide immunoaffinity columns. Xeno 1996; 4: 27.
    98a. Lambrigts D, Van Calster P, Xu Y, et al. Pharmacologic immunosuppressive therapy and extracorporeal immunoadsorption in the suppression of anti-[alpha]Gal antibody in the baboon. Xenotransplantation 1998; (in press).
    99. Lin SS, Byrne GW, Diamond LE, et al. The role of antibodies in the pathogenesis of acute vascular xenograft rejection [Abstract 049]. Paper presented at the Fourth International Congress for Xenotransplantation, Nantes, France, 1997.
    100.Kroshus TJ, Salerno CT, Fodor WL, Dalmasso AP, Bolman RM. Expression of human CD59 in combination with antibody depletion extends survival in orthotopic pig-to-baboon heart transplantation [Abstract 051]. Paper presented at the Fourth International Congress for Xenotransplantation, Nantes, France, 1997.
    101.Kroshus TJ, Salerno CT, Dalmasso AP, Fodor WL, Bolman RM. Expression of human CD59 in transgenic pig hearts extends survival in an orthotopic pig-to-baboon model of heart transplantation [Abstract 281]. J Heart Lung Transplant 1997; 16: 111.
    102.Daggett CW, Yeatman M, Lodge AJ, et al. Swine-to-primate pulmonary xenotransplantation: genetically engineered swine and immuno-depletion [Abstract 050]. Paper presented at the Fourth International Congress for Xenotransplantation, Nantes, France, 1997.
    103.Cooper DKC, Ye Y, Kehoe M, et al. A novel approach to "neutralization" of preformed antibodies: cardiac allotransplantation across the ABO-blood group barrier as a paradigm of discordant xenotransplantation. Transplant Proc 1992; 24: 566.
    104.Ye Y, Neethling FA, Niekrasz M, et al. Intravenous administration of [alpha]-galactosyl carbohydrates reduces in vivo baboon serum cytotoxicity to pig kidney cells and transplanted pig hearts. Transplant Proc 1994; 26: 1399.
    105.Ye Y, Neethling FA, Niekrasz M, et al. Evidence that intravenously administered [alpha]-galactosyl carbohydrates reduce serum cytotoxicity to pig kidney cells (PK15) and transplanted pig hearts. Transplantation 1994; 58: 330.
    106.Simon PM, Neethling FA, Taniguchi S, et al. Intravenous infusion of [alpha]Gal oligosaccharides in baboons delays hyperacute rejection of porcine heart xenografts. Transplantation 1998; 65: 346.
    107.Neethling FA, Simon PM, Zopt D, Cooper DKC. Delay of antibody-mediated rejection of pig heart transplants in baboons by continuous intravenous infusion with [alpha]galactosyl oligosaccharide [Abstract 73]. J Heart Lung Transplant 1997; 16: 59.
    108.Simon PM, Goode PL, Zopt D, et al. Inhibition of hyperacute rejection of heterotopic porcine heart xenografts in baboons by intravenous infusion of [alpha]Gal-tri- and pentasaccharides [Abstract P233]. Paper presented at the Fourth International Congress for Xenotransplantation, Nantes, France, 1997.
    109.Romano EL, Neethling FA, Nelsson KGI, Magnusson S, Cooper DKC. Intravenous Gal[alpha] saccharides for the prevention of hyperacute rejection of pig heart to baboon transplantation [Abstract 302]. Paper presented at the Fourth International Congress for Xenotransplantation, Nantes, France, 1997.
    110.Dalmasso AP, Vercellotti GM, Platt JL, Bach FH. Inhibition of complement-mediated endothelial cell cytotoxicity by decay accelerating factor: potential for prevention of xenograft hyperacute rejection. Transplantation 1991; 52: 530.
    111.Dalmasso AP, Bach FH. Expression of human regulators of complement activation on pig endothelial cells. Xeno 1996; 4: 55.
    112.Cozzi E, Yanoutsos N, Langford GA, Pino-Chavez G, Wallwork J, White DJG. Effect of transgenic expression of human decay accelerating factor on the inhibition of hyperacute rejection of pig organs. In: Cooper DKC, Kemp E, eds. Xenotransplantation, 2nd ed. Heidelberg: Springer, 1997: 665.
    113.Leventhal JR, Dalmasso AP, Cromwell JW, et al. Prolongation of cardiac xenograft survival by depletion of complement. Transplantation 1993; 55: 857.
