用户名: 密码: 验证码:
紫花苜蓿诱导表达启动子MsZPP的克隆及功能分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
启动子是一段位于结构基因5’端上游的DNA序列,能够活化RNA聚合酶,使之与模板DNA准确结合并起始转录。目前,植物启动子已经被大量的分离并研究。但是还未见紫花苜蓿启动子研究的相关报道。
     本研究以紫花苜蓿中苜1号为材料,研究编码锌指蛋白转录因子基因的启动子,旨在阐明该启动子不同区域发挥的功能,及其响应的诱导条件。主要试验结果如下:
     1.克隆长1272bp的MsZFN基因启动子,命名为MsZPP(登录号:FJ161979.2)。研究确定了转录起始位点位于翻译起始位点上游69bp处。生物信息学分析预测,这段序列存在TATA-box和多个CAAT-box。此外,该序列存在多个光响应作用元件,激素响应作用元件,以及一些响应生物或非生物胁迫诱导的作用元件。
     2.构建缺失启动子及全长启动子表达载体,并采用农杆菌介导法转化烟草。成功获得阳性转化再生烟草植株TP1、TP2、TP3、TP4、TP5和TP6,为后续研究启动子功能提供试验材料。
     3.经过转化植株GUS蛋白组织化学染色及GUS酶活性定量分析,结果表明:不同长度的启动子片段调控功能存在差别。除种子外,转化植株根,茎,叶,花中都可以检测到gus基因的表达,并且随着启动子长度增加,GUS酶活性也相应增强。TP1、TP2与TP3、TP4、TP5和TP6相比,调控gus基因表达能力较弱。启动子长度为623bp时,就能够有效调控下游基因表达,所以该启动子的核心区域约为623bp。长度为460bp的启动子可以调控gus基因在气孔保卫细胞表达,初步说明在该区域存在能够特异性定位基因表达的顺式作用元件。
     4.测定不同诱导条件下各种转化植株的GUS酶活性,结果表明:黑暗处理后,GUS酶活性显著增加,但不同缺失启动子之间差异不显著。200μM·L~(-1)MeJA处理后,只有转化植株TP6的GUS酶活性显著增加,是对照的2.96倍,其他差异不显著。2.85μM·L~(-1)IAA处理后,启动子长度大于460bp的转化植株GUS酶活性是对照的1.8倍左右,小于460bp的转化植株与对照相比没有明显变化。在70μM·L~(-1)GA3、50μM·L~(-1)ABA、25μM·L~(-1)PEG6000以及50mM·L~(-1)NaCl处理条件下,转化植株中GUS酶活性与对照相比没有显著差异。由此表明,启动子MsZPP可以应答黑暗、IAA及MeJA的诱导,但不响应另外四种诱导。
     5.克隆MsZFN基因上游1340bp的片段,其中包括基因5’非编码区与全长启动子,构建表达载体,并成功转化烟草。与含有全长启动子的阳性转化植株比较,结果发现,两者在组织特异性表达和GUS酶活性分析上没有差别。由此可知,MsZFN基因的5’-UTR对启动子在转录调控水平没有影响。
Promoter is a DNA sequence in upstream of functional gene, which can recognize and combined toRNA polymerase to start gene transcription. In recently, there were many promoters have been clonedand analyzed, but there was still no report about alfalfa promoter research.
     The research is meanly about a promoter of zinc finger protein transcription factor gene. In order tofind this gene was regulated by which inducement and the different functions of different fragments, wecloned the promoter of MsZFN gene and deletion analysis this promoter. The mainly research results areas follows:
     1. According to the known MsZPP promoter sequence, Genbank number: FJ161979.2, we clonedthe peomoter fragment, it was1272bp. The transcription start site was found by5’-SMART-RACEmethod, it was at the upstream69bp of translation start site. In addition, there are many light-responsivecis-acting elements, some hormone response elements and many biological or abiotic stress-inducedelements.
     2. In order to analyze the promoter function, we constructed the deletion promoter and full-lengthpromoter expression vector and transformed tobacco with the Agrobacterium mediat method. In thisresearch, we got transgenic tobacco successfully, this result provide test material for the follow-up studyof promoter function.
     3. Histochemical assay and fluorometric assay of GUS reporter gene activity in transgenic tobaccoshowed that the regulate function were different in the different length promoter. All of the organs couldmeasure the GUS activity transgenic tobacco without the seed. The GUS expression in TP1and TP2root,stems, leaves and flowers were weak contrast with TP3, TP4, TP5and TP6. We can observe the gus geneexpressed in stomatal cell of TP3tobacco. Therefore, with the increase of promoter length, the ability ofregulate downstream gene expression increased too. The623bp promoter has could regulate downstreamgene expressed strongly. The460bp promoter can regulate gus reporter gene expressed in stomatal cell,indicating this region may have cis-acting element of the specific localization of gene expression, thein–depth studies need future experiments to confirm.
