用户名: 密码: 验证码:
GRIM-19和STAT3基因在脑胶质瘤中的表达及意义
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景和目的
     脑胶质瘤是颅内发生率最高的肿瘤,其大多呈浸润式生长,目前靠外科手术切除为主,术后辅以放疗、化疗、基因治疗、免疫治疗等治疗手段。尽管治疗手段都有较大进步,由于恶性脑胶质瘤具有生长迅速,侵袭性强,术后易复发等特点,其预后仍不尽人意。尤其是多形性胶质母细胞瘤病人的中位存活时间仅仅12~15个月。故对于脑恶性胶质瘤的发生、恶性进展和治疗的研究是医学及其相关研究领域研究的重要课题之一。近年来随着分子生物学在肿瘤研究的发展,对脑胶质瘤研究的相关分子机制和凋亡的研究已经较为深入,但胶质瘤的发生机制仍不清楚。
     干扰素-维甲酸联合诱导细胞死亡相关基因GRIM-19(Gene associated with retinoid-IFN-induced mortality)是在研究干扰素β(interferon-β;IFN-β)和全反式维甲酸(all.trans-retinoic acid,RA)诱导细胞凋亡过程中用反义敲除技术筛选出的一个新基因。GRIM-19不属于现在已知的任何凋亡基因如Bel-2.death recepor和caspase家族。目前认为,GRIM-19参与细胞的增殖、凋亡的调控过程,其表达降低或位点突变可以导致细胞的异常增殖和恶性转化。转录信号转导子与激活子3(signal transducers and activators of transcription3,STAT3)是一类近年发现的癌基因,STAT3信号转导通路作为信号转导和转录激活因子家族的重要成员,其持续激活与肿瘤的发生、发展密切相关。人们发现STAT3的组成性激活对肿瘤细胞的存活、增殖、血管发生、侵袭和转移、免疫逃脱都发挥着重要的作用。体内外抑制某些肿瘤细胞中STAT3信号通路,可抑制细胞的增殖和存活,并诱导细胞凋亡。GRIM-19参与调控该家族的STAT3的活性,GRIM-19被认为是STAT3表达和激活的新的负调节子。GRIM-19在脑胶质瘤中的研究较少,GRIM-19与STAT3在脑胶质瘤中联合检测未见相关文献报道。本研究通过采用RT-PCR技术检测GRIM-19mRNA与STAT3mRNA在脑胶质瘤组织和非瘤组织中的表达来研究其在脑胶质瘤中发生、发展中的作用,为临床人脑胶质瘤的治疗提供新的思路。
     材料和方法
     45例胶质瘤的标本取自2010年9月-2012年5月郑州大学第二附属医院神经外科。所有胶质瘤标本取自肿瘤实质部分,不包含中心坏死及肿瘤边界区,取材后均经过病理专家的诊断证实。所有病例均为首次发病,术前均未行放、化疗。其中,男28例,女17例,年龄在2~73岁,平均37.23±16.35岁。标本取出后迅速存放于液氮内,后转存于-80℃冰箱内。严格按照2007年WHO中枢神经系统肿瘤的分级标准进行分级,其中Ⅰ级5例,Ⅱ级18例,Ⅲ级12例,Ⅳ级10例。Ⅱ~Ⅱ级为低度恶性组,23例;Ⅲ~Ⅳ级为高度恶性组,22例。此外,另取13例脑外伤或脑出血患者的非瘤脑组织标本作为对照组。采用RT-PCR技术检测GRIM-19、STAT3基因mRNA在45例胶质瘤组织和13例非瘤脑组织中的表达量,并利用SPSS17.0软件进行统计学分析,检验水准为a=0.05。
     结果
     1. GRIM-19mRNA在不同级别脑胶质瘤中的表达情况
     GRIM-19mRNA在胶质瘤组织标本呈现低表达,而在非瘤脑组织中出现高表达。GRIM-19mRNA在非瘤脑组织、脑胶质瘤组织、低度恶性胶质瘤组、高度恶性胶质瘤组中的表达量分别为1.091±0.025、0.923±0.076、0.986±0.040、0.856±0.040。经过统计分析显示,非瘤脑组织和脑胶质瘤组织之间、非瘤脑组织、低度恶性胶质瘤组和高度恶性胶质瘤组两两之间均具有显著差异(P<0.05)。
     2. STAT3mRNA在不同级别脑胶质瘤中的表达情况
     STAT3mRNA在胶质瘤组织标本呈现高表达,而在非瘤脑组织中出现低表达。STAT3mRNA在非瘤脑组织、脑胶质瘤组织、低度恶性胶质瘤组、高度恶性胶质瘤组中的表达量分别为0.671±0.020、0.818±0.049、0.786±0.030、0.843±0.041。经统计学分析显示,非瘤脑组织和脑胶质瘤组织之间、非瘤脑组织、低度恶性胶质瘤组和高度恶性胶质瘤组两两之间均具有显著差异(P<0.05)。
     3.GRIM-19、STAT3基因之间的相关性
     GRIM-19mRNA和STAT3mRNA在同一脑胶质瘤组织中的表达量,经统计学分析,二者为负相关,二者的表达趋于反向,Pearson相关性r=-0.618,P<0.05,具有统计学的意义。
     结论
     1.GRIM-19基因在脑胶质瘤中的mRNA表达相对于非瘤脑组织明显减弱,且随着胶质瘤病理级别的升高,其表达量逐渐降低。
     2.STAT3基因在脑胶质瘤中的mRNA表达相对于非瘤脑组织明显增强,且随着胶质瘤病理级别的升高,其表达量逐渐升高。
     3.GRIM-19、STAT3基因在脑胶质瘤中的表达呈负相关。GRIM-19、STAT3基因有望成为脑胶质瘤基因诊断与治疗的靶点。
Background and Purpose
     Glioma is the most easily approached tumor in the encephalic.It almost exacerbates as infiltrating type. So far it mainly depends on surgery cutting to treat and it should be maintained with the help of radiotherapy,chemotherapy, genetherepy, immuno therapy and so on after the surgery. Although there has been great improvement in treatment methods, malignancy features by rapid growth,strong invasion and easy recurrence. So it is not satisfying after surgery. The median survival time of people who are afflicted with GBM(glioblastoma multiforme) is merely12-15months. Thereafter,the study of the beginning, deteriorating, and treatment is an important subject in the medical and some relative areas, In recent years, with the development of the molecular biology in the cancer research,the study of molecular mechanism and withering had been further explored,but the occurrence mechanism of glioma is not clear.