    114.Leventhal JR, Sakiyalak P, Witson J, et al. The synergistic effect of combined antibody and complement depletion on discordant cardiac xenograft survival in nonhuman primates. Transplantation 1994; 57: 974
    115.Leventhal JR, Dalmasso AP, Cromwell JW, Manivel CJ, Bolman RM, Matas AJ.Complement depletion prolongs discordant cardiac xenograft survival in rodents and nonhuman primates. Transplant Proc 1993; 25: 398.
    116.Pruitt SK, Kirk AD, Bollinger RR, et al. The effect of soluble complement receptor type I on hyperacute rejection of porcine xenografts. Transplantation 1994; 57: 363.
    117.Pruitt SK, Bollinger RR, Collins BH, et al. Continuous complement (C) inhibition using soluble C receptor type I (sCR1): effect on hyperacute rejection (HAR) of pig-to-primate cardiac xenografts. Transplant Proc 1996; 28: 756.
    118.Sanfilippo F. Exogenous complement inhibition in xenotransplantation. Xeno 1996; 4: 46.
    119.Davis EA, Pruitt SK, Greene PS, et al. Inhibition of complement, evoked antibody, and cellular response prevents rejection of pig-to-primate cardiac xenografts. Transplantation 1996; 62: 1018.
    120.Pruitt SK, Bollinger RR, Collins BH, et al. Effect of continuous complement inhibition using soluble complement receptor type I on survival of pig-to-primate xenografts. Transplantation 1997; 63: 900.
    121.Davis EA, Jakobs F, Pruitt SK, et al. Overcoming rejection in pig-to-primate cardiac xenotransplantation. Transplant Proc 1997; 29: 938.
    122.Marsh HC Jr, Ryan US. Therapeutic effect of soluble complement receptor type I in xenotransplantation. In: Cooper DKC, Kemp E, eds. Xenotransplantation, 2nd ed. Heidelberg: Springer, 1997: 437.
    123.Kobayashi T, Kemp E, Cooper DKC. Prolongation of discordant xenograft survival by cobra venom factor. In: Cooper DKC, Kemp E, eds. Xenotransplantation, 2nd ed. Heidelberg: Springer, 1997: 425.
    124.Taniguchi S, Kobayashi T, Neethling FA, et al. Cobra venom factor stimulates anti-[alpha]galactose antibody production in baboons: implications for pig-to-human xenotransplantation. Transplantation 1996; 62: 678.
    125.Bollinger RR. The potential of xenotransplants. Transplant Proc 1996; 28: 2024.
    126.Kobayashi T, Neethling FA, Koren E, et al. In vitro and in vivo investigation of anticomplement agents FUT-175 and K76COOH in the prevention of hyperacuterejection following discordant xenotransplantation in a nonhuman primate model. Transplant Proc 1996; 28: 604.
    127.Kobayashi T, Neethling FA, Taniguchi S, et al. Investigation of anti-complement agents, FUT-175 and K76COOH, in discordant xenotransplantation. Xenotransplantation 1996; 3: 237.
    128.Magee JC, Collins BH, Harland RC, et al. Immunoglobulin prevents complement-mediated hyperacute rejection in swine-to-primate xenotransplantation. J Clin Invest 1995; 96: 2404.
    129.Salerno CT, Dalmasso AP, Kroshus TJ, et al. A soluble chimeric complement inhibitor of C3- and C5-convertases prolongs xenograft survival in pig-to-primate cardiac transplantation [Abstract 048] Paper presented at the Fourth International Congress for Xenotransplantation, Nantes, France, 1997.
    130.Kawai T, Cosimi AB, Colvin RB, et al. Mixed allogeneic chimerism and renal allograft tolerance in cynomolgus monkeys. Transplantation 1995; 59: 256.
    131.Kimikawa M, Kawai T, Sachs DH, Colvin RB, Bartholomew AM, Cosimi AB. Mixed chimerism and transplantation tolerance induced by a nonlethal preparative regimen in cynomolgus monkeys. Transplant Proc 1997; 29: 1218.
    132.Bartholomew AM, Cosimi AB, Sachs DH, et al. A study of tolerance in a concordant xenograft model. Transplant Proc 1997; 29: 923.
    133.Sachs DH. Pig-to-primate xenotransplantation: tolerance through mixed chimerism. Xeno 1995; 3: 52.
    134.Powelson J, Cosimi AB, Austen W, et al. Porcine-to-primate orthotopic liver transplantation. Transplant Proc 1994; 26: 1353.
    135.Lambrigts D, Franssen C, Meurisse M, et al. Development of thymus autografts under the kidney capsule in the pig: a new "organ" for xenotransplantation. Xenotransplantation. 1996; 3: 296.