     4. We used the transgenic tobacco which with different length of promoter as test material, aftertreated with different inducements; we measured the GUS activity to find the promoter was responsive towhich inducement. The result showed the GUS activity was increased after dark treatment, but there wasno significant difference in deletion promoters. After treated with200μM·L~(-1) MeJA, the GUS activity inTP6tobacco was2.96fold then control. After treated with2.85μM·L~(-1) IAA, the GUS activity in tobaccoTP4, TP5and TP6were1.8fold then control, there was no increase in transgenic plants TP1, TP2andTP3. After treat with70μM·L~(-1) GA3,50μM·L~(-1) ABA,25μM·L~(-1) PEG6000,50mM·L~(-1) NaClrespectively, the GUS activity didn’t change compared with control. Therefore, these results showed thepromoter MsZPP was respond to dark,200μM·L~(-1) MeJA and2.85μM·L~(-1) IAA, but didn’t respond toother four induce. Maybe the promoter respond to these inducements need cooperate with othercis-acting element.
     5. We design a pair of primers to clone the promoter fragment with5’-UTR, and then transformedtobacco. Histochemical assay and fluorometric assay of gus reporter gene activity in transgenic tobaccoshowed that there was no different with the transgenic tobacco contained full-length promoter. Therefore,the5’-UTR of downstream gene didn’t affect MsZPP promoter function in transcription regulation.
引文
1.黄文惠,苏加楷,张玉发,等译.牧草—草地农业科学[M].北京:农业出版社,1989,78-79
    2.包爱科,王强龙,张金林,王锁民.苜蓿基因工程研究进展.分子植物育种,2007,5(6):160-168
    3.苏金,朱汝财,渗透胁迫调节的转基因表达对植物抗旱耐盐性的影响.植物学通报,2002,18(2):125-136
    4.晏石娟,马晖玲,曹致中.紫花苜蓿抗旱耐盐碱转基因抗性苗耐盐性研究.甘肃农业大学学报,2006,10(5):91-94
    5.王瑛,朱宝成,孙毅,张琳宇,罗建平.外源lea3基因转化紫花苜蓿的研究.核农学报,2007,21(3):249-252
    6.李燕,孙彦,杨青川,康俊梅,张铁军,房锋.紫花苜蓿MsZIP基因超表达载体的构建及转基因苜蓿检测.草业学报.2011
    7.韩利芳,张玉发,烟草Mn-SOD基因在保定苜蓿中的转化.生物技术通报,2004,(1):39-46
    8.罗小英,崔衍波,邓伟,李德谋,裴炎.超量表达苹果酸脱氢酶基因提高紫花苜蓿对铝毒的耐受性.分子植物育种,2004,2(5):621-626
    9.刘洋.棉花铝诱导蛋白基因GhAlin对紫花苜蓿(Medicago sativa L.)的遗传转化[硕士学位论文].重庆:西南农业大学,2004
    10.张竞秋,哈斯阿古拉,张丽,张鹤龄.苜蓿花叶病毒复制酶基因的克隆,序列分析及其植物表达载体的构建.内蒙古大学学报(自然科学版),2003,34(5):536-541
    11.柳武革,薛庆中.蛋白酶抑制剂及其在抗虫基因工程中的应用.生物技术通报.2000,(1):20-25.
    12.刘艳芝,王玉民,刘莉,隋松兵,李望丰,董英山.Bar基因转化草原1号苜蓿的研究.草地学报,2004,12(4):273-276.
    13.吕德扬,范云六,俞梅敏,唐顺学,侯宁,汪清.苜蓿高含硫氨基酸蛋白转基因植株再生.遗传学报,2000.27(4):331-337.
    14.朱玉贤,李毅.现代分子生物学[M].高等教育出版社,北京,2002,pp71
    15.孙晓红,陈明杰,潘迎捷.启动子克隆概述.食用菌学报.2002,9(3):57-62
    16.李一琨,王金发.高等植物启动子研究进展.植物学通报,1998,15(增刊.):1-6.
    17.李杰,张福城,王文泉,黄丽云.高等植物启动子的研究进展[J].生物技术通讯,2006,17(4):658-661
    18.王颖,麦维军,梁承邺,张明永.高等植物启动子的研究进展.西北植物学报,2003,23(11):2040-2048
    19.杨予涛.一个光合组织特异表达启动子的克隆,功能分析及其转录因子的鉴定[博士学位论文].山东泰安:山东农业大学,2005
    20.袁正强,贾燕涛,吴家和,田颍川.三个韧皮部特异性启动子在转基因烟草中表达的比较研究.农业生物技术学报,2002,10(1):6-9
    21.李吉涛,郭建春.种子特异性启动子的研究进展.安徽农业科学,2008,36(4):1382-1385
    22.李姗姗,迟彦,李凌飞,马玺,平文祥,于冲,周东坡.启动子克隆方法研究进展.中国生物工程杂志,2005,25(7):9-16
    23.李奉锡,李育阳.在枯草杆菌中有启动子功能的噬菌体T5DNA片断的克隆.遗传学报,1987,14(6):468-474
    24.金红,王以光.麦迪霉素产生菌具有启动功能的DNA片段的克隆和分析.微生物学报,1994,34(6):415-421
    25.李维,张义正.黄抱原毛平革菌基因启动子的分离与鉴定.生物工程学报,2000,16(5):599-602
    26.彭仁旺,周雪荣,周奕华,等.烟草花药特异表达基因启动子的克隆及序列分析.生物工程学报,1996,12(3):247-250.
    27.山松,张中林,陈曦,等.烟草叶绿体16S启动子的克隆改造及转基因植株的获得.作物学报,1999,25(5):536-540
    28.蒋浩,秦红敏,田颖川.杨皮树储藏蛋白基因启动子的克隆和功能研究.林业科学,1999,35(5).