     GRIM-19(Gene associated with retinoid-IFN-induced mortality) which is induced by interferon/retinoic acid and can make cells deteriorate is a new gene chosen in the study of interferon-β; IFN-β and all-trans-retinoic acid, RA inducing cells to apoptosis by the way of delating opposite elements. GRIM-19is not belonged to any of the already known apoptosis gene.eg:Bcl-2,death recepor and caspase family. So far as concerned, GRIM-19participates in the process of cell proliferation and repoptosis,and the reduction of expression and site mutation may lead to the cell proliferation and vicious transformation. STAT3signal transduction pathway is a recently discovered cancer gene and it works as an important member in the gene family of transducing and transcribing the activator. The constant activating associates closely to the beginning and developing of tumor. It is discovered that the constitutive activation of STAT3plays a important role in the survival, proliferation, vasculogenesis, invasion and transferring, Immune escape.The suppression of STAT3signal Signal transduction pathway in and out of the body can restrain the cell proliferation and survival as well as inducing cells to apoptosis. GRIM-19is considered as a new negative regulator to express and activate STAT3. The study of GRIM-19in glioma is rare, and we can see no relative papers reporting GRIM-19and STAT3together. This research is to study its function in the beginning and developing of the glioma by the way of RT-PCR technical testing for the expression of GRIM-19mRNA and STAT3mRNA in the glioma tissues and non-neoplastic brain tissue so as to provide new idea in the clinic treatment for glioma.
     Materials and Methods
     45samples is got from the neurosurgery of the second Affiliated Hospital of Zhengzhou University. All the tumor samples are got from the parenchyma of the tumor, not including the central necrosis and Tumor border area,and they are through the diagnosis of the pathologist.All the samples are attacked for the first time,and they are not treated with radiotherapy and chemotherapy. Among them,there are28men and17women whose age is2-73years old,and the average age is37.23±16.35years old. The samples are stored in the liquid nitrogen after they are obtained and then transferred into the refrigerator of-80℃. They are strictly classified according to the the classification standard of the central nervous system tumors which is released by WHO in2007. Among them,there are5Ⅰ,18Ⅱ,12;,10Ⅳ. Ⅰ~Ⅱ belong to the lower malignancy group, the amount is23; Ⅲ-Ⅳ belong to the higher malignancy group,number22.Besides,13normal cerebral tissue samples of brain injury or cerebral hemorrhage patients are picked as normal control.After the RT-PCR test for the expression of GRIM-19mRNA、 STAT3gene mRNA in the45glioma tissues and the13tumor tissues. The result were analyzed with the statistics software of SPSS17.0. Probabiilty values a=0.05were considered statistically significant.