    136.Banerjee PT, Ierino F, Kaynor GC, et al. Retrovirus-mediated transfer and expression of swine MHC class II genes in CD34+ monkey stem cells. Transplant Proc 1996; 28: 747.
    137.Banerjee PT, Ierino FL, Kaynor GC, et al. Expression of swine MHC class II genes in cynomolgus monkey: retrovirus-mediated gene therapy in a preclinical transplantation model. Xenotransplantation 1997; 4: 174.
    138.Sachs DH. A genetic engineering approach to transplantation tolerance. Transplant Sci 1993; 3: 59.
    139.Waterworth PD, Dunning JJ, Tolan M, et al. Life-supporting pig-to-baboon cardiac xenotransplantation [Abstract 282]. J Heart Lung Transplant 1997; 16: 111.
    140.Squinto SP, Fodor WL. Engineering of xenografts to provide organs for human transplantation. In: Cooper DKC, Kemp E, eds. Xenotransplantation, 2nd ed. Heidelberg: Springer, 1997: 659.
    141.Fodor WL, Williams BL, Matas LA, et al. Expression of a functional human complement inhibitor in a transgenic pig as a model for the prevention of xenogeneic hyperacute organ rejection. Proc Natl Acad Sci USA 1994; 91: 11153.
    142.McCurry KR, Kooyman DL, Alvarado CG, et al. Human complement regulatory proteins protect swine-to-primate cardiac xenografts from humoral injury. Nat Med 1995; 1: 423.
    143.Cozzi E, White DJG. The generation of transgenic pigs as potential organ donors for humans. Nat Med 1995; 1: 964.
    144.White DJG, Langford GA, Cozzi E, Young VJ. Production of pigs transgenic for human DAF: a strategy for xenotransplantation. Xenotransplantation 1995; 2: 213.
    145.McCurry KR, Diamond LE, Kooyman DL, et al. Human complement regulatory proteins expressed in transgenic swine protect swine xenografts from humoral injury. Transplant Proc 1996; 28: 758.
    146.Bhatti FNK, Schmoeckel M, Zaidi A, et al. Life supporting cardiac transplantation in a transgenic pig to primate model [Abstract 052] Paper presented at the Fourth International Congress for Xenotransplantation, Nantes, France, 1997.
    147.Lawson JH, Diamond LE, Martin MJ, et al. Expression of human complement regulatory proteins CD59 and decay accelerating factor (DAF) prolongs graft survival and physiologic function in pig-to-baboon kidney transplantation [Abstract 047].Paper presented at the Fourth International Congress for Xenotransplantation, Nantes, France, 1997.
    148.Diamond LE, Martin MJ, Adams D, et al. Transgenic pig hearts and kidneys expressing human CD59, CD55, or CD46 are protected from hyperacute rejection upon transplantation into baboons [Abstract 0185]. Paper presented at the Fourth International Congress for Xenotransplantation, Nantes France, 1997.
    149.Norin AJ, Brewer RJ, Lawson N, et al. Enhanced survival of porcine endothelial cells and lung xenografts expressing human CD59. Transplant Proc 1996; 28: 797.
    150.Daggett CW, Lodge AJ, Chen EP, et al. The expression of human membrane cofactor protein is protective in swine-to-primate pulmonary xenotransplantation [Abstract 028]. Paper presented at the Fourth International Congress for Xenotransplantation, Nantes, France, 1997.
    151.Perper RJ, Najarian JS. Experimental renal heterotransplantation: I. In widely divergent species. Transplantation 1966; 4: 377.
    152.Gewurz H, Clark DS. Participation of complement and complement-fixing antibody in the rejection of vascularized grafts. J Lab Clin Med 1964; 64: 861.
    153.Gewurz H, Clark DS, Finstad J, et al. Role of the complement system in graft rejections in experimental animals and man. Ann NY Acad Sci 1966; 129: 673.
    154.Czaplicki J, Blonska B, Religa Z. The lack of hyperacute xenogeneic heart transplant rejection in a human. J Heart Lung Transplant 1992; 11: 393.
    155.Ross DN. In: Shapiro H, ed. Experience with human heart transplantation. Durban, South Africa: Butterworths, Durban, 1969: 140, 228.
    156.Cooper DKC. The first heart transplants in the United Kingdom, 1968-1980: the role of Guy's graduates. Part 2. Guy's Hospital Gazette 1995; 109: 114.
