用户名: 密码: 验证码:
USP11抑制TNFα介导的NF-κB激活途径及其在转移性肾透明细胞癌中的作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
[研究背景]
     正常状态下IκBα在细胞质中与转录因子NF-κB结合。在上游信号的刺激下,泛素化的IκBα的降解使NF-κB得到释放、进入细胞核促进基因转录的关键事件。然而,目前关于IκBα的去泛素化的调节机制尚无清楚认识。
     转移性肾透明细胞癌(clear cell renal cell carcinoma, ccRCC)患者预后较差,而且对放化疗不敏感。因此探索ccRCC转移过程涉及的分子遗传背景和主要的信号转导途径对于ccRCC早期发现、转移预测、开发新的药物治疗靶点至关重要。[研究方法]
     建立USPs(Ubquitin-specific proteases, USPs)表达文库。采用蛋白组学及报告基因分析的方法初步筛选出抑制NF-KB信号转导途径的候选去泛素化酶。通过免疫沉淀、免疫印记方法检测内源性或过表达候选去泛素化酶在体内体外条件下与IκBα的物理结合及去泛素化IκBα的功能。建立持续沉默去泛素化酶的细胞株,检测该细胞株中TNFα介导的NF-KB信号转导途径的激活情况,以及从mRNA及蛋白水平检测NF-κB下游基因IL6的转录和表达情况。
     通过本实验室建立的转移性、非转移性ccRCC细胞株(RCC05TXJ,转移性;RCC05ZYJ,非转移性),采用低代数细胞通过cDNA microarray横向对比分析与转移相关的差异表达基因,通过生物信息学的方法分析差异表达基因富集的信号转导途径,实时荧光定量PCR纵向对比检测两株细胞中不同时间点与富集的信号转导途径的相关分子的动态表达情况,并通过沉默USP11在非转移性ccRCC细胞株的表达、观察相关分子的表达改变。
     [研究结果]
     USP11在体内或体外均与IκBα结合在一起,它是与IκBα结合的去泛素化酶。过表达USP11可以强烈的抑制IκBα的泛素化程度和NF-κB的转录活性。体外重组蛋白USPll在体外条件下可以发挥去泛素化IκBα的作用。进一步,抑制USP11的表达,可以提高TNFα介导的NF-κB信号转导途径的激活程度,同时提高TNFα介导的依赖于NF-κB转录的IL6的基因表达。
     差异表达基因谱中CA9、VEGF、MMP2、LAMA4、TNF家族成员、IL成员等的上调表达反映了ccRCC自身及肿瘤浸润转移的相关特征。细胞色素P450家族成员上调表达,它在某种程度上反映了肾癌的发生发展始终与环境因素在体内代谢过程密切有关。VEGF信号转导途径、缺氧诱导以及新血管形成的过程富集了表达谱芯片的差异表达基因(p<0.05, Benjamini<1)。RhoC在RCC05TXJ细胞传代后48小时较RCC05ZYJ细胞上调表达(p<0.05),反映了肾细胞癌转移的分子遗传背景。两株细胞同时传代培养72小时后,HIFlα表达均有不同程度的升高,但在两株细胞之间不存在明显差异;TNFα、IL6、VEGF、MMP2等基因在转移性肾细胞癌RCC05TXJ较非转移性肾细胞癌RCC05ZYJ明显上调表达(p<0.05);沉默USP11在非转移性肾细胞癌RCC05ZYJ中的表达后,TNFα、IL6、VEGF表达上调(p<0.05)上述均提示NF-κB的激活、VEGF信号途径与转移性ccRCC密切相关。NF-κB的激活途径与VEGF途径的相互作用的机制需要进一步探讨。
     [结论]
     USPll通过去泛素化IκBα负向调节TBFα介导的NF-κB的激活途径;NF-κB激活途径及VEGF、缺氧诱导途径在ccRCC浸润转移中起着重要作用。
Background
     IκBαserves as a central anchoring molecule in the sequestration of NF-κB transcription factor in the cytoplasm. Upon the signal of upstream, ubiquitination-mediated IκBαdegradation immediatedly precedes and is required for NF-κB nuclear translocation and activiation. However, the precise mechanism for the deubuiquitination of IκBαis still not fully understood.
     Metastatic clear cell renal cell carcinoma (ccRCC) has a poor prognosis and unpredictable course, and resistant to radiotherapy and chemotherapy. A full understanding of the molecular genetics and signaling pathways involved in the metastatic process of ccRCC is important for early detection of ccRCC, prediction of metastasis and the development of innovative treatment options.
