用户名: 密码: 验证码:
沙冬青肌醇半乳糖苷合成酶(AmGS)基因转化类茶植物红叶石楠的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自然环境下,低温胁迫是植物主要的环境灾害因素,也是许多农作物区域性和季节性的限定因素,往往会影响植物的生长发育和作物生产率,从而导致严重的经济损失。传统的植物育种方法在改善植物耐冻性方面具有一定的局限性,利用现代生物学技术对植物(尤其是木本植物)进行抗冻性改良,具有高效性和针对性,可以加速高抗冻性植物新品种的选育进程。
     沙冬青肌醇半乳糖苷合成酶基因(galactinol synthase gene of Ammopiptanthusmongolicus)AmGS是从抗寒性强、能忍耐冬季-30℃以下低温的沙冬青中筛选得到。经过RACE扩增得到了AmGS基因的全长cDNA序列。然后分别克隆到原核表达载体pET-22b和真核表达载体pCAMBIA2300-35S-OCS中,建成了AmGS基因的细菌遗传转化表达载体pET-22b-AmGS和红叶石楠遗传转化表达载体pCAMBIA2300-AmGS。然后分别转化到大肠杆菌和和红叶石楠中,获得了转AmGS基因的大肠杆菌和转AmGS基因的红叶石楠。初步筛选出抗寒性提高的转基因红叶石楠株系,为用基因工程技术对茶树等常绿树种进行抗寒性改良提供了重要参考和技术储备。主要研究结果如下:
     1、通过AmGS基因的原核表达研究,AmGS基因成功转化大肠杆菌菌株,在低温下转基因大肠杆菌比转化空载体的大肠杆菌存活率高,说明我们克隆到了预期的AmGS基因。
     2、建立了红叶石楠高效再生体系,外植体应选择水培嫩芽,最佳启动培养基:MS+6-BA1.0mg/L+NAA0.1mg/L;不定芽诱导培养基:MS+6-BA2.0mg/L+NAA0.5mg/L;茎段再生分化诱导:茎段平铺在MS+6-BA2.0mg/L+NAA0.1mg/L培养基上培养;生根培养:IBA浓度为生根限制因子,培养基为1/2MS+NAA0.05mg/L+IBA0.1mg/L+蔗糖10g/L。
     3、构建了植物转基因表达载体pCAMBIA2300-AmGS,研究了农杆菌介导转化后植株的死亡率、分化率、分化芽数、芽苗长度、芽苗颜色与遗传转化有关的指标,发现浸染部位是最重要的影响因子,茎尖是最佳的浸染部位,确定了AmGS基因转化红叶石楠的转化方案为:选取红叶石楠组培苗茎尖,用携带pCAMBIA2300-AmGS表达载体的农杆菌原液(OD600≈0.4)的1/2浓度,浸染10min,然后水平放置于附加25mg/L乙酰丁香酮(AS)的MS分化培养基上,25℃下黑暗条件下共培养2d,转入50mg/L卡那霉素浓度的MS培养基进行筛选培养。
     4、本研究中筛选得到32个抗卡那霉素的转基因植株,取其中的R6、R7、R8、R9、R10、R11、R12进行了茎段再生分化培养,对培养的第一代进行PCR分析表明转基因阳性株系有R6、R7、R8和R10。对R6、R7、R8和R10进行Southern杂交分析表明,AmGS基因已经整合到R6、R7和R8三个转基因株系的基因组DNA中。对单拷贝的R6和R7进行RT-PCR分析结果表明,导入的AmGS基因在转基因植株中的转录水平上表达。
     5、转基因植株的遗传传递和遗传稳定性检测发现,在C1、C2和C3继代植株中,个别植株出现过PCR阴性的结果,但从C4至C6继代植株中都没出现PCR阴性的植株,这表明C4以后的继代植株基本趋向稳定;也表明导入的AmGS基因在R6、R7两个转基因株系中能稳定地传递到后代转基因植株中。
     6、抗冻表型分析表明,在不同低温条件下,转基因植株都比野生型植株表现出较高的存活率,抗寒能力明显优于野生型植株,说明导入的抗冻基因提高了红叶石楠的抗寒性。
     7、不同低温处理下转基因植株的生理生化指标研究表明,低温处理后两个转基因株系相对电导率升高的程度明显低于野生型植株。R6株系的LT50是-12.93℃,R7株系的LT50是-12.63℃,野生型植株的LT50是-8.25℃,两转基因株系的LT50分别比对照下降了4.68℃和4.38℃,说明转基因株系的抗寒能力有了明显提高。
     转基因红叶石楠的可溶性蛋白、可溶性糖、游离脯氨酸、MDA等的测定结果也支持了转基因植株在低温处理后受到的危害减轻,从另一个方面反映了转基因植株的抗寒性得到了改良。
     8、转AmGS基因红叶石楠对土壤微生物影响的初步检测表明,转基因株系和非转基因株系的微生物类群主要有细菌、真菌和放线菌,以细菌为主要微生物群落。转基因红叶石楠根际的土壤微生物数量有变化,其中细菌菌群数量变化最大,但对总体组成影响不大,仍以细菌数量最多,真菌和放线菌次之;在细菌菌群中以芽孢杆菌属的细菌为主。
     本研究为用基因工程技术对茶树等树木进行抗寒性改良提供了重要理论参考和技术储备,本研究中筛选出的R6、R7两个转基因新株系为进一步培育类茶植物红叶石楠的抗寒品种提供了选择材料。进一步的研究还在进行中。
Cold stress is a major environmental factor that limits the agricultural productivity of plants.Low temperature has strong impact on the survival and geographical distribution of plants.Cold stress often affects plant growth and productivity, which causes significant losses.Traditional plant breeding approaches have had limited success in improving freezingtolerance.Using the modern biological technology to improve the cold-tolerance of plants(especially woody plants) with higher efficency and specility, can accelerate the breedingprocess.
     An antifreeze gene AmGS (galactinol synthase gene of Ammopiptanthus mongolicus) wasisolated from Ammopiptanthus mongolicus, which has strong cold-resistance and couldendure low temperature below-30℃. In this study we obtained whole cDNA sequence thencloned into pET-22b (an prokaryotic expression vector) and pCAMBIA2300-35S-OCS (aneukaryoticexpression vector) respectively. A bacteria transformation vector pET-22b-AmGSand a plant transformation vector pCAMBIA2300-AmGS were constructed respectively. Andthen were transformed into E.coli and Photinia×fraseri, obtained the transgenic E.coli andtransgenic Photinia×fraseri of AmGS gene.The major results are as follows:
     1. The AmGS gene was successfully transformed into E. coli strain. The survival rate oftransgenic E. coli was higher than that of the nontransformed of E. coli at low temperatures.This fact support that the cloned AmGS gene is correct.
     2. Established efficient regeneration system of Photinia×fraseri. The best explant was waterculture shoots. Best initial medium was MS+6-BA1.0mg/L+NAA0.1mg/L, Formulacombination of adventitious bud induction was MS+6-BA2.0mg/L+NAA0.5mg/L, thisformula had a large number of axillary buds, sturdy seedlings, the color dark green.The bestmedium for regeneration differentiation of stem segments was MS+6-BA2.0mg/L+NAA0.1mg/L.IBA concentration as the main rooting culture limiting factor, the best rootingmedium was MS+NAA0.05mg/L+IBA0.1mg/L+sucrose10g/L.