    157.Sadeghi AM, Robbins RC, Smith CR, et al. Cardiac transplantation in primates. J Thorac Cardiovasc Surg 1987; 93: 809.
    158.Hammer C. Evolution: its complexity and impact on xenotransplantation. In: Cooper DKC, Kemp E, eds. Xenotransplantation, 2nd ed. Heidelberg: Springer, 1997: 716.
    159.Ye Y, Luo Y, Kobayashi T, et al. Secondary organ allografting after a primate"bridging" xenotransplant. Transplantation 1995; 60: 19.
    160.Sachs DH, Sablinski T. Tolerance across discordant xenogeneic barriers. Xenotransplantation 1995; 2: 234.
    161.Sachs DH, Sykes M, Greenstein JL, Cosimi AB. Tolerance and xenograft survival. Nat Med 1995; 1: 969.
    162.Sachs DH. MHC homozygous miniature swine. In: Swindle MM, Moody DC, Phillips LD, eds. Swine as models in biomedical research. Ames, IA: Iowa State University Press, 1992: 3.
    163.Princeteau M. Greffe renale. J Med Bordeaux 1905; 26: 549.
    164.Jaboulay M. Greffe de reins au pli du coude par soudures arterielles et veineuses. Lyon Med 1906; 107: 575.
    165.Neuhof H. The transplantation of tissues. New York: Appleton, 1923: 260.
    166.Cooley DA, Hallman GL, Bloodwell RD, et al. Human heart transplantation: experience with 12 cases. Am J Cardiol 1968; 22: 804.
    167.Itescu S, Minanov OP, Michler RE. Newborn pig-to-baboon cardiac xenotransplantation: a model of delayed xenograft rejection. In: Cooper DKC, Kemp E, eds. Xenotransplantation, 2nd ed. Heidelberg: Springer, 1997: 478.
    168.Brewer RJ, Roslin MS, Del Rio MJ, et al. Prevention of induced antibody response in discordant cardiac xenotransplantation: role of the graft in total lymphoid irradiation treated recipients. Transplant Proc 1994; 26: 1351.
    169.Brewer RJ, Del Rio MJ, Vaynblat M, et al. Adsorption of xeno-antibodies for cardiac xenotransplantation in total lymphoid irradiation-treated baboons. Transplant Proc 1994; 28: 1355.
    170.O'Hair DP, Shah A, Kwiatkowski P, et al. Monkey-to-baboon and pig-to-baboon heart transplantation using mycophenolate mofetil [Abstract 057]. Paper presented at the Third International Congress for Xenotransplantation, Boston, MA, 1995.
    1. LANDER E S, LINTON L M, BIRREN B. Initial sequencing and analysis of the human genome [J]. Nature, 2001, 409: 860-921.
    2. VENTER J C, ADAMS M D, MYERS E W. The sequence of the human genome [J]. Science, 2001, 291:1304-1351.
    3. CHRISTOPH, AREN Z, SCHEPER S. RNA interference: from an ancient mechanism to a state of the therapeutic application? [J]. Nature, 2003, 90:345-359.
    4. Kruger k, Grabowski PJ, Zaug AJ, et al. Self-splicing RNA: autoexcision and autocyclization of the ribosomal RNA intervening sequence of Tetrahymena. Cell, 1982, 31: 147-157
    5. Lisa JS, John JR. Approaches for the sequence-specific knockdown of mRNA. Nature Biotechnology, 2003, 21(12): 1457-1465
    6. Jorgensen R. Altered gene expression in plants due to trans interaction between homologous genes. Trends Biotechnol, 1990, 8: 340-344
    7. Guo S, Kemphues KJ. Par-1, a gene required for establishing polarity in C.elegans embryos, encodes a putative Ser/Thr kinase that is asymmetrically distributed. Cell, 1995, 81(4): 611-620
    8. Fire A, Xu S, Montogomery MK, et al. Potent and specific genetic inforference by double-stranded RNA in Caenorhabditis elegans. Nature, 1998, 391(6669): 806-811
    9. Zamore PD, Tuschl T, Sharp PA, et al. RNAi: double-stranded RNA directs the ATP-dependent cleavage of mRNA at 21 to 23 nucleotide intervals. Cell, 2000, 101(1): 25-33
    10. Bosher JM, Labouess M. RNA interference: genetic wand and genetic watchdog. Nature Cell boil, 2000, 2: E31-E36
    11. Brummelkamp TR, Bernards R. A system for stable expression of short interfering RNAs in mammalian cells. Science, 2002, 296(5567): 550-553
    12. Wianny F, Zernicka-goetz M. Specific interference with gene function by double-stranded RNA in early mouse development. Nat cell boil, 2002, 2(2): 70-75