     Methods
     Ubquitin-specific proteases (USPs) expressional library was established. Using proteomic approach and reporter gene assay, we screened this library and got the potential candidate, which can inhibit NF-κB activation and bind with IκBα. Either for the endogenous or overexpression of USP, the physical binding with and functional deubiquitination of IκBαwere detected in vivo and in vitro. In stable knockdown of USP 11 cells, the expression and modification of the protein related to TNFa induced IKBa ubiquitination and NF-κB activation were detected. Moreover, IL6, the NF-κB target gene, were detected at the transcriptional and expressional level.
     Metastatic (RCC05TXJ) or non-metastatic (RCC05ZYJ) ccRCC cell lines were established by our lab. Differentially expressed genes and significant signal pathway, which was related to metastatic process and differentially expressed genes were involved in, were analyzed by cDNA microarray and bioinformatics approach. The expression of the molecule of our interest, which were related to the key signal pathway relative to metastatic process, were detected at different time point by real time quantitative PCR. After knocking down USP11 expression in RCC05ZYJ cells, the expression of molecule of interest were detected.
     Results
     USP11 is associated with IκBαin vivo and in vitro. USP11 is an IκBαassociated deubiquitinase. Overexpression of USP11 strongly inhibits IκBαubiquitination and NF-κB activation. Recombinant of USP11 catalyzes deubiquitination of IκBαin vitro. Further, suppression of USP11 expression of enhances TNFa induced IκBαubiquitination and NF-κB activation. Suppression of USP11 enhances TNFa induced NF-κB-dependent IL6 gene expression.
     In the differentially expressed gene profile, up-regulation of CA9,VEGF, MMP2, LAMA4,TNF reflected the characteristics of ccRCC and tumor invasion and metastatics. Up-regulation of cytochrome P450 family members indicated the association of metabolism of environmental agents and ccRCC progression. VEGF, Hypoxia and angiogenesis signal pathway enriched the differentially expressed genes (p<0.05, Benjamini<1). RhoC was up-regulated at 48h after passage in RCC05TXJ cells compared to RCC05ZYJ cells (p<0.05), which indicated the genetic background of metastatic ccRCC. The expression of HIF1αwas up-regulated in RCC05TXJ and RCC05ZYJ cells, but no significant difference was detected in these two cell lines. The expression of TNFa,IL6,VEGF, MMP2 at 72h after passage was up-regulated in RCC05TXJ cells compared to RCC05ZYJ cells (p<0.05), and the up-regulated expression of TNFa,IL6,VEGF was also detected (p<0.05) in RCC05ZYJ cells of which USP11 expression was knocked down to-50%. It strongly indicates the NF-κB signaling pathway and VEGF pathway is related to the progression of ccRCC invasion and metastatics. Further study will be focused on the interaction of these two pathways.
     Conclusion
     USP11 negatively regulates TNFa induced NF-κB activation by deubiquitination of IκBα; NF-κB signal pathway and VEGF, Hypoxia signal pathway play an important role in the process of ccRCC invasion and metastatics.
引文
1.Roger J.B. King. Cancer Biology(Second Edition). Pearson Education Limited 1996,2000.
    2.Hanahan, D.& Weinberg, R.A. The hallmarks of cancer. Cell 2000;100:57-70.
    3.Li Q, Verma M. NF-kappaB regulation in the immune system. Nat Rev Immunol 2002;2:725-734.
    4.Bhari AC.& Aggarwal BB. Chemopreventive agents induce suppression of nuclear factor-KB leading to chmosensitizaiton. Ann. NY Acad. Sci 2002;973:392-395.
    5.Pomerantz JL, Baltimore D. Two Pathways to NF-kappaB. Mol Cell 2002;2:725-734.
    6.Houghton J. Gastric cancer originating from bone marro-derived cells. Science 2004;306:1568-1571.
    7.Keates S, Hitti YS, Upton M & Kelly CP. Helicobacter pylori infection NF-kB in gastric epithelial cells. Gastroenterology 1997; 113:1099-1109.
    8.EI-Omar, E.M., et al. Interleukin-lpolymorphisms associated with in increased risk of gastric cancer. Nature 2000;404:398-402.
    9.Karin M, Cao Y, Greten FR.& Li ZW. NF-κB In cancer:from innocent bystander to major culprit. Nature Rev. Cancer 2002;2:301-310.
    10.Creten FR, et al. IKKb links inflammation and tumorigenesis in a mouse model of colitis-associated cancer. Cell 2002; 118:285-296.
    11.Pikarsky E, et al. functions as a tumor promoter in inflammation-associated cancer. Nature 431;2004:461-466.