    29.苏宁,孙萌,李轶女,等.水稻叶绿体165启动子克隆改造,载体构建及转化研究.植物学通报,2003,20(3):295-301
    30.王莹,韩烈保,曾会明.高等植物启动子克隆方法的研究进展.生物技术通报,2007,3:97-100
    31.韩志勇,王新其,沈革志等.反向PCR克隆转基因水稻的外源基因旁侧序列.上海农业学报,2001,17(2):27-32
    32.李竹红,刘德培,梁植权.改进的反向PCR克隆转移基因的旁侧序列.生物化学与生物物理进展,1999,26(6):600-602
    33.王新国,肖成祖,张国华,等.用衔接头PCR克隆新的胡萝卜Ⅱ型转化酶基因启动子.中国生物化学和分子生物学报,2001,17(1):61-65
    34.黄君健,李杰之,林坚,等.人端粒酶催化亚基hTERT基因启动子的克隆.生物技术通讯,1999,10(3):167-170
    35.尹辉,李丹,张毅,李秋莉.植物基因启动子的克隆方法及其应用.分子植物育种,2006,4(3):85-91
    36.方卫国,张永军,马金成,等.用YADE法克隆球抱白僵菌类枯草杆菌蛋白酶基因CDEP-1的启动子及启动子序列分析.菌物系统,2003,22(2):252-258
    37.罗丽娟,施季森.一种DNA侧翼序列分离技术TAIL—PCR.南京林业大学学报,2003,27(4):87-90
    38.蒋浩,秦红敏,虞红梅,田颖川.笋瓜韧皮部蛋白基因启动子的克隆及其功能初探.农业生物技术学报,1999,7(1):63-68
    39.毛自朝,于秋菊,甄伟,郭俊毅,胡鸢雷,高音,林忠平.果实专一性启动子驱动ipt基因在番茄中的表达及其对番茄果实发育的影响.科学通报,2002,47(6):444-448(in Chinese).
    40.王念捷,程奇,任延国,等.水稻4CL基因启动子引导的GUS在紫外诱导下的组织特异性表达.中国农业科学,1996,29(1):73-82
    41.刘巧泉,于恒秀,张文娟,等.水稻rbcS启动子控制的外源基因在转基因水稻中的特异性表达.植物生理与分子生物学学报,2005,31(3):247-253
    42.李为民,王志兴,贾士荣,等.中棉光诱导基因Gacab启动子的克隆及其功能分析.农业生物技术学报,2004,12(3):253-257
    43.李丽,张景昱,杜林森,宋艳茹.种子特异性启动子分离、表达载体构建及转基因植物获得.植物学通报,2001,18(2):216-220
    44.杨之帆,罗忠训,夏胜.玉米组织特异性启动子载体的构建.湖北大学学报,1998,20(3):284-287
    45.石东乔,周奕华,万里红,刘桂珍,胡赞民,陈正华.甘蓝型油菜BcNA1基因启动子在转基因烟草中对GUS基因表达的调控.植物生理学报,2001,27(4):313-320.
    46.张春晓,王文棋,蒋湘宁,陈雪梅.植物基因启动子研究进展,遗传学报,2004,31(12):1455-1464
    47.路静,赵华燕,何亦昆,宋艳茹.高等植物启动子及其应用研究进展.自然科学进展,2004,14(8),856-862
    48.王雅琴.嗜麦芽假单胞菌热休克基因dnaK启动子的亚克隆及其在大肠杆菌中功能的研究.Industrial Microbiology(工业微生物),2001,31(3):29-35.
    49.李强,卢孟柱,陈颖,韩一凡.杨树因伤诱导型启动子的克隆及功能分析.林业科学,1999,35(4):111-118.