    13. Gura T. A silence that speaks volumes. Nature, 2000, 404: 804-808
    14. Mourrain P, Beclin C, Elmayan T, et al. Arabidopsis SGS2 and SGS3 gene are required for posttranscriptional gene silencing and natural virus resistence. Cell, 2000, 101: 533-542
    15. Cogoni C, Macino G. Gene silencing in Neurospora crassa requires a protein homologous to RNA-dependent RNA polymerases. Nature, 1999, 399: 166-169
    16. Smardon A, Spoerk JM, Stacey SC, et al. EGO-1 is related to RNA-directed RNA polymerase and functions in germ-line development and RNA interference in C. elegans, Curr Biol, 2000, 10: 169-178
    17.付文金,巢时斌,彭剑雄。RNA干扰。细胞生物学杂志,2002,24(5): 279-283
    18. Matzke M, Matzke A J, Kooter J M. RNA: guiding gene silencing. Science, 2001, 293(5532): 1080-1083
    19. Baulcombe DC, MacFarlane SA. Gene silencing: RNA makes RNA makes no protein. Curr Biol, 1999, 9: R599-R601
    20. Robertson HD, Webster RE, Zinder ND. Purification and properties of ribonuclease Ⅲfrom Escherichia coli. J Biol Chem, 1968, 243: 82-91
    21. Bernstein E, Caudy AA, Hammond SM, et al. Roll for a bidentate ribonuclease in the initiation step of RNA interference. Nature, 2001, 409: 363-366
    22. Main IS. Comparative sequence analysis of ribonucleases HⅡ,Ⅲ,ⅡPH and D. Nucleic Acids Res, 1997, 25: 3187-3195
    23. Aravind L, Koonin EV. A natural classification of ribonucleases. Methods Enzymol, 2001, 341: 3-28
    24. Cerutti L, Mian N, Bateman A. Domains in gene silencing and cell differentiation proteins: the novel PAZ domain and redefinition of the Piwi domain. Trends Biochem Sci, 2000, 25: 481-482
    25. Zamore PD, Tuschl T, Sharp PA, et al. RNAi: double-stranded RNA directs the ATP-dependent cleavage of mRNA at 21-23 nucleotide intervals. Cell, 2000, 101: 25-33
    26. Zhang H, Kolb FA, Brondani V, et al. Human Dicer preferentially cleaves dsRNA at their termini without a requirement for ATP. EMBO J, 2002, 21: 5875-5885
    27. Provost P, Dishart D, Doucet J, et al. Ribonucleases activity and RNA binding of recombinant human Dicer. EMBO J, 2002, 21: 5864-5874
    28. Nyk?nen A, Haley B, Zamore PD. ATP requirements and small interfering RNA structure in the RNA interference pathway. Cell, 2001, 107: 309-321
    29. Hutvagner G, Zamore PD. A microRNA in a multiple-turnover RNAi enzyme complex. Science, 2002a, 297: 2056-2060
    30. Hutvagner G, Zamore PD. RNAi: nature abbors a double-strand Curr Opin Genet Dev, 2002, 12: 225-232
    31. Nicholson RH, Nicholson AW, Molecular characterization of a mouse cDNA encoding Dicer, a ribonucleaseⅢortholog involved in RNA interference. Mamm Genome, 2002, 13: 67-73
    32. Tabara H, Yigit E, Siomi H, et al. The dsRNA binding protein RDE-4 interacts with RED-1, DCR-1, and a DexH-box helicase to direct RNAi in C.elegans. Cell, 2002, 109: 861-871
    33. Martinez J, Patkaniowska A, Urlaub H, et al. Single-stranded antisense siRNAsguide target RNA cleavage in RNAi. Cell, 2002, 110: 563-574
    34. Schwarz DC, Hutvagner G, Haley B, et al. Evidence that siRNAs function as guard, not primers in the Drosophila and human RNAi pathways. Mol Cell, 2002, 10: 537-548
    35. Chiu YL, Rana TM. RNAi in human cells: basic structural and functional features of small interfering RNA. Mol Cell, 2002, 10: 549-561
    36. Hammond SM, Bernstein E, Beach D, et al. An RNA-directed nuclease mediates posttranscriptional gene silencing in Drosophila cells. Nature, 2000, 404: 293-296
    37. Plasterk RH, Ketting RF. The silence of the genes. Curr Opin Genet Dev, 2000, 10: 562-567
    38. Table H, Sarkissian M, Kelly WG, et al. The rde-1 gene, RNA interference, and transposon silencing in C.elegans. Cell, 1999, 99: 123-132
    39. Ketting RF, Haverkamp THA, Luenen HG, et al. mut-7 of C.elegans, is a homolog of Werner syndrome helicase and RnaseD. Cell, 1999, 99: 133-141
    40. Huang S, Li B, Gray MD, et al. The premature ageing syndrome protein, WRN, is a
    35 exonuclease. Nature Genet, 1998, 20: 114-116