    12. Balkwill F.& Mantovani A. Inflammation and cancer:back to Virchow? Lancet 2001; 357:539-545.
    13.Coussens LM.& Werb Z. Inflammation and cancer. Nature 2002:420; 860-867.
    14.Pollard JW. Tumor-educated macrophages promote tumor progression and metastasis. Nature Rev. Cancer 2004;4:71-78.
    15.Baldwin AS. Control of oncogenesis and cancer therapy resistance by the transcription factor NF-kappaB. J.Clin.Investig 2001;107:241-246.
    16.Karin M, Cao Y, Greten FR and Li ZW. NF-kappaB in cancer:from innocent bystander to major culprit. Nat.Rev.Cancer 2002;2:301-310.
    17.Rayet B, Gelinas C. Aberrant rel/nfkb genes and activity in human cancer. Oncogene 1999;18:6938-6947.
    18.Chow WH, et al. Rising incidence of renal cell cancer in the United States. JAMA 1999;281:1628-1631.
    19.ABSTRACTS*34th Annual Meeting* American Society of Preventive Oncology, Bethesda, Maryland*March 20-23,2010. Cancer Epidemiol Biomarkers Prev 2010.[Epub ahead of print].
    20. Cohen HT, McGovern FJ. Renal-cell carcinoma. N Engl J Med 2005;353:2477-90.
    21.Rathmell WK, Godley PA. Recent updates in renal cell carcinoma. Curr Opin Oncol.2010[Epub ahead of print].
    22.Oya M, Ohtsubo M, Takayanagi A, Tachibana M, Shimizu N, Mural M. Constitutive activation of nuclear factor-kappaB prevents TRAIL-induced apoptosis in renal cancer cells. Oncogene 2001;20:3888-3896.
    23.Qi H, Ohh M. The von Hippel-Lindau tumor suppressor protein sensitizes renal cell carcinoma cells to tumor necrosis factor-induced cytotoxicity by suppressing the nuclear factor-kappaB-dependent antiapoptotic pathway. Cancer Res 2003;63:7076-7080.
    24.Oya M,Takayanagi, Horiguchi A, Mizuno R,Ohtsubo M, Marumo K, Shimizu N, Mural M. Increased nuclear factor-kappaB activation is related to the tumor development of renal cell carcinoma. Carcinogenesis 2003;24:377-384.
    25.An J, Fisher M, Rettig MB. VHL expression in renal cell carcinoma sensitizes to bortezomib(PS-341) through an NF-kappaB-dependent mechanism. Oncogene 2005;24: 1563-1570.
    26.Caldwell MC, Hough C, Furer S, Linehan WM, Morin PJ, Gorospe M. Serial analysis of gene expression in renal carcinoma cells reveals VHL-dependent sensitivity to TNF-a cytotoxicity. Oncogene 2002;21:929-936.
    27. Sourbier C,Danilin S, Lindner V,Steger J,Rothhut S, Meyer N,Jacqmin D, Helwig J, Lang H, and Massfelder T. Targeting the nuclear factor-kB rescue pathway has promising future in human renal cell carcinoma therapy. Cancer Res 2007;67:11668-11676.
    28. Ea CK, Deng L, Xia ZP, Pineda G, Chen ZJ.Activation of IKK by TNFalpha requires site-specific ubiquitination of RIP 1 and polyubiquitin binding by NEMO.Mol Cell.2006;22:245-57.
    29.Chen ZJ, Parent L, Maniatis T. Site-specific phosphorylation of IkappaBalpha by a novel ubiquitination-dependent protein kinase activity. Cell 1996;84:853-862.
    30.Johnston JA and Burrows JF. De-ubiquitinating enzymes:intracellular signaling and disease. Biochemical Society Transactions 2006; 34:764-769.
    31.Masuya D, Huang C, Liu D, Nakashima T, Yokomise H, Ueno M, Nakashima N, Sumitomo S. The HAUSP gene plays an important role in non-small cell lung carcinogenesis through p53-dependent pathways. J Pathol 2006;208:724-32.
    32.Gray DA, Inazawa J, Gupta K, Wong A, Ueda R, Takahashi T. Elevated expression of Unph, a proto-oncogene at 3p21.3, in human lung tumors. Oncogene 1995;10:2179-83.
    33.Velazquez-Fernandez D, Laurell C, Geli J, Hoog A, Odeberg J, Kjellman M, Lundeberg J, Hamberger B, Nilsson P, Backdahl M. Expression profiling of adrenocortical neoplasms suggests a molecular signature of malignancy. Surgery 2005;138:1087-94.