     3. The plant expression vectors pCAMBIA2033-AmGS was constructed.We investigated themortality rate,differentiation rate,differentiation number of buds,sprouts length,Shoot color of transgenic plants.Found that impact site was the the major factor which effect oftransformation.The best Agrobacterium-mediated AmGS gene transformation program wasthat,Select shoot tip, with Agrobacterium stock solution (OD600≈0.4)1/2concentration, dip10min, put on the MS differentiation medium additional25mg/L acetosyringone (AS), at25℃under dark conditions,2d, then transferred to the concentration of50mg/L kanamycinMS medium filter culture.
     4. In total,32kanamycin resistant plants were obtained. From them, seven lines (R6, R7, R8,R9, R10, R11, R12) were identified by PCR, four (R6, R7, R8, R10) showed PCR positive,which were futher identified by Southern hybridization. Results indicated that3lines (R6, R7and8) showed positive hybridization results. These results indicated that the AmGS gene hasintegrated into the genomic DNA of transgenic plants of R6, R7and R8lines. RT-PCRanalysis on R6and R7showed that, the imported AmGS gene expressed at transcriptionallevel in transgenic plants.
     5. Transgenic plant heredity and genetic stability examination found that, in C1, C2and C3subculture plants, few plants appeared in PCR negative results, from C4to C6subcultureplant could not appear PCR negative plants. These results indicate that the transgene AmGScan be transferred to the offspring in the transgenic lines R6, R7
     6. Cold resistance phenotype analysis showed that, under different temperature conditions,transgenic plants showed higher survival rate and much better cold resistance ability thancontrol wild-type plants.It proved AmGS gene enhanced the cold tolerance of transgenic plant.
     7. REC(relative electric conductivity)test results showed that, after low temperaturetreatment, the REC increasing level of transgenic plants was obviously lower than that ofuntransformed control plants. The LT50of R6strain was-12.93℃, R7strain was-12.63℃,untransformed control plant was-8.25℃. The LT50value of transgenic strains was obviouslylower than that of the untransformed control plants. These results proved that transgenicstrains cold resistant ability has been improved.The soluble protein, soluble sugars, free proline and MDA determination results of transgenicPhotinia×fraseri also support the harm suffered reduce after cold treatment, reflected that thecold resistance of transgenic plants improved.
     8. Initial test of rhizosphere soil microbial effects of transgenic plant showed that transgeniclines and genetically modified strains of microorganism are bacteria, fungi and actinomycetes,bacteria as the main microbial community. Transgenic plant rhizosphere soil microbialquantity change, in which the bacterial flora changes in maximum, but had little effect on the overall composition.Still bacteria has the largest number, fungi and Actinomyces in thesecond, Bacillus bacteria mainly in the bacterial flora.This study provide important theoretical reference and technical reserves to using geneticengineering techniques improved cold resistance of trees.This study screened R6, R7twotransgenic cold resistant lines and provides a selection of materials. Further research is still inprogress.
引文
R.E.布坎南,N.E.吉本斯等著.伯杰氏细菌鉴定手册(第八版).北京:科学出版社.1984.
    敖光明,刘瑞凝.细胞生物学.北京:北京农业大学出版社,1987.1-346.
    陈林波,李叶云,房超,朱政,江昌俊.茶树冷诱导基因的AFLP筛选及其表达分析,西北植物学报,2011.31(1):0001-0007.
    陈儒钢,巩振辉,逯明辉,李大伟,黄炜.植物抗寒基因工程研究进展.西北植物学报,2008.28(6):1274-1280.
    陈县明.沙冬青低温诱导基因内含子与AmCIP启动子的克隆及功能分析.北京林业大学硕士论文,导师:卢存福,2011.1-56.
    陈香波,张爱平,姚泉洪.植物抗寒基因工程研究进展.生物技术通讯,2001.12(4):318-323.
    陈喧,房婉萍,邹中伟,王玉花,成浩,黎星辉.茶树冷胁迫诱导抗寒基因CBF的克隆与表达分析.茶叶科学,2009.29(1):53-59.
    陈奕吟,沙冬青低温诱导基因转化烟草及转基因植物的抗寒性研究.北京林业大学硕士论文,导师:卢存福,2007.1-61.
    崔金杰,雒琚瑜,李树红,王春义.转基因抗虫棉对土壤微生物影响的初步研究.河北农业大学学报,2005.28(6):73-75.
    邓江明,简令成.植物抗冻机理研究新进展:抗冻基因表达及其功能.植物学通报,2001.18(5):521-530.
    东秀珠,蔡妙英.常见细菌系统鉴定手册,北京:科学出版社,2001.43-267.
    董喜才,杜建中,王安乐,魏国英,陈朝辉.乙酰丁香酮在植物转基因研究中的作用.中国农学通报,2011.27(25):292-299.
    杜建会,魏兴琥.园林红叶植物新贵-红叶石楠.安徽农业科学,2009.37(11):5263-5265.
    房婉萍,邹中伟,侯喜林,张定,段云裳,杨亦扬,黎星辉.茶树冷胁迫诱导H1-histone基因的克隆与序列分析.西北植物学报,2009.29(8):1514-1519.
    房用,李秀芬,慕宗昭,乔勇进,于连家,孙蕾,连建国.茶树抗寒性研究进展.经济林研究,2004.22(2):69-72.
    费云标,孙龙华,黄涛,舒念红,高素琴,简令成.沙冬青高活性抗冻蛋白的发现.植物学报,1994.36:649-650.
    傅桂荣,陈瑛,田艳艳,张杰,汪清胤,黄永芬.转美洲拟鲽抗冻蛋白基因(afp)番茄D4代植株可溶性蛋白分析.哈尔滨师范大学自然科学学报,1997.13(4):87-91.
    戈登R E,海恩斯W C,帕格CH N.芽胞杆菌属,北京:农业出版社,1983.21-25.
    郭九峰,孙国琴,沈传进,乔惠蕾,贾利敏,郭志杰.沙冬青cDNA文库的构建和EST分析.华北农学报,2007.22(4):37-41.
    郭丽琼,林俊芳,熊盛,陈守才.抗冷冻蛋白基因遗传转化草菇的研究.微生物学报,2005.45(1):39-43.
    郭卫东,张真真,蒋小韦,陈民管,郑建树,陈文荣.低温胁迫下佛手半致死温度测定和抗寒性分析.园艺学报,2009.36(1):81-85.
    何家涛.红叶石楠离体培养与高效再生体系建立.湖北农业科学,2010.49(7):1553-1557.
    胡建军,张蕴哲,卢孟柱,张建国,张守攻.欧洲黑杨转基因稳定性及对土壤微生物的影响.林业科学,2004.40(5):105-109.
    黄美娟,邓小梅,符树根,连芳青.红叶石楠“红罗宾”组培快繁技术研究.江西农业大学学报,2003.25(4):604-607.
    黄文功,殷奎德,高中超.植物抗冻基因工程研究进展.生物技术通报,2006.2:1-4.