    50.刘小琳,康俊梅,孙彦,王继峰,胡晓艳,杨青川. MsNHX1基因转化紫花苜蓿及转基因植株的鉴定.草地学报,2008,16(2):116-120
    51.靳苗苗,杨青川,金洪,康俊梅,龙瑞才.紫花苜蓿柠檬酸合成酶基因的克隆及对烟草的转化.草地学报,2010,18(4):550-555
    52.乌艳红,米福贵,李志明,栾守泉,陈玲玲,娜日苏,梁庆伟.紫花苜蓿GDP解离抑制蛋白基因cDNA的克隆、分析及烟草转化.草地学报,2011,19(1):157-163
    53.黄新,叶红霞,舒小丽,吴殿星.紫花苜蓿耐逆诱变和转基因研究进展.核农学报,2008,22(5):630-634
    54.陈加红.耐逆紫花苜蓿研究进展.河南农业,2011,9:55-57
    55.华卫东,夏卓盛,李进军,吴跃明.紫花苜蓿耐铝的分子基础研究进展.草业科学,2008,2:64-68
    56.唐晓凤.菊花泛素延伸蛋白基因启动子DgUEP的克隆和功能初探[硕士学位论文].四川成都:四川农业大学,2009
    57.魏晓峰.花粉/种子表达融合启动子合成及其表达载体的构建[硕士学位论文].重庆:西南大学,2010
    58.邓慧.紫杉醇生物合成酶DBAT启动子的克隆与植物表达载体的构建[硕士学位论文].湖北武汉:华中科技大学,2007
    59.郝迪萩,赵琳,陈李淼,李文滨.克隆启动子方法的比较与应用.东北农业大学学报,2010,41(3):154-160
    60.于文静,王玉富,邱财生,郝冬梅,薛召东.中国麻业科学,2010,32(2):116-122
    61.况守龙,张廷章.启动子的克隆和研究方法.重庆工学院学报,2007,21(1):136-139
    62.李燕.紫花苜蓿MsZFN锌指蛋白基因启动子MsZPP的克隆与序列分析[硕士学位论文].内蒙古呼和浩特:内蒙古农业大学,2009
    63.靳苗苗.紫花苜蓿柠檬酸合成酶基因的克隆及对烟草的遗传转化[硕士学位论文].内蒙古呼和浩特:内蒙古农业大学,2010
    64.晁跃辉.紫花苜蓿锌指蛋白基因的克隆及初步鉴定[硕士学位论文].重庆:重庆大学
    65.丁旺.紫花苜蓿3个开花相关基因的克隆及初步鉴定[硕士学位论文].北京:中国农业科学院
    66.金后聪.紫花苜蓿盐诱导基因的筛选与克隆[硕士学位论文].内蒙古呼和浩特:内蒙古农业大学,2008
    67.张吉贞.水稻MOC1基因启动子的克隆与诱导物的筛选[硕士学位论文].海南省海口市:华南热带农业大学,2005
    68.王莹.结缕草胁迫诱导型启动子Rd29A的克隆及其功能鉴定[硕士学位论文].北京:北京林业大学,2008
    69.王关林,方宏筠.植物基因工程原理与技术[M].北京:科学出版社,1998:351-353.
    70. McKersie B D, Bowley S R, HaIjanlo E.Water-deficit tolerance and field performance of transgenicalfalfa over expressing superoxide dismutase.Plant Physiol,1993,111(4):1177-1181.
    71. Samis K, Bowley S, Mckersie B.Pyramiding Mn-superoxide dismutase transgenes to improvepersistence and biomass production in alfalfa.J Exp Bot,2002,372(53):1343-1350.
    72. McKersie B D, Murnaghan J, Jones K S, Bowley S R. Iron-superoxide dismutase expression intransgenic alfalfa increases winter survival without a detectable increase in photosynthetic oxidativestress tolerance.Plant Physiol,2002,122:1427-1437.
    73. Brouwer D J, et al. Mapping factors associate with winter hardiness fall growth and freezing injuryin autotetraploid alfalfa. Crop Sci,2000,(40):1387-1396.
    74. Mckerise B D, Chen Y, Bans C M, Bowley S R, Bowler C.Inze D,D’Halluin K,BottermanJ.Superoxide dismutase enhances tolerance of freezing stress in transgenic alfalfa (Medicago sativaL).Plant Physiol,1993,103(4):1155-1163.
    75. Shearer H L, Friedberg J, Bowley S R.Constitutively active sucrose phosphate synthase intransgenic alfalfa:carbohydrate profiles and low temperature survival.Molecular Breeding efForage and Turf,Dallas,TX,2003
    76. Zhang J Y, Broeckling C D, Blancaflor E B, Sledge M K, Sumner L W, Wang Z Y.Overexprossionof WXPI, a putative Medieago truncalula AP2domain-containing transcription factorgene,increases cuticular wax accumulation and enhances drought tolerance in transgenicalfalfa(Medicago sativa).Plant Journal,2005,42(5):689-707.
    77. Uexknll E.Develop economic of acid Soil and impact soils[J].Plant Soil,1995,171(1):1-15.
    78. Tesfaye M, Temple S J, Allan,D L, Vance C P, Samac D A, Over-expression of malate dehydrogenasein transgenic alfalfa enhances organic acid synthesis and confers tolerance tO aluminum.PlantPhysiol,2001,127:1836-1844.
    79. Webb K J. Transformation of forage legumes using A-grobacterium tumefaciens, Theor. Appl. Genet.,1986,72(1):53-58.
    80. Reich T J, Lyer V N, Miki B L. Efficient transformation of alfalfa protoplasts by the intranuclearmicro injection of Ti-plasmids. Bin Technology,1986,4:1001-1004.
    81. Roselliai D, Barone P, Bouton J, Lafayette P, Sledge M, Veronesl F, Parrot W.Aluminum tolerancein alfalfawith the citrate synthase gene, The38th Report of the North American AlfalfaImprovementConference.Sacramento,CA,2002,27-31,http://www.naaic.org/Meetings/National/2002meeting,2002,Abstracts/Rosellini.pdf
    82. Dordas C, Hasinoff B B, Igamberdiev A U, Mahach N, Rivod J, HiiI R D.Expression of astress-induced hemoglobin affects NO levels produced by alfalfa root cultures under hypoxicstress.Plant Journal,2003,35(6):763-770.
    83. Hill K K, Jarvia-Eagan N, Hibine T, et al. The development of virus-resistant alfalfa Medicago sativaL.. Bio/Technol,1991,9:373-377
    84. Mizukami Y, Houmura I, Takamizo T, et al. Production of transgenic alfalfa with chintinase gene(RCC2)[A].Lorne and Hamitton, Victoria; Abstracts2nd International Symposium MolecuIarBreeding of Forage Crops[C].2000.105
    85. Hipskind J D, Pavia N L. Constitutive accumulation of resveratrol glucoside in transgenic alfalfaincreases resistance to Phoma medicaginis. Mol. Plant Microbe Interact,2000,13:551-562.