    34.DeSalle LM, Latres E, Lin D, Graner E, Montagnoli A, Baker RT, Pagano M, Loda M. The de-ubiquitinating enzyme Unp interacts with the retinoblastoma protein. Oncogene 2001;20:5538-42.
    35. Janssen JW, Braunger J, Ballas K, Faust M, Siebers U, Steenvoorden AC, Bartram CR.Spectrum of transforming sequences detected by tumorigenicity assay in a large series of human neoplasms. Int J Cancer 1999;80:857-62.
    1. Tanaka K, Waxman L, Goldberg AL. ATP serves two distinct roles in protein degradation in reticulocytes, one requiring and one independent of ubiquitin. J. Cell Biol 1983; 96:1580-1585.
    2. Hough R, Pratt G, Rechsteiner M. Purification of two high molecular weight proteases from rabbit reticulocyte lysate. J. Biol. Chem 1987; 262:8303-8313.
    3.Pickart CM. Back to the future with ubiquitin. Cell 2004,116:181-190.
    4.Papa FR, Hochstrasser M:The yeast DOA4 gene encodes a deubiquitinating enzyme related to a product of the human tre-2 oncogene. Nature 1993; 366:313-319.
    5.Chau V, et al. A multiubiquitin chain is confined to specific lysine in a targeted short-lived protein. Science 1989;243:1576-1583.
    6.Fischer JA:Deubiquitinating enzymes:their roles in development, differentiation, and disease. Int Rev Cytol 2003;229:43-72.
    7.Johnston JA, Burrows JF. De-ubiquitinating enzymes:intracellular signaling and disease. Biochemical Society Transaction 2006; 34:764-769.
    8.Houghton J, et al. Gastric cancer originating from bone marrow-derived cells. Science 2004;306:1568-1571.
    9. Pikarsky E, et al. NF-kB functions as a tumor promoter in inflammation-associated cancer. Nature 2004;431:461-466.
    10. Pollard JW. Tumor-educated macrophages promote tumour progression and metastasis. Nature Rev.Cancer 2004;4:71-78.
    11.Biggs PJ, Wooser R, Ford D, et al. Familial cylindromatosis(turban tumour syndrome) gene localized to chromosome 16q12-q13:evidence for its role as a tumor suppressor gene. Nat Genet 1995; 11:441-443.
    12.Bignell GR, Warren W, Seal S, et al. Identification of the familial cylindromatosis tumor-suppressor gene. Nat Genet 2000;25:160-165.
    13.Trompouki E, Hatzivassiliou E, Tsichritzis T, et al. CYLD is a deubiquitinating enzyme that negatively regulates NF-κB activiation by TNFR family members. Nature 2003; 424:793-796.
    14.Brummelkamp TR, Nijiman SM, Dirac AM, et al. Loss of the cylindromatosis tumor suppressor inhibits apoptosis by activating NF-κB. Nature 2003;424:797-801.
    15. Kovalenko A, Chable-Bessia C, Cantarella G, et al. The tumour suppressor CYLD negatively regulates NF-κB signaling by deubiquitination. Nature 2003;424:801-805.
    16. Baldwin AS Jr. The NF-kappa B and I kappa B proteins:new discoveries and insights. Annu Rev Immunol 1996; 14:649-83.
    17. Stancovski I, Baltimore D. NF-kappaB activation:the I kappaB kinase revealed? Cell 1997 31;91:299-302.
    18. de Martin R, Vanhove B, Cheng Q, Hofer E, Csizmadia V, Winkler H, Bach FH. Cytokine-inducible expression in endothelial cells of an I kappa B alpha-like gene is regulated by NF kappa B. EMBO J 1993; 12:2773-9.
    19.Cabannes E, Khan G, Aillet F, Jarrett RF, Hay RT. Mutations in the IκBα gene in Hodgkin's disease suggest a tumour suppressor role for IκBα. Oncogene 1999; 18: 3063-3070.
    20.Angelats C, Wang XW, Jermiin LS, Copeland NG, Jenkins NA, Baker RT. Isolation and characterization of the mouse ubiquitin-specific protease Usp15. Mamm Genome.2003;14:31-46.
    21. Bouwmeester T, et al. A physical and functional map of the human TNF-α/NF-κB signal transduction pathway. Nature Cell Biology 2004;6:97-105.
    22.Schweitzer K, Bozko PM, Dubiel W, Naumann M. CSN controls NF-κB by deubiquitinylation of IκBα. EMBO J 2007;26:1532-1541.