     Results
     1. The expression of GRIM-19mRNA in different grade glioma
     GRIM-19mRNA presents low expression in glioma tissue specimens; high expression in the non-tumor brain tissue. The expression of GRIM-19mRNA in the non-tumor brain tissue,glioma tissue, low-grade malignant tumor tissues,highly malignant glioma group is respectively1.091、0.025、0.923、.076、0.986±040、0.856±0.040. The differences were significant between non-tumor brain tissue and glioma tissues, as well as between any two of the non-tumor brain tissue, low-grade malignant gliomas and high-grade gliomas.(P<0.05)
     2.The expression in different grade glioma
     STAT3mRNA presents high expression in glioma tissue specimens; low expression in the non-tumor brain tissue. The expression of STAT3mRNA in the non-tumor brain tissue,glioma tissue, low-grade malignant tumor tissues,highly malignant glioma group is respectively:0.671±0.020、0.818±0.049、0.786±0.030、0.843±0.041. The differences were significant between non-tumor brain tissue and glioma tissues, as well as between any two of the non-tumor brain tissue, low-grade malignant gliomas and high-grade gliomas.(P<0.05)
     3.The relevancy between GRIM-19and STAT3
     According to statistics,the expression of GRIM-19mRNA and STAT3mRNA is negative correlation,their expression is tend to opposite sides. The pearson relation is r=-0.618, P<0.05, and it makes sense in statistics.
     Conclusions
     1.The mRNA expression of GRIM-19gene in the glioma is obviously weakened which is compared to non-tumor brain tissue.As the pathological grade rises, the expression reduces gradually.
     2.The mRNA expression of STAT3gene in the glioma is obviously strengthened which is compared to non-tumor brain tissue. As the pathological grade rises, the expression promotes gradually.
     3.The expression of GRIM-19and STAT3presents negative correlation. GRIM-19and STAT3are expected to become the target spot in the diagnosis and treatment of glioma gene.
引文
[1]王忠诚.王忠诚神经外科学[M].南京:江苏科学技术出版社,2005:512
    [2]Kalvakolanu DV, Nallar SC, Kalakonda S. Cytokine-induced tumor suppressors:a GRIM story. [J] Cytokine,2010,52(1-2):128-142.
    [3]Chidambaram NV, Angell JE, Ling W, et al. Chromosomal localization of human GRIM-19, a novel IFN-beta and retinoic acidactivated regulator of cell death. [J]. Interferon Cytokine Res,2000,20 (7):661-665
    [4]Angell JE, Lindner DJ, Shapiro PS, et al. Identification of GRIM-19,a novel cell death-regulatory gene induced by the interferon-beta and retinoic acid combination, using a genetic approach[J]. J Biol Chem,2000,275 (43):33416-33426.
    [5]Huang G, Lu H, Hao A, et al. GRIM-19, a cell death regulatory protein, is essential for assembly and function of mitochondrial complex I[J]. Mol Cell Biol,2004,24 (19):8447-8456.
    [6]Lufei C. Ma J, Huang G.et al. GRIM-19,a death-regulatory gone product, suppresses Star3 activity via functional interaction[J]. EMBO J,2003,22(6):1325-1335.
    [7]Levy D E, Lee C K. What does STAT3 do?[J] J Clin Invest,2002,109(9):1143-1148.
    [8]Angell JE, LindnerDJ, Shapiro PS. Identification of GRIM-19, a novel cell death-regulatory gene induced by the interferon-beta and retinoic acid combination, using a genetic approach[J]. BiolChem,2000,275(43):33416-33426.
    [9]Jin YH, Jung S, Jin SG, et al. GRIM-19 Expression and Function in Human Gliomas[J]. J Korean Neurosurg Soc,2010,48 (1):20-30.
    [10]Sun P, Nallar SC, Kalakonda S, et al. GRIM-19 inhibits v-Src-induced cell motility by interfering with cytoskeletal restructuring[J]. Oncogene,2009,28(10):1339-1347.
    [11]Zhang J, Yang J, Roy SK, et al. The cell death regulator GRIM-19 is an inhibitor of signal transducer and activator of transcription 3[J]. Proc Natl Acad Sci USA,2003,100(16): 9342-9347.
    [12]Huang Y, Yang M, Yang H,et al. Upregulation of the GRIM-19 gene suppresses invasion and metastasis of human gastric cancer SGC-7901 cell line.Exp[J].Cell Res,2010,316(13): 2061-2070.
    [13]Kalakonda S, Nallar SC, Gong P, et al. Tumor suppressive protein gene associated with retinoid-interferon-induced mortality GRIM-19 inhibits src-induced oncogenic transformation at multiple levels[J]. Pathol,2007,171(4):1352-1368.
    [14]Zhou AM, Zhao JJ, Ye J, et al. Expression and clinical signifi-cance of GRIM-19 in non-small cell lung cancer [J]. Ai Zheng,2009,28 (4):431-435.
    [15]Yong-Hao Jin, Shin Jung, Shu-Guang Jin, et al. GRIM-19 Expression and Function in Human Gliomas.[J]. J Korean Neurosurg Soc,2010,48(1):20-30.