    86. Pereira L F, Erickson L. Stable transformation of alfalfa by particle bombardment, Plant Cell Reports,1995,14(5):290-293.
    87. Dixon R A, Guo D G, Chen F, Wheeler J, Winder J.Improvement of in-rumen digestibility of alfalfaforage by genetic manipulation of lignin O-methyltransferases. Transgenic Research,2001,10:457-464.
    88. Strizhov N, Sneh B, Koncz C, Zilberstein A.A synthetic cry IC gene, encoding a Bacillusthuringiensis δ-endotoxin, confers Spodoptera resistance in alfalfa and tobacco. Proceedings of theNational Academy of Sciences of the United States of America,1996,93:15012-15017.
    89. Winicov I, Bastola D R. Transgenic overexpression of the transcription factor Alfinl enhancesexpression of the endogenous MsPRP2gene in alfalfa and improves salinity tolerance ofplants.Plant Physiol,1999,120:473-480.
    90. Thomas J C, Wasmanm C C, Echt C, Dunn R L, Bohnert H J, McCoy T J.Introduction andexpression of insect proteinase inhibitor in alfalfa (Medicago sativa L.).Plant Cell Reports,1994,14:31-36.
    91. Narvaez-Vasguez J, Lorozco-Cardenas M L, Ryan C A. Differential expression of chime riceCaMV-tomato proteinase Inhibitor I gene in leaves of transformed nightshade, tobacco and alfalfaplants. Plant Mol. Biol,1992,20:1149-1157.
    92. Samac D A, Smigocki A C.Expression of oryzacystatin I and Ⅱin alfalfa increases resistance to theroot-lesion nematode.Phytopathology,2003,93:799-804.
    93. Donn G, Tischer E, Smith J A, et al. Herbicide-resistant alfalfa cells an example of gene amplificatiorin plants. Mol Appl Gent,1984,(2):621-635.
    94. Halluin K D, Boteerman J, Greef W D.Engineering of herbicide-resistant alfalfa and evaluationunder field condition.Crop Science,1990,30:866-871.
    95. Winicov I. Alfinl transcription factor overexpression enhances plant root growth under normal andsaline conditions and improves salt tolerance alfalfa.Planta,2002,210:416-422.
    96. Schroeder H E, Khan M R.Expressing of chicken ovalbumin gene in three lucerne cultivars.J. Plant.Physiol,1991,18:495-505.
    97. Wandelt C L, Khan M R I, Craig S, Schroeder H E, Spencer D, Higgins T J V.Vicilin withcarbory-terminal KDEL is retained in the endoplasmic reticulum and accumulates to high levels inthe leaves of transgenic plants.Plant Journal,1992,2:18l-192.
    98. Tabe L M, Higgins C M.McNabb W C,HigginsT J V.Genetic engineering of grain and pasturelegumes for improved nutritive value.Genetica,1993,90:181-200.
    99. Bagga S, Armendaris A, Clypina N, Sengupta-Gopalan C.Genetic engineering ruminal stable highmethionine protein in the foliage of alfalfa.Plant Science,2004,166:273-283.
    100. Avraham T, Badani H, GaliIi S, Amir R.Enhanced levels of methionine and cysteine in transgenicalfalfa (Medicago sativa L.) plants overexpressing the Arabidopsis cystathionine γ-synthasegene.Plant Biotechnology Journal,2005,(3):71-79.
    101. Vasil I K. Cellular and molecular genetic improvement of cereals, current issues in plant molecularand cellular biology, In: Terzi M.(eds.), Current Issues in Plant Molecular and Cellular Biology,Kluwer Academic Publication, Netherlands,1985, pp.5-8
    102. Ray H, Yu M, Auser P.Gruber M Y.Expression of anthocyanins and proanthocyanidins aftertransformation of alfalfa with maize Lcl’2.Plant Physiology,2003,132:1448-1463.
    103. Baucher M, Bernard-Vailhe M A, Chabbert B, et al. Down-regulated of cinnamyl alcoholdehydrogenase in transgenic alfalfa and the effect on lignin composition and digestibility. Plant MolBiol,1999,39:437-447.
    104. Guo D, Chen F, Inoue K, et al. Down regulation of caffeic acid3-O-methyltransferase and caffeoylCoA3-O-methyltransferase in transgenic alfalfa impacts on lignin structure and implications for thebiosysthesis of G and S lignin J. The Plant Cell,2001:13,73-88.
    105. Wigdoroyizz A, Sadir A M, Escribano J Y, et al. Induction of a protective antibody response to footand mouth disease virus in mice following oral or parenteral immunization with alfalfa transgenicplants expressing the viral structural protein VPI. Virology,1999,255:347-353.
    106. Santos M J, Wigdorovitz A, Trono K, Gil F, Rios R, Franzone P. A novel methodology to develop afoot and mouth disease virus (FMDV) peptide-based vaccine in transgenicplants.Vacine,2002,20(728):1141-1147.
    107. Santos M J, CarriIlo C, ArdiIa F, Borca M V.Development of transgenic alfalfa plants containingthe foot and mouth disease virus structural polyprotein gene P1and its utilization as anexperimental immunogen.Vaccine,2005,23:1838-1843.