    黄新,傅玉兰,杨海燕,张志平,邓君林.石楠的组织培养研究.安徽农业科学,2004.32(6):1166-1168.
    黄永芬,汪清胤,付桂英,赵晓祥,杨志兴.美洲鲽抗冻蛋白基因(afp)导入番茄的研究.生物化学杂志,1997.4:418-422.
    黄永红,梅眉,曾继吾,周碧容,吴元立,易干军.影响农杆菌介导甜瓜子叶遗传转化的因素.分子植物育种,2007.3:335-340.
    黄月华,徐建民,余雪标.低温胁迫对桉树代谢的影响.热带农业科学,2005.25(5):24-28.
    简令成.植物生理生化进展,1987.(5):1-16.
    江昌俊.茶树育种学.北京:中国农业出版社,2005.1-70.
    焦奎宝,高庆玉.葡萄嫁接苗根系半致死温度的测定.黑龙江农业科学,2010.3:67-68.
    金建凤,高强,陈勇,王君晖.转移拟南芥CBF1基因引起水稻植株脯氨酸含量提高.细胞生物学杂志,2005.27(1):73-76.
    康国章,王正询,孙谷畴.植物的冷调节蛋白.植物学通报,2002.19(2):239-246.
    李芳,汪晓峰.植物中棉子糖系列寡糖代谢及其调控关键酶研究进展.西北植物学报,2008.28(4):0852—0859.
    李慧,强胜.植物冷驯化相关基因研究进展.植物学通报,2007.24(2):208-217.
    李茂福,李睿,傅永福,赵德刚.农杆菌介导大豆遗传转化的影响因素.山地农业生物学报,2006.25(4):283-286.
    李美茹,刘鸿先,王以柔.植物抗冷性分子生物学研究进展.热带亚热带植物学报,2000.8(1):70-80.
    李少锋,苏晓华,张冰玉.林木基因克隆研究进展.植物学报,2011.46(1):79-107.
    李素华.石楠组培苗生根的影响因素研究.安徽农业科学,2009.37(34):16765-16766.
    李先文,余海波,孟琼,李峥峥,张新玉.茶树一个冷诱导基因的克隆及其表达分析.中国农学通报,2011.27(19):100-104.
    李鑫鑫,李晓晖,李亮,平淑珍,陈明,张维,燕永亮,赵新宇,陆伟.转基因作物对于土壤微生物的影响.中国农业科技导报,2010.12(6):24-27.
    利容千.植物逆境细胞及生理学.武汉:武汉大学出版社,2002.140-185.
    梁慧敏,夏阳,孙仲序,王太明,刘德玺,王国良,黄剑,陈受宜.根癌农杆菌介导苜蓿遗传转化体系的建立.农业生物技术学报,2005.13(2):152-156.
    林清芳,王茅雁,刘佳杰,赵欢欢,王存芳.沙冬青细胞与分子生物学研究进展.植物遗传资源学报,2010.11(6):793-797.
    林善枝,张志毅,林元震.植物抗冻蛋白及抗冻性分子改良.植物生理与分子生物学学报,2004.30(3):251-260.
    林善枝,张志毅.低温诱导植物抗寒冻性研究与毛白杨抗冻性改良策略.北京林业大学学报,2000.22(6):89-94.
    林元震,张志毅,刘纯鑫,郭海,朱保庆,陈晓阳.甜杨抗冻转录因子ICE1基因的in silico克隆及其分析.分子植物育种,2007.5(3):424-430.
    林元震.甜杨葡萄糖-6-磷酸脱氢酶基因克隆及结构分析与功能鉴定.博士论文,北京:北京林业大学,2006.96-107.
    刘建,项东云,陈健波,周维.应用Logistic方程式确定三种桉树的低温半致死温度.广西林业科学,2009.38(2):75-78.
    刘静,黄艳艳,翁曼丽,罗磊,张虹,王长宪,牛庆霖,冯殿齐.TCS基因转化泡桐及抗病能力.林业科学,2011.47(5):171-176.
    刘静,孙海伟,张虹,黄国山,阚君杰.山东抗寒茶树良种-“罗汉1号”茶选育研究.山东农业大学学报(自然科学版),2007.38(4):566-573.
    刘静,王长宪,王斌,孙仲序,刘杰,黄艳艳,赵进红,张虹.石楠抗寒基因AmGS高效转化体系的研究.山农业大学学报(自然科学版),2009.40(2):191-194.
    刘美芹,沈昕,卢存福,尹伟伦.一种改进的固相扣除杂交法直接克隆全长差异表达基因.北京林业大学学报,2007.29(5):67-72.
    刘强,张勇,陈受宜.干旱、高盐及低温诱导的植物蛋白激酶基因.科学通报,2000.45(6):561-566.
    刘石泉,余沛涛.农杆菌介导高等植物基因转化的影响因素.自然杂志,2003.25(1):16-21.
    刘友良,朱根海,刘祖祺.植物抗冻性测定技术的原理和比较,植物生理学通讯,1985.(1):40-43.
    刘祖生,梁月荣,赵东.早生优质抗寒茶树新品种“浙农117”选育研究.茶叶,2000.26(1):14-18.
    芦建国,连洪燕.红叶石楠在园林中的应用.现代农业科技,2007.1:40-41.
    芦建国,杨金红,武翠红.山东地区引种的5种石楠属植物抗寒性比较.南京林业大学学报(自然科学版),2008.32(5):153-156.
    罗焕亮,徐位力,李建忠.马占相思对低温胁迫适应性的研究.华南农业大学学报,2002.23(2):51-53.
    马建忠.植物的冷诱导基因.农业生物技术学报,1996.4:8-14.
    马万里.土壤微生物多样性研究的新方法.土壤学报,2004.41(1):103-107.
    马旭俊,朱大海.植物超氧化物歧化酶(SOD)的研究进展.遗传,2003.25(2):225-231.
    梅菊芬,汤茶琴,徐德良,王新超.利用DDRT-PCR分析茶树冬季冷驯化过程中基因表达的差异.热带作物学报,2011.4:648-652
    潘杰,简令成,钱迎倩.小麦抗寒力诱导过程中特异性蛋白质的合成.植物学集刊,1994.7:144-157.
    彭正云,刘德华,肖海军,蒋立文,张丽霞,向勤锃,唐道方.发根农杆菌转化茶树的研究.湖南农业大学学报(自然科学版),2006.32(2):190-194.
    申万祥,姚默,赵兵,张胜琪,巩江,倪士峰.石楠属药学研究概况,畜牧与饲料科学,2011.32(11):58-60.
    沈曼,王明麻,黄敏仁.植物抗寒机理研究进展.植物学通报,1997.14(2):1-8.
    司守霞,李新荣,龙利群.我国北方荒漠化地区植物多样性及其保育对策.中国沙漠,19(增刊):1999.272-277.
    宋健.沙冬青耐寒基因AmGols的克隆和遗传转化研究,硕士学位论文,山东农业大学,导师:王宪泽、王斌,2007.1-54.
    苏晓华,张冰玉,黄秦军,黄烈健,张香华.我国林木基因工程研究进展及关键领域.林业科学,2003.39(5):111-118.
    苏晓华,张冰玉,黄秦军.杨树基因工程育种.北京:科学出版社:2009.42-86.