    [16]张艳敏.GRIM-19下调促进胶质瘤细胞的生长与迁移.山东大学博士学位论文集.
    [17]Yu H, Jove R. The STATs of cancer-new molecular targets come of age[J]. Nat Rev Cancer, 2004,4(2):97-105.
    [18]Darnell JE Jr.Transcription factors as targets for cancer therapy[J]. Nat Rev Cancer,2002, 2(10):740-749.
    [19]Niu G, Wright KL, Huang M, et al. Constitutive STAT3 activity up-regulates VEGF expression and tumor angio-genesis[J]. Oncogene,2002,21(13):2000-2008.
    [20]Germain D, Frank DA. Targeting the cytoplasmic and nuclear functions of signal transducers and activators of transcription 3 for Cancer therapy[J]. Clin Cancer Res,2007, 13(19):5665-5669.
    [21]Birner P, Toumangelova-Uzeir K, Natchev S, et al. STAT3 tyrosine phosphorylation influences survival in glioblastoma [J]. JNeurooncol,2010,100(3):339-343.
    [22]Rahaman SO, Harbor PC, Chernova O, et al. Inhibition of constitutively active Stat3 suppresses proliferation and induces apoptosis in glioblastoma multiforme cells [J] Oncogene,2002,21 (55):8404-8413.
    [23]Dasgupta A, Raychaudhuri B, Haqqi T, et al. Stat3 activation is required for the growth ofU87 cell-derived tumours in mice [J]. EurJ Cancer,2009,45(4):677-684.
    [24]Wang T, Niu G, Kortylewski M, et al. Regulation of the innate and adaptive immune responses by Stat-3 signaling in tumor cells [J]. Nat Med,2004,10(1):48-54.
    [25]Hussain SF, Kong LY, Jordan J, et al. A novel small molecule inhibitor of signal transducers and activators of transcription 3 reverses immune tolerance in malignant glioma patients [J]. Cancer Res,2007,67 (20):9630-9636.
    [26]Sherry MM, Reeves A, Wu JK, et al. STAT3 is required for proliferation and maintenance of multipotency in glioblastoma stem cells [J]. Stem Cells,2009,27(10): 2383-2392.
    [27]Li GH, Wei H, Chen ZT, et al. STAT3 silencing with lentivirus inhibits growth and induces apoptosis and differentiation of U251 cells [J]. JNeurooncol,2009,91(2): 165-174.
    [28]张化明,陈谦学,邹志鹏,等.人脑胶质瘤中STAT3和VEGF表达的相关性[J].中国临床神经外科杂志,2005,15(5):279-281
    [29]赛克,WK Alfred Yung, Howard Colman等.STAT3信号转导通路抑制剂诱导胶质瘤干细胞产生自噬的研究[J].中国神经肿瘤杂志,2011,9(2):88-92.
    [30]苏静,孙际童,刘宁,等.抑制STAT3表达增加H2O2诱导人胶质瘤U251细胞损伤[J].中国实验诊断学,2010,1(14):9-11.
    [31]岳晓.胶质瘤中β-catenin/STAT3转录调控miR-21及其促进胶质瘤侵袭的研究.天津医科大学硕士学位论文集.
    [32]Okamoto T, Inozume T, Mitsui H, et al. Overexpression of GRIM-19 in cancer cells suppresses STAT3-mediated signal transduction and cancer growth [J]. MolCancerTher, 2010,9 (8):2333-2343.
    [33]Nallar SC, Kalakonda S, Sun P, et al. Identification of a structuralmotif in the tumor-suppressive protein GRIM-19 required for its antitumor activity [J]. Am J Patho, 2010,177 (2):896-907.
    [34]叶静.GRIM-19及其靶基因产物STAT3与肺癌相关性的研究.安徽医科大学硕士学位论文集.
    [1]Angell JE, Lindner DJ, Shapiro PS, et al. Identification of GRIM-19, a novel cell death-regulatory gene induced by the interferon-beta and retinoic acid combination, using a genetic approach[J]. Biol.Chem.2000,275;(43):33416-33426
    [2]Altucci L, Gronemeyer, H. The promise of retinoids to fight against cancer[J]. Nat.Rev. Cancer,2001,1(3):181-193.
    [3]Gresser I, Belardelli F. Endogenous type I interferons as a defense against tumors[J]. Cytokine Growth Factor Rev,2002,13(2):111-118
    [4]Ikeda H, Old LJ, Schreiber RD. The roles of IFN gamma in protection against tumor development and cancer immunoediting[J]. Cytokine Growth Factor Rev,2002,13(2): 95-109.
    [5]Chidambaram NV, Angell JE, Ling W, et al. Chromosomal localization of human GRIM-19, a novel IFN-beta and retinoic acidactivated regulator of cell death[J]. Interferon Cytokine Res,2000,20(7):661-665.