    108. Tuholy T, Yu W, Bailey A, et al. Immunogenicity of porcine transmissible gastroenteritis virus spikeprotein expressed in plants. Vaccine,2000,18(19-20):2023-2028.
    109. Wigdorovitz D, Mozgovoj M, Parenno V, Gomez C.Protective Iactogenic immunity conferred byan edible peptide vaccine to bovine rotavirus produced in transgenic plants. Journal of GeneralVirology,2004,85:1825-1832.
    110. Ziauddin A, Lee R W H, Ro R, Shewen P, Strommer J.Transformation of alfalfa with a bacterialfusion gene, Mannheimia haemolytica A1leukotoxin50-gfp: response with Agrobacteriumtumefaciens strains LBA4404and C58. Plant Cell,Tissue and Qrgan Culture,2004,79:271-278.
    111. Khoudi H, Laberge S, Ferullo J M. Production of a diagnostic monoclonal antibody in perennialalfalfa plants.Biotechnology and Bioengineering,1999,64:135-143.
    112. Austin-Pillips S, Ziegelhoffer T. The production of value-added proteins in transgenic alfalfa [A].Molecular Breeding of Forage Crops [C].Dordrecht Kluwer Academic Publishers2000.285-300.
    113. Tesfaye M, Denton M D, Vance C P, Samac D A.Transgenic alfalfa secretes a fungal endochitinaseprotein to the rhizosphere.Plant and Soil,2005,269:233-243.
    114. Purev S, Friedric S, David A S, et al. Production of a biodegradable Plastic Polymer,Poly-β-hydroxybutyrate in transgenic alfalfa. Crop Sci,2002,42:919-927.
    115. Joshi C P. An inspection of the domain between putative TATA box and translation start site in79plant genes. Nucleic Acids Research,1987,15:6643-6653.
    116. Benjamin L. GeneⅥ[M].Oxford University Press,1997:302-305.
    117. Burke, T W, Kadonaga, J T Drosophila TFⅡD binds to a conserved downstream basal promoterelement that is present in many TATA-box-deficient promoters. Dev,1996,10:711-724
    118. Smale, ST, Balitimore, D. The “initiator” as a transcription control element.Cell,1989,57:103-113.
    119. Sheila C,Chris M,David L Connelly S, Marshallsay C, Leader D, Brown J W. S, Filipowiczi W.Small nuclear RNA genes transcribed by either RNA polymerase II or RNA polymerase III inmonocot plants share three promoter elements and use a strategy to regulate gene expressiondifferent from that used by their dicot plant counterparts. Molecular and Cellular Biology,1994,14(9):5910-5919.
    120. Piechulla B, Merforth N, Rudolph B. Identification of tomato Lhc promoter regions necessary forcircadian expression. Plant Molecular Bioogyl,1998,38:655-662
    121. Donald R G, Cashmore A R. Mutation of either G box or I box sequences profoundly affectsexpression from the Arabidopsis rbcS-1Apromoter. EMBO Journal,1990,9(6):1717-1726.
    122. Puente P, Wei N, Deng X W. Combinatorial interplay of promoter elements constitutes theminimal determinants for light and developmental control of gene expression in Arabidopsis.EMBO Journal,1996,15:3732-3743.
    123. Lam E, Chua N H. Gt1binding site confers light-responsive expression in transgenic tobacco.Science,1990,248:471-474.
    124. Sandhu J S, Webster C I, Gray J C. A/T-rich sequences act as quantitatives enhancers of geneexpression in transgenic tobacco and potato plants. Plant Mol Bio,1998,37(5):885-896.
    125. Chen P W, Lu C A, Yu T S,Teng T H, Wang C S, Yu S M. Rice alpha-amylase transcriptionalenhancers direct multiple mode regulation of promoters in transgenic rice. Journal of BiologyChemistry,2002,277(16):13641-13649.
    126. Hoffmann M, Binder S. Functional importance of nucleotide identities within the peat p9promotersequence. Molecular Biology,2002,320(5):943-950.
    127. Millar A J, Kay S A. Integration of circadian and photo-transduction pathways in the networkcontrolling CAB gene transcription in Arabidopsis. Proc. Natl Acad. Sci USA,1996,93:15491-15496.
    128. Yadav V, Kundu S, Chattopadhyay D, Negi P, Wei N, Deng X W, Chattopadhyay S. Light regulatedmodulation of Z-box containing promoters by photoreceptors and downstream regulatorycomponents, COP1and HY5, in Arabidopsis. Plant Journal,2002,31:741-753.
    129. Reidt W, Wohlfarth T, Ellerstrom M, Czihal A, Tewe S A, Ezcurra I, Rask L, Baumlein H. Generegulation during late embryo genesis: The RY motif of maturation-specific gene promoters is adirect target of the FUS3gene product.Plant Journal,2000,21(5):401-408.
    130. Xiao K, Liu J, Dewbre G, Harrison M, Wang Z Y. Isolation and Characterization of Root-SpecificPhosphate Transporter Promoters from Medicago truncatula. Plant Biology,2006,8:439-449.