    23. Mu JJ, Wang Y, Luo H, Leng M, Zhang J, Yang T, Besusso D, Jung SY, Qin J. A proteomic analysis of ataxia telangiectasia-mutated (ATM)/ATM-Rad3-related (ATR) substrates identifies the ubiquitin-proteasome system as a regulator for DNA damage checkpoints. J Biol Chem 2007;282(24):17330-4.
    1. Angelats C, Wang XW, Jermiin LS, Copeland NG, Jenkins NA, Baker RT. Isolation and characterization of the mouse ubiquitin-specific protease Usp15. Mamm Genome. 2003;14:31-46.
    2.Schweitzer K, Bozko PM, Dubiel W, Naumann M. CSN controls NF-κB by deubiquitinylation of IκBα. EMBO J 2007;26:1532-1541.
    3.Bouwmeester T, et al. A physical and functional map of the human TNF-a/NF-KB signal transduction pathway. Nature Cell Biology 2004;6:97-105.
    4.Ghosh S, Karin M. Missing pieces in the NF-kappaB puzzle. Cell 2002;109:S81-96.
    5.Libermann TA, Baltimore D. Activation of interleukin-6 gene expression through the NF-kappa B transcription factor. Mol Cell Biol 1990; 10:2327-2334.
    6.Shimizu H, Mitomo K, Watanabe T, Okamoto S, Yamamoto K. Involvement of a NF-kappa B-like transcription factor in the activation of the interleukin-6 gene by inflammatory lymphokines. Mol Cell Biol 1990;10:561-8.
    7.Zhang YH, Lin JX, Vilcek J. Interleukin-6 induction by tumor necrosis factor and interleukin-1 in human fibroblasts involves activation of a nuclear factor binding to a kappa B-like sequence. Mol Cell Biol 1990;10:3818-23.
    8.Chen Z, et al. Signal-induced site-specific phosphorylation targets Ⅰ kappa B alpha to the ubiquitin-proteasome pathway. Genes Dev 1995;9:1586-1597.
    9. Skaug B, Jiang X, Chen ZJ. The role of ubiquitin in NF-kappaB regulatory pathways. Annu Rev Biochem 2009;78:769-96.
    10. Nijman SM, Luna-Vargas MP, Velds A, Brummelkamp TR, Dirac AM, Sixma TK, Bernards R. A genomic and functional inventory of deubiquitinating enzymes.Cell. 2005;123(5):773-86.
    11.Ideguchi H, Ueda A, Tanaka M, Yang J, Tsuji T, Ohno S, Hagiwara E, Aoki A, Ishigatsubo Y. Structural and functional characterization of the USP11 deubiquitinating enzyme, which interacts with the RanGTP-associated protein RanBPM. Biochem J 2002; 367:87-95.
    12.Schoenfeld AR, Apgar S, Dolios G, Wang R, Aaronson SA. BRCA2 is ubiquitinated in vivo and interacts with USP11, a deubiquitinating enzyme that exhibits prosurvival function in the celluar response to DNA damage. Mo1.Cell.Bio 2004;24: 7444-7455.
    13.Lin CH, Chang HS, Yu WC. USP11 stabilizes HPV-16E7 and further modulates the E7 biological activity.J Biol Chem.2008;283(23):15681-8.
    14. Schweitzer K, Bozko PM, Dubiel W, Naumann M. CSN controls NF-kappaB by deubiquitinylation of IkappaBalpha. EMBO J 2007;26(6):1532-41.
    15.Bouwmeester T, Bauch A, Ruffner H, Angrand PO, Bergamini G, Croughton K, Cruciat C, Eberhard D, Gagneur J, Ghidelli S, Hopf C, Huhse B, Mangano R, Michon AM, Schirle M, Schlegl J, Schwab M, Stein MA, Bauer A, Casari G, Drewes G, Gavin AC, Jackson DB, Joberty G, Neubauer G, Rick J, Kuster B, Superti-Furga G. A physical and functional map of the human TNF-alpha/NF-kappa B signal transduction pathway. Nat Cell Biol 2004;6(2):97-105.
    16.Yamaguchi T, Kimura J, Miki Y, Yoshida K. The deubiquitinating enzyme USP11 controls an IKappaB kinase alpha (IKKalpha)-p53 signaling pathway in response to tumor necrosis factor alpha (TNFalpha). J Biol Chem 2007;282(47):33943-8.
    17.Kouhara H, Hadari YR, Spivak-Kroizman T, Schilling J, Bar-Sagi D, Lax I, Schlessinger J. A lipid-anchored Grb2-binding protein that links FGF-receptor activation to the Ras/MAPK signaling pathway. Cell 1997;89(5):693-702.