    [6]Prazeres H, Rodrigues F, Soares P, et al. Loss of heterozygosity at 19p13.2 and 2q21 in tumours from familial clusters of non-medullary thyroid carcinoma[J]. Fam Cancer,2008, 7(2):141-149
    [7]Stankov K, Pastore A, Toschi L, et al. Allelic loss on chromosomes 2q21 and 19p 13.2 in oxyphilic thyroid tumors. Int[J]. Cancer,2004,111(3):463-467.
    [8]Fearnley M, Carroll J, Shannon RJ, et al. GRIM-19, a cell death regulatory gene product, is a subunit of bovine mitochondrial NADH:ubiquinone oxidoreductase (complex I)[J]. Biol Chem,2001,276(42):38345-38348.
    [9]Hu J, Angell JE, et al. Characterization of monoclonal antibodies against GRIM-19, a novel IFN-beta and retinoic acid-activated regulator of cell death[J]. Interferon Cytokine Res,2002, 22(10):1017-1026.
    [10]Murray J, Zhang B, Taylor SW, et al. The subunit composition of the human NADH dehydrogenase obtained by rapid one-step immunopurification[J]. Biol Chem,2003,278(16): 13619-13622.
    [11]Huang G, Lu H, Hao A, et al. GRIM-19, a cell death regulatory protein, is essential for assembly and function of mitochondrial complex I[J]. Mol Cell Biol,2004,24(19):8447-8456.
    [12]Maximo V, Lima J, Soares P, et al. GRIM-19 in health and disease[J]. Adv Anat. Pathol, 2008,15(1):46-53.
    [13]Kalvakolanu DV, Nallar SC, Kalakonda S. Cytokine-induced tumor suppressors:a GRIM story[J]. Cytokine,2010,52(1-2):128-142.
    [14]Seo T, Lee D, Shim YS, et al. Viral interferon regulatory factor 1 of Kaposi's sarcoma-associated herpesvirus interacts with a cell death regulator, GRIM 19, and inhibits interferon/retinoic acid-induced cell death[J]. Virol,2002,76(17):8797-8807.
    [15]Yeo WM, Isegawa Y, Chow VT. The U95 protein of human herpesvirus 6B interacts with human GRIM-19:silencing of U95 expression reduces viral load and abrogates loss of mitochondrial membrane potential[J]. Virol,2008,82(2):1011-1020.
    [16]Guerra S, Lopez-Fernandez LA, Pascual-Montano A, et al. Cellular gene expression survey of vaccinia virus infection of human HeLa cells[J]. Virol,2003,77(11):6493- 6506.
    [17]Tripathy MK, Ahmed Z, et al. The cell death regulator GRIM-19 is involved in HIV-1 induced T-cell apoptosis[J]. Apoptosis,2010,15(12):1453-1460.
    [18]Barnich N, Hisamatsu T, Aguirre JE, et al. GRIM-19 interacts with nucleotide oligomerization domain 2 and serves as downstream effector of anti-bacterial function in intestinal epithelial cells[J]. Biol Chem,2005,280(19):19021-19026.
    [19]Zhou Q, Amar S. Identification of proteins differentially expressed in human monocytes exposed to Porphyromonas gingivalis and its purified components by high-throughput immunoblotting[J]. Infect Immun.,2006,74(2):1204-1214.
    [20]Maximo V, Botelho T, Capela J, et al. Somatic and germline mutation in GRIM-19, a dual function gene involved in mitochondrial metabolism and cell death, is linked to mitochondrion-rich (Hurthle cell) tumours of the thyroid. Br[J]. Cancer,2005,92(10): 1892-1898.
    [21]Katoh R, Harach HR, Williams ED. Solitary, multiple, and familial oxyphil tumours of the thyroid gland[J]. Pathol,2005,186(3):292-299.
    [22]Attardi G, Yoneda M, Chomyn A. Complementation and segregation behavior of disease-causing mitochondrial DNA mutations in cellular model systems[J]. Biochim Biophys Acta,1995,271(1):241-248.
    [23]Canzian F, Amati P, Harach HR, et al. A gene predisposing to familial thyroid tumors with cell oxyphilia maps to chromosome 19p13.2[J]. Am Hum Genet,1998,63(6):1743-1748.
    [24]Alchanati Ⅰ, Nallar SC, Sun P, et al. A proteomic analysis reveals the loss of expression of the cell death regulatory gene GRIM-19 in human renal cell carcinomas[J]. Oncogene,2006, 25(54):7138-7147.
    [25]Gong LB, Luo XL, Liu SY, et al. Correlations of GRIM-19 and its target gene product STAT3 to malignancy of human colorectal carcinoma[J]. Ai Zheng,2007,26(7):683-687.