    131. Ogawa M, Hanada A, Yamauchi Y, Kuwahara A, Kamiya Y, Yamaguchi S. Gibberellinbiosynthesis and response during Arabidopsis seed germination.Plant Cell,2003,15:1591-1604.
    132. Xu N F, Hagen G, Guilfoyle T. Multiple auxin response modules in the soybean SAUR15Apromoter. Plant Science,1997,126:193-201.
    133. Liu Z B, Ulmasov T, Shi X, Hagen G, Guilfoyle T J. Soybean GH3Promoter Contains MultipleAuxin-Inducible Elements.The Plant Cell,1994.6(5):645-657.
    134. Song F, Goodman R M. Cloning and identification of the promoter of the tobacco Sar8.2b gene, agene involved in systemic acquired resistance.Gene,2002,290(1-2):115-124
    135. Neve R L, West R W, Rodriguez R L. Eukaryotic DNA fragments which act as promoters foraplasmid gene. Nature,1979,277(5694):324-325.
    136. Donna M W, Elizabeth J D, Paul S L. Cloning restriction fragments that promote expression of agene in Bacillus subtilis. J. Bacterol,1981,146:1162-1165.
    137. Mark M Z, Dairena F G, Denis S, et al. Chromogenic identification of genetic regulatory signals inBacillus subtilis based on expression of cloned Pseudomonas gene.Proc.Natl.Acad.Sci.USA,1993,80:1101-1105.
    138. Scopione R C, De Camargo S S, Schenberg A C, et al. A new promoter-probe vector forSaccharomtces cerevisiae using fungal glucoamylase cDNA as the reporter gene. Yeast,1993,9:599-605.
    139. Sidhu R C, Mathewes S, Bollon A P. Selection of secretory protein-encoding genes by fusioninSaccharomyces cerevisiae. Gene,1991,107:111-118.
    140. Fordor I, Kranikova O V, Berets E, et al. Cloning structure and features of a Saccharomycescerevisiae DNA fragment causing the expression of reporter genes. Mol. Biol,1990,24:1411-1418.
    141. Luo X M. Cloning and characterization of three Aspergillus niger promoters. Gene,1995,163:127-131.
    142. Triglio T,Peterson M G,Kemp D J. A procedure forin vitro amplification of DNA segments that lieoutside the boundaries of known sequences. Nucleic Acids Research,1998,16(16):8186
    143. Jones D H,Winistorfer S C. Sequence specific generation of a DNA panbandle permits PCRamplification of unknown flanking DNA. Nucleic Acids Research,1992,20(3):595-600
    144. Praraher Y, Weisaman S M. Analysis of differential gene expression by display of3’ end restrictionfragments of cDNAs. Proc Natl Acad Sci USA,1996,93:659-663
    145. Liu Y G, Robert F W.Thermal asymmetric interlaced PCR: automatable amplification andsequencing of insert enf fragment from P1and YAC clones for chromosomewalking.Genomics,1995,25:674-681
    146. Gento Tsuji, Satoshi Fujii, Naoki Fujihara, et al.Agrobacterium tumefaciens-mediatedtransformation for random insertional mutagenesis in Colletotrichum lagenarium.Gen PlantPathol,2003,69:230-239
    147. Angenon G, Van Montagu M, Depicker A. Analysis of the step codon in context in plant nucleargenes.FEBS Lett.,1990,271(1-2):144-146.
    148. Mcelroy D, Zhang Wanggen, Cao Jun. Isolation of an efficient actin promoter for use in ricetransformation.The Plant Cell,1990,2:163-171.
    150. Buzeli R A, Cascardo J C, Rodrigues L A, Andrade M O, Almeida R S, Loureiro M E, Otoni W C,Fontes E P.Tissue-specific regulation of BiP genes: a cis-acting regulatory domainis required forBiP promoter activity in plant meristems. Plant Mol Biol,2002,50(4-5):757-771.
    151. Chavez-Barcenas A T,Valdez-Alarcon J J,Martinez-Trujillo M, ChenL,X oconostle-Cazares B,LucasW J,Herrera-Estrella L. tissue-specificand developmental pattern of expression of the rice sps1gene.Plant Physiol,2000,124(2):641-654.
    152. Lu Hai.Regulation of plant growth and wood quality by cambium-specific expressed genes.Ph.D.thesis, Beijing Forestry University,2002.
    153. Mitsutaka T,Katsura I,Maurice S B.The Promoter for the maize C4Pyruvate,orthophosphatedikinase gene directs cell-and tissue-specific transcription in transgenic maize plants.Plant CellPhysiol.,2000,41(1):42-48.
    154. Kunst L, Clemens S, Hooker T.Expression of the wax-specific condensing enzyme CUT1inspecificexpressionofthecucumisingene.JBiolChem,2002,277(13):11582-11590.
    155. Yang N S,Russell D.Maize sucrose synthase-1promoter directs phloem cell-specific expression ofGus genein transgenic tobacco plants.Proc Natl Acad Sci USA,1990,87(11):4144-4148.
    156. Oyama T, Okada K.The IRE gene encodes a protein kinase homologue and modulates root hairgrowth in Arabidopsis. Plant J,2002,30(3):289-299.
    157. Mariani C,De Beuckeleer M,Truettner J.Induction of male sterility in plants by a chimaericribonuclease gene.Nature,1990,347:737-741.