    孙芳.2009.沙冬青CBLI基因的功能研究.北京:北京林业大学,指导教师:夏新莉副教授、尹伟伦教授,1-76.
    孙清鹏,许煌灿,张方秋,尹光天,张玉福.低温胁迫对大叶相思和马占相思某些生理特性的影响.林业科学研究,2002.15(1):34-40.
    孙燕.沙冬青CBL1基因的克隆及表达特性研究.北京:北京林业大学,指导教师:夏新莉副教授、尹伟伦教授,2005,1-46.
    孙仲序,冯殿齐,刘静,赵进红,王玉山,张玲,马玉敏,孙海伟. afp基因导入花粉管对杏果实发育影响的研究.山东农业大学学报(自然科学版),2005.36(2):161-166.
    谭和平,周李华,钱杉杉,李怀平,叶德萍.茶树转基因技术研究进展.武汉植物学研究,2009.27(3):323-326.
    汤章城.对渗透的淹水胁迫的适应机理.植物生理与分子生物学(第二版).北京:科学出版社:1998.739-751.
    唐士勇. Logistic方程在果树半致死温度测定中的应用.北方果树,1993.4:23-24.
    唐影,李世东,缪作清.转基因作物对土壤微生物的影响.中国生物防治,2007.23(4):383-390.
    王长宪,刘静,王斌,孙仲序,刘杰,黄艳艳,赵进红,张虹.大叶女贞抗寒基因AmEBP1高效转化体系的研究.山东农业大学学报(自然科学版),2009.40(4):508-512.
    王朝霞,江昌俊,李娟.早生抗寒优质茶树新品系“茶农1号”的选育.园艺园林科学,2006.22(4):324-327.
    王冬梅,李晓荣,李静,张帅,黄乐平,李晓荣等.转blti2抗寒基因棉花的抗寒性分析.分子植物育种,2011.(9):1632-1636.
    王关林,方宏筠主编.植物基因工程.北京:科学出版社,2002.295-887.
    王国莉,郭振飞.植物耐冷性分子机理的研究进展.植物学通报,2003.20:671-679.
    王凭青,吴明生,王远亮等.植物抗寒基因工程研究最新进展.重庆大学学报,2003.26(7):81-85.
    王艇,唐振亚.植物冷驯化和热激反应的分子基础.植物分子遗传学.北京:科学出版社:1997.499-549.
    王新超,杨亚军.茶树抗性育种研究现状.茶叶科学,2003.23(2):94-98.
    王艳,马纪,邱立明,王晶,代春英,张富春.低温下转昆虫抗冻蛋白基因烟草的亚显微结构变化.植物生理学通讯,2009.45(1):33-36.
    王艳.昆虫抗冻蛋白基因转化烟草抗寒性功能的研究.新疆大学博士论文,指导教师张富春教授,2008.1-124.
    王玉,范凯,丁兆堂.茶树抗寒基因连锁的ISSR标记及其SCAR标记的初步建立.基因组学与应用生物学,2011.30:1238-1243.
    王振,赵廷昌,刘学敏,邓欣.转基因作物对土壤微生物多样性影响.植物保护,2007.33(4):15-20.
    王智,刘永秀,魏建华,邓馨.复苏植物旋蒴苣苔棉子糖合酶基因的克隆和表达.植物学报,2012.47(1):44-54.
    魏令波,江勇,舒念红,高素琴,费云标.沙冬青叶片热稳定抗冻蛋白特性分析.植物学报,1999.41(8):837-84l.
    乌凤章.白桦低温胁迫响应与叶绿体RNA结合蛋白的蛋白质组学研究.东北林业大学博士论文,2008.30-57.
    吴丽君,翁秋媛.红叶石楠不同品种的组培技术研究.福建林业科技,2008.35(4):165-169.
    吴姗,梁月荣,陆建良,金惠淑,吴颖.茶树农杆菌转化系统和基因枪转化系统的优化.茶叶科学,2003.13(1):6-10.
    吴姗,梁月荣,陆建良,黎昊雁.基因枪及其与农杆菌相结合的茶树外源基因转化条件优化.茶叶科学,2005.25(4):255-264.
    奚彪,刘组生,梁月荣,杨秀芳,黄卫红,须健,何玉科,白永延.发根农杆菌介导的茶树遗传转化.茶叶科学,1997.(增刊):155-156.
    奚彪.茶树再生系统建立与遗传转化的研究.浙江农业大学博士学位论文.指导教师:刘祖生教授,白永延研究员1995.1-60.
    项威,贺志荣,魏书.根癌农杆菌介导茶树转基因体系的建立.中国科技论文在线,2012.1-5.
    许瑛,陈发棣.菊花8个品种的低温半致死温度及其抗寒适应性.园艺学报,2008.35(4):559-564.
    杨建民,李艳华,杨敏生.几个仁用杏品种抗寒性比较研究.中国农业科学,1999.32(1):46-50.
    杨静,王迎,王华田,宋承东,谭秀梅,董玉峰,刘富强,张文婷,谢福春.不同越冬栽培措施对红叶石楠抗寒生理生化特性的影响.中国农学通报,2008.24(5):160-165.
    杨维时,胡绍德.特早生特抗寒茶树新品种“农抗早”选育初报.福建茶叶,2000.4:12-13.
    杨玉珍,王列富,彭方仁.蛋白质的变化与植物抗寒性的关系研究进展.生物技术通讯,2007.18(4):711-714.
    叶橘泉,主编.现代实用中药.上海:千顷堂书局,1954.
    尹明安,崔鸿文,樊代明,郭立.胡萝卜抗冻蛋白基因克隆及植物表达载体构建.西北农林科技大学学报(自然科学版),2001.29(1):6-10.
    曾韶西,李美茹.冷和盐预处理提高水稻幼苗抗寒性期间Ca2+-APT酶活性的变化.植物学报,1999.41(2):156-160.
    张福丽,李季平,高丹,张慧芳,李成伟.影响农杆菌介导的植物转基因的因素.生命科学研究,2011.15(5):449-454.
    张基德,李玉梅,陈艳秋,李莉.梨品种枝条可溶性糖、脯氨酸含量变化规律与抗寒性的关系.延边大学农学学报,2004.(4):251-255.
    张莉,江昌俊,胥振国,杨书运,袁支红,丁洲.用cDNA-AFLP技术研究茶树种子在低温贮藏过程中差异基因的表达.安徽农业大学学报,2008.35(3):319-323.
    张莹,李辛雷,李纪元,范正琪,田敏,陈胜.六种彩叶植物营养成分及有害元素含量分析.广西植物,2010.30(5):678-681
    赵东.茶树多酚氧化酶基因的克隆和转化系统的研究.浙江农业大学博士学位论文.指导教师:刘祖生教授,2001.1-60.
    赵世杰,史国安,董新纯.植物生理学实验指导.北京:中国农业科学技术出版社:2002.130-131.
    郑宇,李仁,胡奇勇,李本金,胡习斌.转基因作物和工程菌对土壤微生物群落影响的浅析.江西农业大学学报,2003.25:67-70.
    中国科学院微生物研究所细菌分类组.一般细菌常用鉴定方法,北京:科学出版社,1978.31-96.