    [26]Bromberg JF, Wrzeszczynska MH, Devgan G, et al. Stat3 as an oncogene[J]. Cel,1999,98(3): 295-303.
    [27]Buettner R, Mora LB, Jove R. Activated STAT signaling in human tumors provides novel molecular targets for therapeutic intervention[J]. Clin Cancer Res,2002,8(4):945-954.
    [28]Zhang L, Gao L, Li Y, et al. Effects of plasmid-based Stat3-specific short hairpin RNA and GRIM-19 on PC-3M tumor cell growth[J]. Clin Cancer Res,2008,14(2):559-568.
    [29]Zhou Y, Li M, Wei Y, et al. Down-regulation of GRIM-19 expression is associated with hyperactivation of STAT3-induced gene expression and tumor growth in human cervical cancers[J]. Interferon Cytokine Res,2009,29(10):695-703.
    [30]Lufei C, Ma J, Huang G, et al. GRIM-19, a death-regulatory gene product, suppresses Stat3 activity via functional interaction [J]. EMBO,2003,22(6):1325-1335.
    [31]Zhang J, Yang J, Roy SK, et al. The cell death regulator GRIM-19 is an inhibitor of signal' transducer and activator of transcription 3[J]. Proc Natl Acad Sci USA,2003,100(16): 9342-9347.
    [32]Yang J, Chatterjee-Kishore M, Staugaitis SM, et al. Novel roles of unphosphorylated STAT3 in oncogenesis and transcriptional regulation[J]. Cancer Res,2005,65(2):939-947.
    [33]Kalakonda S, Nallar SC, Gong P, et al. Tumor suppressive protein gene associated with retinoid-interferon-induced mortality GRIM-19 inhibits src-induced oncogenic transformation at multiple levels[J]. Pathol,2007,171(4):1352-1368.
    [34]Kalakonda S, Nallar SC, et al. Tumor-suppressive activity of the cell death activator GRIM-19 on a constitutively active signal transducer and activator of transcription 3[J]. Cancer Res,2007,67(13):6212-6220.
    [35]Martin GS.The hunting of the Src[J]. Nat Rev Mol Cell Biol,2001, (6):467-475.
    [36]Sun P, Nallar SC, Kalakonda S, et al. GRIM-19 inhibits v-Src-induced cell motility by interfering with cytoskeletal restructuring[J]. Oncogene,2009,28(10):1339-1347.
    [37]Wegrzyn J, Potla R, Chwae YJ, et al. Function of mitochondrial Stat3 in cellular respiration[J]. Science,2009,323(5915):793-797.
    [38]Gough DJ, Corlett A, Schlessinger K, et al. Mitochondrial STAT3 supports Ras-dependent oncogenic transformation[J]. Science,2009,324(5935):1713-1716
    [39]Nallar SC, Kalakonda S, Sun P, et al. Identification of a structural motif in the tumorsuppressive protein GRIM-19 required for its antitumor activity[J]. Am J Pathol,2010, 177(2):896-907.
    [40]Zhang X, Huang Q, Yang Z, et al. GW112, a novel antiapoptotic protein that promotes tumor growth[J]. Cancer Res,2004,64(7):2474-2481.
    [41]Koshidav S, Kobayashi D, Moriai R, et al. Specific overexpression of OLFM4(GW112/HGC-1) mRNA in colon, breast and lung cancer tissues detected using quantitative analysis[J]. Cancer Sci,2007,98(3):315-320.
    [42]Huang Y, Yang M, Yang H,et al. Upregulation of the GRIM-19 gene suppresses invasion and metastasis of human gastric cancer SGC-7901 cell line.Exp[J]. Cell Res,2010,316(13): 2061-2070.
    [43]Chin KL, Aerbajinai W, Zhu J, et al. The regulation of OLFM4 expression in myeloid precursor cells relies on NF-kappaB transcription factor[J]. Br J Haematol,2008,143(3): 421-432.
    [44]Hooper AT, Akiri G, Jin D, et al. VEGF receptor expression on reactive breast cancer stroma: paving the way for tumor invasion[J]. ASCO Meeting Abstracts,2005,23:9642.
    [45]Jin H, Pan Y, He L, et al. p75 neurotrophin receptor inhibits invasion and metastasis of gastric cancer[J]. Mol. Cancer Res,2007,5(5):423-433.
    [46]Pahl HL. Activators and target genes of Rel/NF-kappaB transcription factors[J]. Oncogene, 1999,18(8):6853-6866.
    [47]Kobayashi D, Koshida S, Moriai R, et al. Olfactomedin 4 promotes S-phase transition in proliferation of pancreatic cancer cells[J]. Cancer Sci,2007,98(3):334-340.
    [48]Sun P, Nallar SC, Raha A.,et al. GRIM-19 and p16INK4a synergistically regulate cell cycle progression and E2F1-responsive gene expression[J]. J Biol Chem,2010,285(36): 27545-27552.