    41. Hammond SM, Boettcher S, Caudy AA, et al. Argonaute-2, a link between genetic and biochemical analyses of RNAi. Science, 2001, 293: 1146-1150
    42. Martinez J, Patkaniowska A, Urlaub H, et al. Single-standed antisense siRNAs guide target RNA cleavage in RNAi. Cell, 2002, 110: 563-574
    43. Dalmay T, Hamilton A, Rudd s, et al. An RNA-dependent RNA polymerase gene in Arabidopsis is required for posttranscriptional gene silencing mwdiated by a transgene but not virus. Cell, 2000, 101: 543-553
    44. Sijen T, Fleenor J, Simmer F, et al. On the role of RNA amplification in dsRNA-triggered gene silencing. Cell, 2001, 107: 465-476
    45. Lipardi C, Wei Q, Paterson BM. RNAI as random degradative PCR: siRNA primers conver mRNA into dsRNAs that are degrate new siRNAs. Cell, 2001, 107: 297-307
    46. Nishikura K. A short primer on RNAi: RNA-directed RNA polymerase acts as a key catalyst. Cell, 2001, 107(4) : 415-418
    47. Paddison PJ, Caudy AA, Bernstein E, et al. Short hairpin RNAs (shRNAS) induce sequence-specific silencing in mammalian cells. Genes Dev, 2002, 16: 948-958
    48. Elbashir SM, Harborth J, Lendeckel W, et al. Duplexes of 21-23 nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature, 2001, 411: 494-498
    49. Hannon GJ. RNA interference. Nature, 2002, 418(6894): 244-251
    50. MacManus MT, Sharp PA. Gene silencing in mammals by small interfering RNAs. Nat Rev Genet, 2002, 3: 737-747
    51. Shuey DJ, MacCallus DE, Giordano T. RNAi: gene-silencing in therapeutic intervention. DDT, 2002, 7(20): 1040-1046
    52. Jacque JM, Triques K, Stevenson M. Modulation of HIV-1 by RNA interference. Nature, 2002, 418: 435-438
    53. Maeda I, Kohara Y, Yamamoto M, et al. Large-scale analysis of gene function in Caenorhabditis elegans by high-throughput RNAi. Curr Biol, 2001, 11: 171-176
    54. Kamas RS, Fraser AG, Dong Y, et al. Systematic function analysis of the Caenorhabditis elegans genome using RNAi. Nature, 2003, 421: 231-237
    55. Myslinski E, Ame JC, Krol A, et al. An unusually compact external promoter for RNA polymeraseⅢtranscription of the human H1RNA gene.Nucleic Acids Res, 2001, 29: 2502-2509
    56. Caplen NJ, Parrish S, Imani F, et al. Specific inhibition of gene expression by small double-stranded RNAs in invertebrates and vertebrate systems. Proc Natl Acad Sci USA , 2001, 98: 9746-9747
    57. Gil J, Esteban M. Induction of apoptosis by the dsRNA-dependent protein kinase (PKR): Mechanism of action. Apoptosis, 2000, 5: 107-114
    58. Billy E, Brondani V, Zhang H, et al. Specific interference with gene expression induced by long, double-stranded RNA in mouse embryonal teratocarcinoma cell lines. Proc Natl Acid Sci USA, 2001, 98: 14428-14433
    59. Wassenegger M, Heimes S, Riedel L, et al. RNA-directed de novo methylation of genomic sequences in plants. Cell, 1994;76: 567-576
    60. Pelissier T, Wassenegger M. A DNA target of 30 bp is sufficient for RNA-directedDNA methylation. RNA 2000, 6: 55-65
    61. Mette, MF, Aufsatz, W, van der Winden J, et al. Transcriptional silencing and promoter methylation triggered by double-stranded RNA. EMBO J, 2000, 19, 5194-5201
    62. Jones L, Ratcliff F, Baulcombe DC. RNA-directed transcriptional gene silencing in plants can be inherited independently of the RNA trigger and requires Met1 for maintenance. Curr. Biol, 2001, 11, 747-757
    63. Hamilton A, Voinnet O, Chappell L, et al. Two classes of short interfering RNA in RNA silencing. EMBO J, 2002, 21: 4671-4769
    64. Aufsatz W, Mette MF, Van Der Winden J, et al. HDA6, a putative histone deacetylase needed to enhance DNA methylation induced by double-stranded RNA. EMBO J, 2002, 21, 6832-6841
    65. Zilberman D, Cao X, Jacobsen SE. ARGONAUTE4 control of locus-specific siRNA accumulation and DNA and histone methylation. Science 2003, 299, 716-719
    66. Kawasaki H, Taira K. Induction of DNA methylation and gene silencing by short interfering. Nature. 2004 Aug 15 [Epub ahead of print]