    周春丽,郭卫东,路梅,陈瑾,李玉萍.农杆菌介导佛手遗传转化主要影响因素的研究.热带植物学报,2006.14(5):374-381.
    周晓罡,张绍松,李成云,李进斌,陈艳,黄兴奇.转基因植物种植地土壤微生物区系生态变化及其外源基因的分子检测.西南农业学报,2005.18(6):734-738.
    周筱娟.低温诱导的植物抗冻基因研究进展.绍兴文理学院学报,2004.24(9):65-69.
    周艳红,丁衬衬,史建荣.转基因作物对土壤微生物多样性影响研究技术的进展.江苏农业科学,2010.(4):362-365.
    周洲.转脂肪酸去饱和酶基因PtFAD2和PtFAD3银腺杨84K的抗寒性研究.中国林业科学研究院博士论文.指导教师:卢孟柱,2007.1-81.
    朱根海,刘祖棋,朱培仁.应用Logistic方程确定植物组织低温半致死温度的研究.南京农业大学学报,1985.(3):11-16.
    朱晔荣,达来.抗冻蛋白基因转化植物的研究展望.内蒙古大学学报(自然科学版),2003.34:97-102.
    邹中伟,房婉萍,张定,段云裳,黎星辉.低温胁迫下茶树基因表达的差异分析.茶叶科学,2008.28(4):249-254.
    Bachmann M,Matile P,Keller F. Metabolism of the raffinose family oligosaccharides inleaves of Ajuga reptans L.(cold acclimation, translocation, and sink to sourcetransition: discovery of chain elongation enzyme) Plant Physiology,1994.105:1335–1345.
    Boyce J M,Knight H,Deyholos M.,Openshaw M R, Galbraith D W, Warren G,. Knight MR. The sfr6mutant of Arabidopsis is defective in transcriptional activation via CBF/DREB1and DREB2and shows sensitivity to osmotic stress. Plant J,2003.34:395-406.
    Brenac P,Horbowicz M,Downer S M,Dickerman A M, Smith M E, Obendorf R L.Raffinose accumulationrelated to desiccationtolerance during maize(Zea mays L.) seeddevelopment and maturation.Plant Physiol,1997.150:481-488.
    Breusegem F V,Slooten L,Stassart J M,Botterman J,Moens T,Montagu M V,Inzé D.Effects of overproduction of tobacco MnSOD in maize chloroplasts on foliar tolerance tocold and oxidative stress.Exp.Bot,1999.50(330):71-78.
    Burke M J,Gusta L V,Quamme HA,Weiser C J,Li P H. Freezing and injury in plants.AimuRev Plant Physiol,1976.27:507-528.
    Cao P X,Song J,Zhou C J,Weng M L, Liu J, Wang F X, Zhao F, Feng D Q,Wang B.Characterization of multiple cold induced genes from Ammopiptanthus mongolicus andfunctional analyses of gene AmEBP1.Plant Mol. Biol.,2009.69(5):529-539.
    Catlin D,Ochoa O,McCormick S,Quiros C F. Celery transformation by Agrobacteriumtumefaciens:cytological and genetic analysis of transgenic plants.Plant Cell Rep,1988.7(2):100-103.
    Chinnusamy V,Ohta M.,Kanrar S,Lee B, Hong X H, Agarwal M, Zhu J Kang. ICE1: aregulator of cold-induced transcriptome and freezing tolerance in Arabidopsis. Genes Dev2003.17,1043-1054.
    Chomczynski P,Sacchi N. Single-step method of RNA isolation by acid guanidiniumthiocyanate-phenol-chloroform extraction. Anal. Biochem,1987.162:156-159.
    Cudd A,Steponkus P L. Lamellar-to-hexagonal II phase transition in liposomes of rye plasmamembrane lipids after osmotic dehydration.Biochim Biophys Acta,1988.941:278-286.
    Cunningham S M,Nadeau P,Castonguay Y,Labergec S,Volenec J J. Raffinose andstachyose accumulation,galactinol synthase expression,and winter injury of contrastingalfalfa germplasms. Crop Physiology Metabolism,2002.43:562-570.
    Parvanova D,Popova A,Zaharieva I,Lambrev P,Konstantinova T,Taneva S,AtanassovA,Goltsev V,Djilianov D. Low temperature tolerance of tobacco plants transformed toaccumulate proline, fructans, or glycine betaine.Variable chlorophyll fluorescenceevidence. Photosynthetica,2004.42(2):179-185.
    Dalisay R F,Ku J.A.. Persistence of inducedresistance and enhanced peroxidase andchitinase activities in cucumber plants. Physiol Mol Plant Pathology,1995.47(5):315-327.
    Dandekar A M,Marlin L A,Mc Granahan G H. Genetic transformation and foreign geneexpression in walnut tissue.J Am Soc Hort Sci,1988.113(6):945-949.
    Davies P L,Hew C L,Fletcher G L. Biochemistry of fish antifreeze proteins. FASEB J,1987.4:2460-2467.
    Delauney A J,Verma D P S.Proline biosynthesis and osmoregulation in Plants.Plant J,1993.4:215-223.
    Duman J G,Olsen M T. Thermal hysteresis protein activity in bacteria,fungi,andphylogennetically deviser plants.Cryobiology,1993.30(3):322-328.
    Fan Y, Liu B,Wang H,Wang S,Wang J. Cloning of an antifreeze protein gene from carrotand its influence on cold tolerance in transgenic tobacco plant. Plant Cell Rep,2002.21:296-301.
    Fei Y B,Cao P X,Gao S Q,Wang B,Wei L B, Zhao J,Chen G,Wang B H. Purificationand structure analysis of antifreeze proteins from Ammopiptanthus mongolicus.Preparative Biochemistry&Biotechnology,2008.38(2):172-183.
    Fowler D B and Gusta L V. Selection for winter hardiness in wheat. I. Identification ofgenotypic variability. Crop Science,1979.19(6):769-772.
    Fowler S,Thomashow M F. Arabidopsis transcriptome profiling indicates that multipleregulatory pathways are activated during cold acclimation in addition to the CBF coldresponse pathway. Plant Cell,2002.14:1675-1690.
    Gamboa M C,Rasmussen-Poblete S,Valenzuela P D T,Krauskopf E. Isolation andcharacterization of a cDNA encoding a CBF transcription factor from E.globulus. PlantPhysiol Biochem,2007.45(1):1-5.
    Gebhard K,Smalla K. Monitoring field releases of genetically modified sugar beets forpersistence of transgenic plant DNA and horizontal gene transfer. FEMS MicrobiologyEcology,1999.28:261-271
    Georges F,Saleem M,Cutler A J. Design and cloneing of a synthesis gene for the flounderantifreeze protein and its expression in plant cells.Gene,1990.91(2):159-165.
    Gilmour S J,Sebolt A M,Salazar M P, Everard J D,Thomashow M F. Overexpression of theArabidopsis CBF3transcriptional activator mimics multiple biochemical changesassociated with cold acclimation. Plant Physiology,2000.124(4):1854-1865.
    Gilmour S J,Zarka D G,Stockinger E J,Salazar M P,Houghton J M,Thomashow M F. Lowtemperature regulation of the Arabidopsis CBF family of AP2transcriptional activators asan early step in coldinduced COR gene expression. Plant J,1998.16:433-442.