    [49]Ruas M, Peters G. The p16INK4a/CDKN2A tumor suppressor and its relatives[J].Biochim BiophysActa,1998,1378(2):115-177.
    [50]Sherr CJ, Roberts JM. Inhibitors of mammalian G1 cyclin-dependent kinases[J]. Genes Dev, 1995,9(10):1149-1163.
    [51]Dyson N. The regulation of E2F by pRB-family proteins[J]. Genes Dev,1998,12(15): 2245-2262.
    [52]Hakak Y, Hsu YS, Martin GS. Shp-2 mediates v-Src-induced morphological changes and activation of the anti-apoptotic protein kinase Akt [J]. Oncogene 2000,19(28):3164-3171.
    [53]Akira S, Nishio Y, Inoue M,et al. Molecular cloning of APRF, a novel IFN-stimulated gene factor 3 p91-related transcription factor involved in the gpl30-mediated signaling pathway. [J].Cell,1994,77(1):63-71.
    [54]Bowman T, Garcia R, Turkson J,et al. STATs in oncogenesis[J]. Oncogene,2000,19(21): 2474-2488.
    [55]Zhong Z, Wen Z, Darnell JE Jr. Stat3:a STAT family member activated by tyrosine phosphorylation in response to epidermal growth factor and interleukin-6[J]. Science,1994, 264(5155):95-98.
    [56]Catlett-Falcone R, Landowski TH, Oshiro MM,et al.Constitutive activation of Stat3 signaling confers resistance to apoptosis in human U266 myeloma cells[J]. Immunity, 1999,10(l):105-115.
    [57]Epling-Burnette PK, Liu JH, Catlett-Falcone R, et al. Inhibition of STAT3 signaling leads to apoptosis of leukemic large granular lymphocytes and decreased Mcl-1 expression[J]. Clin Invest,2001,107(3):351-362.
    [58]Frame MC. Newest findings on the oldest oncogene; how activated src does it[J]. Cell Sci, 2004,117:989-998.
    [59]Yang J, Chatterjee-Kishore M, Staugaitis SM,et al. Novel roles of unphosphorylated STAT3 in oncogenesis and transcriptional regulation[J]. Cancer Res,2001,65(3):939-947.
    [60]Burdelya L, Kujawski M, Niu G, et al. Stat3 activity in melanoma cells affects migration of immune effector cells and nitric oxide-mediated antitumor effects[J]. Immunol,2005, 174(7):3925-3931.
    [61]Levy DE, Darnell JE Jr. Stats:transcriptional control and biological impact[J]. Nat Rev Mol Cell Biol,2002,3(9)9:651-662.
    [62]Boulton TG, Zhong Z, Wen Z, et al. STAT3 activation by cytokines utilizing gp130 and related transducers involves a secondary modification requiring an H7-sensitive kmase[J]. Proc Natl Acad Sci USA,1995,92(15):6915-6919.
    [63]Perucho M, Esteban M. Inhibitory effect of interferon on the genetic and oncogenic transformation by viral and cellular genes[J]. Virol,1985,54(1):229-232.
    [64]Kuninaka S, Nomura M, Hirota T, et al. The tumor suppressor WARTS activates the Omi /HtrA2-dependent pathway of cell death[J]. Oncogene,2005,24(34):5287-5298.
    [65]Zhang L, Gao L, Zhao L, et al. Intratumoral delivery and suppression of prostate tumor growth by attenuated Salmonella enterica serovar typhimurium carrying plasmid-based small interfering RNAs[J]. Cancer Res,2007,12(67):5859-5864.
    [66]Salvesen GS, Duckett CS. IAP proteins:blocking the road to death's door[J]. Nat Rev Mol Cell Biol,2002,3(6):401-410.
    [67]Martins LM, Iaccarino I, Tenev T, et al. The serine protease Omi/HtrA2 regulates apoptosis by binding XIAP through a reaper-like motif[J]. J Biol Chem,2002,277(1):439-444.
    [68]Ma X, Kalakonda S, Srinivasula SM, et al. GRIM-19 associates with the serine protease HtrA2 for promoting cell death[J]. Oncogene,2007,26(33):4842-4849.
    [69]Gupta S, Singh R, Datta P, et al. The C-terminal tail of presenilin regulates Omi/HtrA2 protease activity[J]. Biol Chem,2004,279(44):45844-45854.
    [70]Harland RM. A protein scaffold plays matchmaker for chordin[J]. Cell,2008,134(5): 718-719.
    [71]Kobayashi D, Koshida S, Moriai R, et al. Olfactomedin 4 promotes S-phase transition in proliferation of pancreatic cancer cells[J]. Cancer Sci,2007,98(3):334-340.