    67. Mochizuki K, Fine NA, Fujisawa T, Gorovsky MA. Analysis of a piwi-related gene implicates small RNAs in genome rearrangement in tetrahymena. Cell, 2002, 110: 689-699
    68. Volpe TA, Kidner C, Hall IM, et al. Regulation of heterochromatic silencing and histone H3 lysine-9 methylation by RNAi. Science, 2002, 297: 1833-1837
    69. Grishok A, Pasquinelli AE, Conte D, et al. Genes and mechanisms related to RNA interference regulate expression of the small temporal RNAs thart control C.elegans developmental timing. Cell, 2001, 106: 23-34
    70. Ketting RF, Fischer SE, Bernstein E, et al. Dicer functions in RNA interference and in synthesis of small RNA in developmental timing in C.elegans. Genes Dev, 2001, 15: 2654-2659
    71. Hutvagner G, McLachlan J, Pasquinelli AE, et al. A cell function for the RNA-interference enzyme Dicer in the maturation of the let-7 small temporal RNA.Science, 2001, 293: 834-838
    72. Lee RC, Feinbaum RL, Ambros V. The C.elegans. heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell, 1993, 75: 843-854
    73. Olsen PH, Ambros V. The lin-4 regulatory RNA controls developmental timing in Caenorhabditis elegans by blocking lin-14 protein synthesis after the initiation of translocation. Dev Biol, 1999, 216: 671-680
    74. Reinhart BJ, Bartel DP. Small RNAs correspond to centromere heterochromatic repeats. Science, 2002, 297: 1831
    75. Baulcombe D. An RNA microcosom. Science, 2002, 297(5589): 2002-2003
    76. Elbashir SM, Lendeckle W, Tuschl T. RNA interference is mediated by 21-and 22-nucleotide RNAs.Genes Dev, 2001, 15(2): 188-200
    77. SuiG, Soohoo C, Affar EB, et al. DNA vector-based RNAi technology to suppress gene expression in mammal cells. Proc Natl Acad Sci USA, 2002, 99(8): 5515-5520
    78. Lee NS, Dohjima T, Bauer G, et al. Expression of small interfering RNAs targeted against HIV-1 rev transcripts in human cells.[j]Natural Biotechnology, 2002, 20: 500-505
    79. Brummelkamp TR, Bernards R, Agami R. A system for stable expression short interfering RNAs in mammilian cells. Science, 2002, 296: 550-553
    80. Park W-S, Miyano-Kurosaki N, Hayafune M, et al. Specific siliencing of HIV-1 infection in human T cell by RNA interference. Nucleic Acids Research, 2002, 30(22): 4830-4835
    81. Yu JY, DeRuiter SL, Turner DL. RNA interference by expression of short-interfering RNAs and hairpin RNAs in mammalian cells. Proc Natl Acad Sci USA, 2002, 99: 6047-6052
    82. Miyagishi M, Taira K. U6 promoter driven siRNAs with four uridine 3′overhangs efficiently suppress targeted gene expression in mammalian cells. Nat Biotechnol, 2002, 20: 497-500
    83. Paul CP, Good PD, Winer I, et al. Effective expression of small interfering RNA inhuman cells. Nat Biotechnol, 2002, 20: 505-508
    84. Ilves H, Barske C, Junker U, et al. Retroviral vectors designed for targeted expression of RNA polymeraseⅢ-driven transcripts: a comparative study. Gene, 1996, 171: 203-208
    85. Jennings PA, Molloy PL. Inhibition of SV40 replicon function by engineered antisense RNA transcribed by RNA polymeraseⅢ.EMBO J, 1987, 6: 3043-3047
    86. Ojwang JO, Hampel A, Looney DJ, et al. Inhibition of human immunodeficiency virus type 1 expression by a hairpin ribozyme. Proc Natl Acad Sci USA, 1992, 89: 10802-10806
    87. Sullengar BA, Gallardo HF, Ungers GE, et al. Over-expression of TAR sequences renders cells resistant to human immunodeficiency virus replication. Cell, 1990, 63: 601-608
    88. Castanotto D, Li H, Rossi JJ, Functional siRNA expression from transfected PCR products RNA, 2002, 8(11): 1454-1460
    89. Tavernarakis N, Wang SL, Dorovkov M, et al. Heritable and inducible genetic interference by double-stranded RNA encoded by transgenes. Nat Genet, 2000, 24(2):180-183
    90. Zipperlen P, Fraser AG, Kamath RS, et al. Roles for 147 embryonic lethal genes on C. elegans chromosome I identified by RNA interference and video microscopy. EMBO J, 2001, 20(15):3984-3992.