    Gleeson D,Lelu-Walter M A,Parkinson M. Overproduction of proline in transgenic hybridlarch(Larix x leptoeuropaea(Dengler)cultures renders them tolerant to cold,salt andfrost.Molecular Breeding,2005.15(1):21-29.
    Graham L A,Liou Y C,Walker V K,Davies P L. Hyperactive antifreeze protein from beetles.Nature,1997.388:727-728.
    Graham L A,Qin W S,Lougheed S C,Davies P L,Walker V K. Evolution of Hyperactive,RepetitiveAntifreeze Proteins in Beetles. J Mol Evol,2007.64(4):387-398.
    Griffith M,Ala P,Yang D S C,Hon W C,Moffatt B A.Antifreeze protein producedendogenously in winter rye leaves. Plant Physiol,1992.100:593-596.
    Guo L L,Yu Y H,Xia X L,Yin W L. Identification and functional characterization of thepromoter of the calcium sensor gene CBL1from the xerophyte of Ammopiptanthusmongolicus. BMC Plant Biology,2010.10:18-34.
    Guo W D,Zhang Z Z,Jiang X W,Chen M G,Zheng J S,Chen W R. Semilethal temperatureof fingered citron (Citrusmedica var. sarcodactylis Swingle)under low temperaturestress and evaluation on their cold resistance. Acta Horticulturae Sinica,2009.36(1):81-86.
    Gupta A S,Heinen J L,Holaday A S,Burke J J,Allen R D. Increased resistance to oxidativestress in transgenic plants that overexpress chloroplastic Cu/Zn superoxide dismutase.Proc Natl Acad Sci USA,1993.90(4):1629-1633.
    Guy C L.Cold acclimation and freezing stress tolerance:role of protein metabolism.Annu RevPlant Physiol Plant Mol Biol,1990.41:187-223.
    Haake V,Cook D,Riechmann J L,Pineda O,Thomashow M F,Zhang J Z. Transcriptionfactor CBF4is a regulator of drought adaptation in Arabidopsis. Plant Physiol,2002.130(2):639-648.
    Hajela R K,Horvath D P,Gilmour S J,Thomashow M F. Molecular cloning and expressionof cor(Cold-regulated)genes in Arabidopdid thalina. Plant Physiol,1990.93(3):1246-1252.
    Hara M,Terashima S,Fukaya T,Kuboi T. Enhancement of cold tolerance and inhibition oflipid peroxidation by citrus dehydrin in transgenic tobacco.Planta,2003.217(2):290-298.
    He C Y,Zhang J S,Chen S Y. A soybean gene encoding a proline-rich protein is regulated bysalicylic acid,an endogenous circadian rhythm and by various stresses.Theor ApplGenet,2002.104(6):1125-1131.
    Hightower R,Raden C,Penzes E,Lund P,Dunsmuir P. Expression of antifreeze proteins intransgenic plants.Plant Mol Biol,1991.17(5):1013-1021.
    Hincha D K,Heber U,Schmitt J M. Proteins from frost hardy leaves protect thylakoidsagainst mechanical freeze thaw damage in vitro. Planta,1990.180(3):416-419.
    Hincha D K,Sieg F,Bakaltcheva I,Koth H,Schmitt J M. Freeze-thaw damage to thylakoidmembranes:specific protection by sugars and proteins.Advances in low-temperaturebiology(3)(ed. PL Steponkus):1996.141-183.
    Hinesley L E,Pharr D M,Snelling L K,Funderburk S R. Foliar raffinose and sucrose in fourconifer species:relationship to seasonal temperature. J Am Soc Hortic Sci,1992.117(5):852-855.
    Holmberg N,Farres J,Bailey J E. Targeted expression of a synthetic codon optimized gene,encoding the spruce budworm antifreeze protein,leads to accumulation of antifreezeactivity in the apoplasts of transgenic tobacco.Gene,2001.275(1):115-124.
    Huang T,Duman J G. Cloning and characterization of a thermal hysteresis (antifreeze)protein with DNA-binding activity from winter bittersweet nightshade, Solanumdulcamara. Plant Mol Biol,2002.48(4):339-350.
    Huang T,Nicodemus J,Zarka D G,Thomashow M F,Wisniewski M,Duman J G. Expressionof an insect (Dendroides canadensis) antifreeze protein in Arabidopsis thaliana resultsin a decrease in plant freezing temperature. Plant Mol Biol,2002.50(3):333-344.
    Humara J M,Lopez M,Ordas R J.Agrobacterium tumefaciens-mediated transformation ofPinus pinea L. cotyledons:an assessment of factors influencing the efficiency of uidAgene transfer.Plant Cell Reports,1999.19(1):51-58.
    James D J,Uratsu S,Cheng J,Negri P,Viss P,Dandekar A M. Acetosyringone andosmoprotectants like betaine or proline synergistically enhance Agrobacterium-mediatedtransformation of apple.Plant Cell Reports,1993.12(10):559-563.
    Kagaya Y,Ohmiya K and Hattori T. RAV1,a novel DNA-binding protein,binds to bipartiterecognition sequence through two distinct DNA-binding domains uniquely found inhigher plants. Nucleic Acids Res,1999.27(2):470-478.
    Kenonowicz A K.Biochemical and cellular mechanisms of stress tolerance in plants. Berlin:Spring-ver-lag,1994.381-414.
    Kirka J L,Beaudettea L A,Hartb M,Moutoglisc P,Klironomosb J N,Leea H,Trevors JT. Methods of studying soil microbial diversity. J Microbiol Meth,2004.58(2):169-188.
    Kodama H,Hamad T,Horiguchi G,Nishimura M,Iba K. Genetic enhancement of coldtolerance by expression of a gene for chloroplast w-3fatty acid desaturase in transgenictobacco.Plant Physiol,1994.105(2):601-608.
    Kodama H,Horiguchi G,Nishiuchi T,Nishimura M,Iba K. Fatty acid desaturation duringchilling acclimation is one of the factors involved in conferring low-temperature toleranceto young tobacco leaves. Plant Physiol,1995.107(4):1177-1185.
    Lai S,Gulyani V,Khurana P. Overexpression of HVA1gene from barley generates toleranceto salinity and water stress in transgenic mulberry(Morus indica). Transgenic Research,2008.17(4):651–663.
    Lal R,Lal S. Genetic Engineering of Plants for Crop Improvement. Boca Raton,FL:CRCPress,Zambryske P.EMBO,1983.2:21-43.
    Lee H J,Guo Y,Ohta M,Xiong L M,Stevenson B,Zhu J K. LOS2,a genetic locus requiredfor cold responsive transcription encodes a bi-functional enolase. EMBO J,2002.21(11):2692-2702.
    Lee H S,Kim K Y,You S H,Kwon S Y,Kwak S S. Molecular characterization andexpression of a cDNA encoding copper/zinc superoxide dismutase from cultured cells ofcassava (Manihot esculenta Crantz).Mol Gen Genet,1999.262(4-5):807-814.
    Leinala E K,Davies P L, Doucet D,Tyshenko M G,Walker V K,Jia Z. A beta-helicalantifreeze protein isoform with increased activity:Structural and functional insights.J BiolChem,2002.277(36):33349-33352.