    [72]Satyanarayana A, Kaldis P. Mammalian cell-cycle regulation:several Cdks, numerous cyclins and diverse compensatory mechanisms[J]. Oncogene,2009,28(33):2925-2939.
    [73]Hunter T, Pines J. Cyclins and cancer. II:Cyclin D and CDK inhibitors come of age[J]. Cell,1994,79(4):573-582.
    [74]Liu W, Chen L, Zhu J,et al. The glycoprotein hGC-1 binds to cadherin and lectins[J]. Exp Cell Res,2006,312(10):1785-1797.
    [75]Haura EB, Turkson J, Jove R. Mechanisms of disease:Insights into the emerging role of signal transducers and activators of transcription in cancer[J]. Nat Clin Pract Oncol,2005, 2(6):315-324.
    [76]Yu CL, Meyer DJ, Campbell GS, et al. Enhanced DNA binding activity of a Stat3-related protein in cells transformed by the Src oncoprotein[J]. Science,1995,269(5220):81-83.
    [77]Frame MC, Fincham VJ, Carragher NO, et al. v-Src's hold over actin and cell adhesions[J]. Nat Rev Mol Cell Biol,2002,3(4):233-245.
    [78]Martin GS. The hunting of the Src[J]. Nat Rev Mol Cell Biol,2001,2(6):467-475.
    [79]Huang C, Ni Y, Wang T,et al. Down-regulation of the filamentous actin cross-linking activity of cortactin by Src-mediated tyrosine phosphorylation[J]. Biol Chem,1997,272(21):13911-13915.
    [80]Hanahan D, Weinberg RA. The hallmarks of cancer[J]. Cell,2000,100:57-70.
    [81]Alchanati I, Nallar SC, Sun P, et al. A proteomic analysis reveals the loss of expression of the cell death regulatory gene GRIM-19 in human renal cell carcinomas[J]. Oncogene,2006, 25(54):7138-7147.
    [82]Chelbi-Alix MK, Quignon F, Pelicano L, et al. The H. Resistance to virus infection conferred by the interferon-induced promyelocytic leukemia protein[J].'Virol, 1998;72(6):1043-1051.
    [83]Nindl I, Dang C, Forschner T,et al. Identification of differentially expressed genes in cutaneous squamous cell carcinoma by microarray expression profiling[J]. Mol Cancer,2006: 5-30.
    [84]Vogel RO, Dieteren CE, van den Heuvel LP, et al. Identification of.mitochondrial complex I assembly intermediates by tracing tagged NDUFS3 demonstrates the entry point of mitochondrial subunits[J]. Biol Chem,2007,282(10):7582-7590.
    [85]Warburg O. On the origin of cancer cells[J]. Science,1956,123(5930):309-314.
    [86]Gatenby RA, Gillies RJ. Why do cancers have high aerobic glycolysis?[J]. Nat Rev Cancer, 2004, (11):891-899.
    [87]Hsu PP, Sabatini DM. Cancer cell metabolism:Warburg and beyond[J]. Cell,2008,134(5): 703-707.
    [88]Vander Heiden MG, Cantley, et al. Understanding the Warburg effect:the metabolic requirements of cell proliferation[J]. Science,2009,324(5930):1029-1033.
    [89]DeBerardinis RJ. Is cancer a disease of abnormal cellular metabolism? New angles on an old idea[J]. Genet Med,2008, (11):767-777.
    [90]Maximo V, Lima J, Soares P,et al. Mitochondria and cancer[J]. Virchows Arch,2009,454(5): 481-495.
    [91]Maximo V, Soares P, Lima J,et al. Mitochondrial DNA somatic mutations (point mutations and large deletions) and mitochondrial DNA variants in human thyroid pathology:a study with emphasis on Hurthle cell tumors[J]. Am J Pathol,2002,160(5):1857-1865.
    [92]Baysal BE, Ferrell. Mutations in SDHD, a mitochondrial complex II gene, in hereditary paraganglioma[J].Science,2000,4287(5454):848-851.
    [93]Lima J, Feijao T, et al. High frequency of germline succinate dehydrogenase mutations in sporadic cervical paragangliomas in northern Spain:mitochondrial succinate dehydrogenase structure-function relationships and clinical-pathological correlations[J]. J Clin Endocrinol Metab,2007,92(12):4853-4864.
    [94]Tomlinson IP, Alam NA, et al. Germline mutations in FH predispose to dominantly inherited uterine fibroids, skin leiomyomata and papillary renal cell cancer[J]. Nat Genet, 2002,30(4):406-410.
    [95]Okamoto T, Inozume T, Mitsui H, et al. Overexpression of GRIM-19 in cancer cells suppresses STAT3-mediated signaltransduction and cancer growth[J]. Mol Cancer Ther, 2010,9(8):2333-2343.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700