    91. Elbashir SM, Harbort h J, Lendeckel W, et al. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature, 2001, 411 (6836):494-498.
    92. Shirane D, Sugao K, Namiki S, et al. Enzymatic production of RNAi libraries from cDNAs. Nat Genet, 2004, 36( 2):190-196
    93. Paddison PJ, Silva JM, Conklin DS, et al. A resource for large-scale RNA-interference-based screens in mammals. Nature, 2004, 428(6981):427-431
    94. Zheng L, Liu J, Batalov S, et al. An approach to genomewide screens of expressed small interfering RNAs in mammalian cells. Proc Natl Acad Sci USA, 2004,101(1):135-140
    95. Berns K, Hijmans EM, Mullenders J. A large-scale RNAi screen in human cells identifies new components of the p53 pathway. Nature, 2004, 428(6981):431-437
    96. Clemens JC, Worby CA, Simonson-Leff N, et al. Use of double-stranded RNA interference in Drosophila cell lines to dissect signal transduction pathways. Proc Natl Acad Sci, 2000,97(12):6499-6503
    97. Muda M, Worby CA, Simonson-Leff N, et al. Use of double-stranded RNA-mediated interference to determine the substrates of protein tyrosine kinases and phosphatases. Biochem J, 2002, 366( Pt 1):73-77
    98. Leung R KM, Whittaker PA. RNA interference: from gene silencing to gene-specific therapeutics. Parmacology & Therapeutics, 2005, 107(137):222-239
    99. Brummelkamp TR, Bernards R, Agami R. Stable suppression of tumorigenicity by virus-mediated RNA intereference. Cancer Cell, 2000, 2(3):234-247
    100. Scherr M, Battmer K, Schultheis B, et al. Stable RNA interference(RNAi) as an option for anti-bcr-abl therapy. Gene Ther, 2005, 12(1):12-21
    101. Kosciolek BA, Kalantidis K, Tabler M, et al. Inhibition of telomerase activity in human cancer cells by RNA interference. Molecular Cancer Therapeutics, 2003, 2(3):209-216
    102. Paroo Z, Corey DR. Challenges for RNAi in vivo. Trends Biotechnol, 2004, 22(8):390-394
    103. Hannon GJ, Rossi JJ. Unlocking the potential of the human genome with RNA interference. Nature, 2004, 431(7006):371-378
    104. McCaffrey AP, Nakai H, Pandey K, et al. Inhibition of hepatitis B virus in mice by RNA interference. Nat Biotechnol, 2003, 21(6):639-644
    105. Randall G, Grakoui A, Rice CM. Clearance of replicating hepatitis C virus replicon RNAs in cell culture by small interfering RNAs. Proc Natl Acad Sci USA, 2003, 100(1):235-240
    106. Wang RF. Nuclear Medicine. Beijing: Peking University Medical Press, 2004:71-72
    107. Wang RF, Qiu F, Zhang CL. Labeling of antisense oligonucleotides with 125I and theexperimental research of identification of the lymphoma cell by using I-125-FR-ASON. J Nucl Med, 2003, 44(5 suppl):369P
    108. Wang RF. Development of imaging of nuclear medicine in oncology. Chin J Med Imaging Technol, 2004, 20(11):1792-1796
    109. Bilanges B, Stokoe D. Direct comparison of the specificity of gene silencing using antisense oligonucleotides and RNAi. Biochem J, 2005, 388(2):573-583
    110. Nesterova M, Cho-Chung YS. Killing the messenger: antisense DNA and siRNA. Curr Drug Targets, 2004, 5(8):683-689

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700