    Levitt J.Responses of plants to environmental stress.In: Chilling, Freezing and HighTemperature Stress. New York,Academic Press,1980.(1):43-157.
    Liou Y C,Thibault P,Walker V K,Davies P L,Graham L A. Acomplex family of highlyheterogeneous and internally repetitive hyperactive antifreeze proteins from the beetleTenebrio molitor.Biochemistry,1999.38(35):11415-11424.
    Liu J J,Deanne C K,Galvez A F,Lumen B O. Galactinol Synthase:increased enzymeactivity and levels of mRNA dure to cold and desiccation. Plant Science,1998.134(1):11-20.
    Liu M Q,Lu C F,Shen X,Yin W L. Characterization and function analysis of a cold-inducedAmCIP gene encoding a dehydfin-like protein in Ammopiptanthus mongolicus.DNASequence,2006.17(5):342-349.
    Liu M Q,Shen X,Yin W L,Lu C F. Functional analysis of cold-inducible cDNA clones inthe legume Ammopiptanthus mongolicus.Cryletters,2005.26(4):213-222.
    Liu Q,Zhao N M,Yamaguch-Shinozaki K,Shinozaki K. Regulation role of DREBtranscription factors in plant drought,salt and cold tolerance. Chin Sci Bull,2000.45(11):970-975.
    Lyons J M,Raison J K. Oxidative activity of mitochondria isolated from plant tissuessensitive and resistant to chilling injury.Plant Physiol,1970.45(41):386-389.
    Marshall C B,Daley M E,Sykes B D,Davies P L. Enhancing the activity of a beta-helicalantifreeze protein by the engineered addition of coils.Biochemistry,2004.43(37):11637-11646.
    Mc Conn M,Hugly S,Browse J,Somerville C. A Mutation at the fad8Locus of ArabidopsisIdentifies a Second Chloroplast [omega]-3Desaturase.Plant Physiol,l994.106(4):1609-1614.
    Mc kersis B D,Chen Y. Superoxide dismutase enhances tolerance of freezing stress intransgenic alfalfa (Medicago sativa L.). Plant Physiol,1993.103(4):1155-1163.
    McCouch S R,Kochert G,Yu Z H,Wang Z Y,Khush G S,Coffman W R,Tanksley S D.Molecular mapping of rice chromosomes. Theor Appl Genet,1988.76(6):815-829.
    Meissner R and Michael A J. Isolation and characterization of a diverse family of Arabidopsistwo and three-fingered C2H2zinc finger protein genes and cDNAs. Plant Mol Biol,1997.33(4):615-624.
    Meyer K,Keil M,Naldrett M J. A leucine-rich repeat protein of carrot that exhibits antifreezeactivity. FEBS Letters,1999.447(2):171-178.
    Miguet M,James D,Jr,Dooner H,Browse J. Arabidopsis requires polyunsaturated lipids forlow temperature survival.Proc NAtI Acad Sci USA,1993.90(13):6208-6212.
    Mondal T K,Bhattacharya A,Ahuja P S,Chand P K. Transgenic tea(Camellia sinensis(L.)O. Kuntze cv. Kangral Jat)plants obtained by Agrobacterium-mediated transformation ofsomatic embryos. Plant Cell Reports,2001.20(8):712-720.
    Montoro P,Teinseree N,Rattana W, Kongsawadworakul P and Michaux-Ferriere N. Effect ofexogenous calcium on Agrobacterium tumefaciens-mediated gene transfer in Heveabrasiliensis (rubber tree) friable calli.Plant Cell Reports,2000.19(9):851-855.
    Murata N,Wada H. Acy-lipid desaturases and their importance in the tolerance andacclimation to cold of cyanobactcria.Biochem J,1995.308(1):1-8.
    Nakamura S,Lynch T J,Finkelstein R R. Physical interactions between ABA response loci ofArabidopsis. Plant J,2001.26(6):627-635.
    Narusaka Y,Nakashima K,Shinwari Z K,Sakuma Y,Furihata T,Abe H,Narusaka M,Shinozaki K,Yamaguchi-Shinozaki K. Interaction between two cis-acting elements,ABRE and DRE,in ABA-dependent expression of Arabidopsis RD29A gene in responseto dehydration and high-salinity stresses. Plant J,2003.34(2):137-148.
    Nordin K,Heino P,Palva E T. Separate signal pathway regulate the expression of alow-temperature-induced gene in Arabidopsis thaliana. Plant Mol Biol,1991.16(6):1061-1071.
    Palta J W. Stress interactions at the cellular and membrane levels.HortScience,1990.25(11):1377-1381.
    Peng Z,Lu Q,Verma D P F. Reciprocal regulation of△1-pyrroline-5-carboxylate synthetaseand proline dehydrogenase genes controls levels during and after osmotic stress in plants.MolGen Gent,1996.253(3):334-341.
    Philippe R N,Ralph S G,Mansfield S D,Bohlmann J. Bohlmann J. Transcriptome profilesof hybrid poplar(Populus trichocarpa×deltoides)reveal rapid changes in undamaged,systemic sink leaves after simulated feeding by forest tent caterpillar (Malacosomadisstria) New Phytol,2010.188(3):787-802.
    Pi Y, Jiang K J, Cao Y, Wang Q, Huang Z S, Li L, Hu L C, Li W, Sun X F, Tang K X. Alleneoxide cyclase from Camptotheca acuminata improves tolerance against low temperatureand salt stress in tobacco and bacteria. Mol Biotechno,2009.41(2):115-122.
    Pressey R. Anions activate the oxidation of indoleacetic acid by peroxidases from tomato andother sources. Plant Physiol,1990.93(2):798-804.
    Puhakainen T,Hess M W,M kel P,Svensson J,Heino P,Palva ET. Overexpression ofmultiple dehydrin genes enhances tolerance to freezing stress in Arabidopsis.PlantMolecular Biology,2004.54(5):743-753.
    Rajendrakumar C S V,Reddy B V B,Reddy A R. Proline-protein interactions:pretection ofstructural and functional in-tegrity of M4Lactate dehydrogenase.Biochem Biophys ResCommun,1994.201(2):957-963.
    Rapacz M and Markowski A. Winter hardiness,frost resistance and vernalization requirementof European winter oilseed rape(Brassica napus var. oleifera)cultivars within the last20years. Journal of Agronomy and Crop Science,1999.183(4):243-253.
    Sakai A, Latcher W. Frost survival of plants responses and adaptation to freezingstress.Springer-Verlag,Berlin24:1987.149-253.
    Salaj M,Lafuente M T. Catalase in the heat-induced chilling tolerance of cold-stored hybridFortune mandarin fruits. Agric Food Chem,1999.47(6):2410-2414.
    Sambrook J, Russel D.分子克隆实验指南第三版.黄培堂等译.北京科学出版社,2002.26-509.
    Sarhan F and Danyluk J. Engineering cold-tolerant crops-throwing the master switch. Trendsin Plant Science,1998.3(8):289-290.
    Saxena D,Flores S,Stotzky G. Bt toxin is released in root exudates from12transgenic comhybrids representing three transformation events,Soil Biology and Biochemistry,2002.34(1):133-137.