    18.Adhikari A, Xu M, Chen ZJ. Ubiquitin-mediated activation of TAK1 and IKK. Oncogene 2007;26(22):3214-26.
    19.Palma L, Crinelli R, Bianchi M, Magnani M. De-ubiquitylation is the most critical step in the ubiquitin-mediated homeostatic control of the NF-kappaB/IKK basal activity.Mol Cell Biochem.2009;331(1-2):69-80.
    20.EI-Omar, E.M., et al. Interleukin-lpolymorphisms associated with in increased risk of gastric cancer. Nature 2000;404:398-402.
    21.Balkwill F.& Mantovani A. Inflammation and cancer:back to Virchow? Lancet 2001; 357:539-545.
    22. Creten FR, et al. IKKb links inflammation and tumorigenesis in a mouse model of colitis-associated cancer. Cell 2002; 118:285-296.
    23.Pikarsky E, et al. functions as a tumor promoter in inflammation-associated cancer. Nature 431;2004:461-466.
    24.Coussens LM.& Werb Z. Inflammation and cancer. Nature 2002:420; 860-867.
    25.Pollard JW. Tumor-educated macrophages promote tumor progression and metastasis. Nature Rev. Cancer 2004;4:71-78.
    26. Balkwill F.& Mantovani A. Inflammation and cancer:back to Virchow? Lancet 2001; 357:539-545.
    27. Evans PC. Regulation of pro-inflammatory signalling networks by ubiquitin: identification of novel targets for anti-inflammatory drugs. Expert Rev Mol Med 2005;7(12):1-19.
    28. Mauro C, Zazzeroni F, Papa S, Bubici C, Franzoso G. The NF-kappaB transcription factor pathway as a therapeutic target in cancer:methods for detection of NF-kappaB activity.Methods Mol Biol.2009;512:169-207.
    1. Sandim V, Pereira DA, Ornellas AA, Alves G.Urol Int. Renal Cell Carcinoma and Proteomics 2010 Mar 12[Epub ahead of print].
    2. Craven RA, Stanley AJ, Hanrahan S, Dods J, Unwin R, Totty N,Harnden P, Eardley I, Selby PJ, Banks RE. Proteomic analysis of primary cell lines identifies protein changes present in renal cell carcinoma. Proteomics 2006;6:2853-64.
    3. Perego RA, Bianchi C, Corizzato M, Eroini B, Torsello B, Valsecchi C, Di Fonzo A, Cordani N, Favini P, Ferrero S, Pitto M, Sarto C, et al. Primary cell cultures arising from normal kidney and renal cell carcinoma retain the proteomic profile of corresponding tissues. J Proteome Res 2005;4:1503-10.
    4. Anglard P, Trahan E, Liu S, Latif F, Merino MJ, Lerman MI, Zbar B, Linehan WM. Molecular and cellular characterization of human renal cell carcinoma cell lines. Cancer Res 1992;52:348-56.
    5.Chow WH, et al. Rising incidence of renal cell cancer in the United States. JAMA 1999;281:1628-1631.
    6.ABSTRACTS*34th Annual Meeting* American Society of Preventive Oncology, Bethesda, Maryland*March 20-23,2010. Cancer Epidemiol Biomarkers Prev 2010.[Epub ahead of print].
    7. Cohen HT, McGovern FJ. Renal-cell carcinoma. N Engl J Med 2005;353:2477-90.
    8.Rathmell WK, Godley PA. Recent updates in renal cell carcinoma. Curr Opin Oncol.2010[Epub ahead of print].
    9.Oya M, Ohtsubo M, Takayanagi A, Tachibana M, Shimizu N, Mural M. Constitutive activation of nuclear factor-kappaB prevents TRAIL-induced apoptosis in renal cancer cells. Oncogene 2001;20:3888-3896.
    10.Qi H, Ohh M. The von Hippel-Lindau tumor suppressor protein sensitizes renal cell carcinoma cells to tumor necrosis factor-induced cytotoxicity by suppressing the nuclear factor-kappaB-dependent antiapoptotic pathway. Cancer Res 2003;63:7076-7080.
    11.Oya M,Takayanagi, Horiguchi A, Mizuno R,Ohtsubo M, Marumo K, Shimizu N, Mural M. Increased nuclear factor-kappaB activation is related to the tumor development of renal cell carcinoma. Carcinogenesis 2003;24:377-384.
    12.An J, Fisher M, Rettig MB. VHL expression in renal cell carcinoma sensitizes to bortezomib(PS-341) through an NF-kappaB-dependent mechanism. Oncogene 2005;24: 1563-1570.
    13.Caldwell MC, Hough C, Furer S, Linehan WM, Morin PJ, Gorospe M. Serial analysis of gene expression in renal carcinoma cells reveals VHL-dependent sensitivity to TNF-a cytotoxicity. Oncogene 2002;21:929-936.
    14. Tan X, Zhai Y, Chang W, Hou J, He S, Lin L, Yu Y, Xu D, Xiao J, Ma L, Wang G, Cao T, Cao G Global analysis of metastasis-associated gene expression in primary cultures from clinical specimens of clear-cell renal-cell carcinoma. International Journal of Cancer 2008;123:1080-8.
    15.谭晓洁,侯建国,贺松琴,常文军,刘世建,余永伟,曹广文..人肾细胞癌原位移植裸鼠模型的建立及转移相关表达分析。第二军医大学学报2006,27(3):263-267.
    16.谭晓洁,侯建国,贺松琴,陈北川,曹广文.采用体外侵袭实验分离侵袭性人原代肾细胞癌细胞.第二军医大学学报2006,27(3):318-321
    17.翟羽佳,谭晓洁,林丽萍,侯建国,武奇,常文军,马立业,姚明,曹广文.汉族人肾透明细胞癌肺转移小鼠模型的建立及肺转移细胞亚株的筛选。第二军医大学学报2008,29(12):1446-1450.
    18.Li G, Feng G, Gentil-Perret A, Genin C, Tostain J. CA9 gene expression in conventional renal cell carcinoma:a potential marker for prediction of early metastasis after nephrectomy. Clin Exp Metastasis 2007:24; 149-55.
    19.Gupta GP, Massague J. Cancer Metastasis:Building a Framework. Cell 2006; 127:679-695.
    20.Senmenza GL. HIF-1 and tumor progression:pathophysiology and therapeutics. Trends Mol.Med 2002;8:S62-S67.
    21.Zhou J, Schmid T, Brune B. Tumor necrosis factor-a causes accumulation of a ubiquitinated form of Hypoxia Inducible Factor-1α through a nuclear factor-κB-dependent pathway. Mol.Bio.Cell 2003; 14:2216-2225.
    22.Sun W, Tan X, Shi Y, Xu G, Mao R, Gu X, Fan Y, Yu Y, Burlingame S,Zhang H, Rednam PS, Lu X, Zhang T, Fu S, Cao G, Qin J, Yang J. USP11 negatively regulates TNFalpha-induced NF-kappaB activation by targeting on IkappaBalpha. Cell Signal 2010;22:386-394.
    23.Sourbier C, Danilin S, Lindner V, Steger J, Rothhut S, Meyer N, Jacqmin D, Helwig JJ, Lang H, Massfelder T. Targeting the nuclear factor-kB rescue pathway has promising future in human renal cell carcinoma therapy. Cancer Res 2007;67: 11668-11676.
    1. Balkwill F, Mantovani A. Inflammation and cancer:back to Virchow? Lancet 2001; 357:539-45.
    2. Kuper H, Adami HO, Trichopoulos D. Infections as a major preventable cause of human cancer. J Intern Med 2000;248:171-83.
    3.Karin M, Greten FR. NF-κB:linking inflammation and immunity to cancer development and progression. Nature 2005;5:749-759.
    4. Hanahan, D.& Weinberg, R.A. The hallmarks of cancer. Cell 2000; 100:57-70.
    5. Burnet FM. The concept of immunological surveillance. Prog Exp Tumor Res 1970;13:1-27.
    6.Dunn, G. P., Old, L. J.& Schreiber, R. D. Theimmunobiology of cancer immuno surveillance and immunoediting. Immunity 2004;21:137-148.
    7. Pardoll, D. Does the immune system see tumours as foreign or self? Annu. Rev. Immunol 2003;21:807-839.
    8. Philip, M., Rowley, D. A.& Schreiber, H. Inflammation as a tumor promoter in cancer induction. Semin. Cancer Biol 2004; 14:433-439.
    9. Luo, J. L., Maeda, S., Hsu, L. C., Yagita, H.& Karin, M. Inhibition of NF-κB in cancer cells converts inflammationinduced tumor growth mediated by TNFa to TRAILmediated tumor regression. Cancer Cell 2004; 6:297-305.
    10. Chisari, F. V. Hepatitis B virus transgenic mice:insights into the virus and the disease. Hepatology 1995;22:1316-1325.
    11. de Visser, K. E., Korets, L. V.& Coussens, L. M. De novo carcinogenesis promoted by chronic inflammation is B lymphocyte dependent. Cancer Cell 2005;7: 411-423.