    Shinozaki K and Yamaguchi-shinozaki K. Molecular response to drought and cold stress.Current Opinion in Biotechnology,1996.7(2):161-167.
    Shinozaki K,Yamaguchi-Shinozaki K,Seki M. Regulatory network of gene expression in thedrought and cold stress responses. Curr Opin Plant Biol,2003.6(5):410-417.
    Sidebottom C,Buckley S,Pudney P,Twigg S,Jarman C,Holt C,Telford J,McArthurA,Worrall D,Hubbard R,Lillford P. Heat-stable antifreeze protein from grass. Nature,2000.406(6793):256.
    Steponkus P L,Uemura M,Webb M S. A contrast of the cryostability of the plasmamembrane of winter rye and spring oat-two species that widely differ in their freezingtolerance and plasma membrane lipid composition. In:Steponkus L ed. Advances inLow-Temperature Biology. London,JAI Press,1993.2:211-312.
    Steponkus P L.Role of the plasma membrane in freezing injury and cold acclimation.AnnualReviews of Plant Physiology,1984.35:543-584.
    Strauss G and Bauser H.Stabilization of lipid bilayer vesicles by sucrose during freezing.ProcNatI Acad Sci USA,1986.83(8):2422-2426.
    Taji Teruaki,Ohsumi C,Iuchi S,Seki M,Kasuga M,Kobayashi M,Yamaguchi-ShinozakiK,Shinozaki K. Important roles of drought-and cold-inducible genes for galactinolsynthase in stress tolerance in Arabidopsis thaliana. The Plant Journal,2002.29(4):417-426.
    Thieringer H A,Jones P G,Inouye M. Cold shock and adaptation.Bioessays,1998.20(1):49-57.
    Thomashow M F,Gilmour S J,Stockinger E J,Jaglo-Ottosen K R,Zarka D G. Role of theArabidopsis CBF transcriptional activators in cold acclimation.Physiol Plant,2001.112(2):171-175.
    Thomashow M F.Molecular genetics of cold acclimation in higher plants.Advances inGenetics,1990.28:99-131.
    Thomashow M F.Role of cold-responsive genes in plant freezing tolerance.Plant Physiol,1998.118(1):1-8.
    Thomashow M F.Plant cold acclimation,freezing tolerance genes and regulatory mechanisms.Annu Rev Plant Physiol Plant Mol Biol,1999.50(1):571-599.
    Uemura M,Joseph R A,Steponkus P L. Cold acclimation ofArabidopsis thaliana:effect onplasma membrane lipid composition and freeze—induced lesions.Plant Physiol,1995.109(1):15-30.
    Uemura M,Steponkus P L. A contrast of plasma membrane lipid composition of oat and ryeleaves in relation to freezing tolerance.Plant Physiol,1994.104(2):479-496.
    Unda F,Canam T,Preston L,Mansfield S D. Isolation and characterization of galactinolsynthases from hybrid poplar.J Exp Bot,2012.63(5):2059–2069.
    Volinevich O V,Khoklova L P,Raudaski F L. Effect of abscisic acid and cold acclimation onthe cytoskeletal and phosphorylated proteins in different cultivars of TriticumaestivumL.Cell Biol Int,2000.24(6):365-373.
    Wallis J G,Wang H Y,Guerra D J. Expression of a synthetic antifreeze protein in potatoreduces electrolyte release at freezing temperatures. Plant Molecular Biology,1997.35(3):323-330.
    Wang L L,Shang H H,Liu Y,Zheng M Z,Wu R H,Phillips J,Bartels D,Deng X. A rolefor a cell wall localized glycine-rich protein in dehydration and rehydration of theresurrection plant Boea hygrometrica. Plant Biol,2009.11(0):837-848.
    Wang Z,Zhu Y,Wang L L,Liu X,Liu Y X,Phillips J,Deng X. A WRKY transcriptionfactor participates indehydration tolerance in Boea hygrometrica by binding tothe W-boxelements of the galactinol synthase (BhGolS1)promoter.Planta,2009.230(6):1155-1166.
    Weiser C J.Cold resistance and injury in woody plants.Science,1970.169:1269-1278.
    Welling A,Moritz T,Palva E T,Junttila O. Independent activation of cold acclimation by lowtemperature and short photoperiod in hybrid aspen. Plant Physiol,2002.129(4),1633-1641.
    Welling A,Palva E T. Involvement of CBF transcription factors in winter hardiness in birch.Plant Physiol,2008.147(3):1199-1211.
    Wiemken V,Ineichen K. Effect of temperature and photoperiod on the raffinose content ofspruce roots. Planta,1993.190(3):387-392.
    Williams R J.Anomalous behavior of ice in solutions of ice-bindingarabidoxylans.Thermochim Acta,1992.212:105-113.
    Worrall D,Elias L,Ashford D,Smallwood M,Sidebottom C,Lillford P,Telford J,HoltC,Bowles D. A carrot leucine-rich-repeat protein that inhibits ice recrystallization.Science,1998.282(5386):115-117.
    Xin Z and Browse J. Eskimo1mutants of Arabidopsis are constitutivelyfreezing-tolerant.Proc. Natl.Acad.Sci.USA,1998.95(13):7799-7804.
    Xin Z and Browse J. Cold comfort farm:the acclimation of plants to freezing temperatures.Plant Cell and Environment,2000.23(9):893-902.
    Xu D,Duan X,Wang B,Hong B,Ho THD,Wu R.Expression of a late embryogenesisabundant protein gene,HVA1,from harley confers tolerance to water deficit and salt stressin transgenic rice.Plant Physiol,1996.110:249-257.
    Yeh S,Moffat B A,Griffith M,Xiong F,Yang D S,Wiseman S B,Sarhan F,DanylukJ,Xue Y Q,Hew C L,Doherty-Kirby A,Lajoie G. Chitinase genes responsive to coldencode antifreeze proteins in winter cereals. Plant Physiol,2000.124(3):1251-1263.
    Yoshiba Y,Kiyosue T,Nakashima K,Yamaguchi-Shinozaki K,Shinozaki K. Regulation oflevels of pro-line as an osmolyte in plants underwater stress. Plant Cell Physiol,1997.38(10):1095-1102.
    Yu X M,Griffith M. Winter rye antifreeze activity increases in response to cold and drought,but no abscisic acid. Physiol Plant,2001.112(1):78-86.
    Zarka D G,Vogel J T,Cook D,Thomashow M F. Cold induction of Arabidopsis CBF genesinvolves multiple ICE (Inducer of CBF Expression) promoter elements and acold-regulatory circuit that is desensitized by low temperature. Plant Physiol,2003.133(2):910-918.
    Zhao T Y,Thacker R,Corum J W,Snyder J C,Meeley R B,Obendorf R L,Downie B.Expression of the maize GALACTINOL SYNTHASE gene family:(I)Expression of twodifferent genes during seed development and germination. Physiologia Plantarum,2004.121(4):634-646.
    Zhou Z, Zhang D Q, Lu M Z. Cloning and expression analysis of PtFAD2gene encoding theendoplasmic reticulum fatty acid18:1desaturase in Populus tomentosa.Sci Silvae Sin,2007.43(7):16-21.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700