    12.Li Q, Verma IM. NF-kappaB regulation in the immune system. Nat Rev Immunol 2002;2:725-734.
    13.Bhari AC.& Aggarwal BB. Chemopreventive agents induce suppression of nuclear factor-KB leading to chmosensitizaiton. Ann. NY Acad. Sci 2002;973:392-395.
    14.Pomerantz JL, Baltimore D. Two Pathways to NF-kappaB. Mol Cell 2002;2:725-734.
    15. Baldwin AS Jr. The NF-kappa B and I kappa B proteins:new discoveries and insights. Annu Rev Immunol 1996;14:649-83.
    16.Stancovski I, Baltimore D. NF-kappaB activation:the Ⅰ kappaB kinase revealed? Cell 1997 31;91:299-302.
    17.de Martin R, Vanhove B, Cheng Q, Hofer E, Csizmadia V, Winkler H, Bach FH. Cytokine-inducible expression in endothelial cells of an Ⅰ kappa B alpha-like gene is regulated by NF kappa B. EMBO J 1993;12:2773-9.
    18.Karin, M., Cao, Y., Greten, F. R.& Li, Z. W. NF-κB in cancer:from innocent bystander to major culprit. Nature Rev. Cancer 2002;2:301-310.
    19.Greten, F. R. et al. IKKβ links inflammation and tumorigenesis in a mouse model of colitis-associated cancer. Cell 2004; 118:285-296.
    20.Pikarsky, E. et al. NF-κB functions as a tumour promoter in inflammation-associated cancer. Nature 2004:431;461-466.
    21.Mauad, T. H. et al. Mice with homozygous disruption of the mdr2 P-glycoprotein gene. A novel animal model for studies of nonsuppurative inflammatory cholangitis and hepatocarcinogenesis. Am. J. Pathol 1994;145:1237-1245.
    22.Duncan, L. M., Richards, L. A.& Mihm, M. C. Jr. Increased mast cell density in invasive melanoma. J. Cutan. Pathol 1998;25:11-15.
    23.Pollard, J. W. Tumour-educated macrophages promote tumour progression and metastasis. Nature Rev. Cancer 2004; 4:71-78.
    24.Menetrier-Caux, C. et al. Inhibition of the differentiation of dendritic cells from CD34+ progenitors by tumor cells:role of interleukin-6 and macrophage colony-stimulating factor. Blood 1998;92:4778-4791.
    25.Coussens, L. M.& Werb, Z. Inflammation and cancer. Nature 2002;420:860-867.
    26.Koong, A.C., E.Y. Chen & A.J. Giaccia.. Hypoxia causes the activation of nuclear factor kappa B through the phosphorylation of I kappa B alpha on tyrosine residues. Cancer Res 1994; 54:1425-1430.
    27.Taylor CT, Cummins EP. The role of NF-kBin hypoxia-induced gene expression. Ann.N.Y.Acad.Sci 2009;1177:178-184.
    28.Rius, J. et al.2008. NF-kappaB links innate immunity to the hypoxic response through transcriptional regulation of HIF-1alpha. Nature 453:807-811.
    29.Belaiba, R.S. et al.. Hypoxia up-regulates hypoxia-inducible factor-1alpha transcription by involving phosphatidylinositol 3-kinase and nuclear factor kappaB in pulmonary artery smooth muscle cells. Mol. Biol. Cell 2007; 18:4691-4697.
    30.van Uden, P., N.S. Kenneth & S. Rocha.. Regulation of hypoxia-inducible factor-1alpha by NFkappaB. Biochem. J 2008; 412:477-484.
    31.Houghton, J. et al. Gastric cancer originating from bone marrow-derived cells. Science 2004;306:1568-1571.
    32.Keates, S., Hitti, Y. S., Upton, M.& Kelly, C. P. Helicobacter pylori infection activates NF-κB in gastric epithelial cells. Gastroenterology 1997;113:1099-1109.
    33.E1-Omar, E. M. et al. Interleukin-1 polymorphisms associated with increased risk of gastric cancer.Nature 2000;404:398-402.
    34.Barnes, P. J.& Karin, M. NF-κB - a pivotal transcription factor in chronic inflammatory diseases. N. Engl. J. Med 1997;336:1066-1071.
    35.Radisky, D. C. et al. Raclb and reactive oxygen species mediate MMP-3-induced EMT and genomic instability. Nature 2005;436:123-127.
    36.Hudson, J. D. et al. A proinflammatory cytokine inhibits p53 tumor suppressor activity. J. Exp. Med1999; 190:1375-1382.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700