    158. Mariani C, Gossele V, De Beuckeleer M.A chimaeric ribonuclease-inhibitor gene restores fertility tomale sterile plants.Nature,1992,357:384-387.
    159. Annadana S,Beekwilder M J,Kuipers G.Cloning of the chrysanthemum UEP1promoter andcomparative expression in florets and leaves of Dendranthema frandiflora.TransgenicRes.,2002,11(4):437-445.
    160. Zhang S Z, Yang B P, Liu F H.Cloning and sequence analysis of a flower specific expressionpromoter PchsA. Journal of Agricultural Biotechnology,2002,10(2):116-119.
    161. Yamagata H, Yonesu K, Hirata A, Aizono Y. TGTCACA motif is an ovel cis-regulatory enhancerelement involved in fruit-specific expression of the cucumisin gene. J BiolChem,2002,277(13):11582-11590.
    162. Digeon J F, Guiderdon I E, Alarry R.Cloning of a wheat puroindoline gene promoter by IPCR andanalysis of promoter regions required for tissue-specific expression in transgenic rice seeds.PlantMol.Biol.,1999,39(6):1101-1112.
    163. Buchner P,Rochat C,Wuilleme S,Boutin J P.Characterization of a tissue-specific anddevelopmentally regulated beta-1,3glucanase gene in pea (Pisumsativum).Plant MolBiol,2002,49(2):171-186
    164. Welham T, Domoney C.Temporal and spatial activity of a promoter from a pea enzyme inhibitorgene and its exploitation for seed quality improvement.Plant Science,2000,159:289-299.
    165. Lamppa G, Nagy F, Chua N H. Light-regulated and organ-specific expression of a wheat Cab genein transgenic tobacco.Nature,1985,316:750-752.
    166. Tada Y, Sakamoto M, Matsuoka M. Expression of a monocot LHCP promoter in transgenicrice.Embo.J,1991,10(7):1803-1808.
    167. Awinder K S,Jacqueline A P,GARETH I J.The promoter of aBrassica napuslipid transfer proteingene is active in a range of tissues and stimulated by light and viral infection intransgenicArabidopsis.Plant Molecular biology.,1999,41:75-87.
    168. Kardish N,Magal N,Aviv D. The tomato gene for the chloroplastic Cu,Zn superoxidedissmutase:regulation of expression imposed in transgenic tobacco plants by a shore promoter.PlantMol.Biol.,1994,25(5):887-897.
    169. Xu D, Mcelroy D, Thornburg R W W. Systemic induction of a potato pin2promoter bywounding,methyl jasmonate,and abscisic acid in transgenic rice plants.Plant MolecularBiology.,1993,22(4):573-588.
    170. In Sun Yoon, Don H A-P, Hitoshi M.Characterization of an auxin-inducible1-aminocyclopropane-1-carboxylate synthase gene,VR-ACS6,of mungbean (Vigna radiata(L.)Wilczek) and hormonal interactions on the promoter activity in transgenic tobacco.Plant CellPhysiol,1999,40(4):431-438.
    171. Taylor, Jane E R, Kirstie F. ABA-regulated promoter activity in stomatal guard cells.The PlantJournal,1995,7(1):129-134.
    172. Guiltinan M J, Marcotte W R, Quatrano R S. A plant leucine zipper protein that recognize anabscisic acid response element. Science,1990,250:267-271.
    173. Mundy J, Yamaguchi Shinozaki K, Chua N H. Nuclear proteins bind conserved elements in theabscisic acid-responsive promoter of a rice rab gene.Proc.Natl.Acad.Sci.USA,1990,87:1406-1410.
    174. Ono A, Izawa T, Chua N H, Chua N H, Shimamoto K. The rab16B promoter of rice contains twodistinct abscisic acid-reponsive elements. Plant Physioogyl,1996,112:483-491.
    175. Simpson S D,Nakashima K,Narusaka Y,, Seki M, Shinozakik K, Yamaguchi-shinozaki K. Twodifferent novel cis-acting elements of erd1, a clpA homologous Arabidopsis gene function ininduction by dehydration stress and dark induced senescence. Plant Journal,2003,33:259-270.
    176. Shen Q, Chen C N, Brands A, Pan S M, Ho T H. The stress-and abscisic acid-induced barley geneHVA22: developmental regulation and homologues in diverse organisms.Plant MolecularBiology,2001,45(3):327-340.
    177. Sun L, Cai H, Xu W, Hu Y, Lin Z. CaMV35S promoter directs β-glucuronidase expression inGanoderma lucidum and Pleurotus citrinopileatus.Molecular Biotechnology,2002,20(3):239-244.
    178. Gillian A. Hulla, Natacha Bies, David Twellb, Michel Delseny.1996Analysis of the promoter ofan abscisic acid responsive late embryo genesis abundant gene of Arabidopsis thaliana. PlantScience,1996,114:181-192.
    179. Yamauchi D, Zentella R, Ho T H. Molecular analysis of the barley (Hordeum vulgareL.) geneencoding the protein kinase PKABA1capable of suppressing gibberellin action in aleuronelayers.Planta,2002,215(2):319-326.
    180. Hua W P, Song J, Li C Q, Wang Z Z. Molecular cloning and characterization of the promoter ofSmGGPPs and its expression pattern in Salvia miltiorrhiza.Molecular Biology Reports, Publishedonline:28December2011
    181. Shen Q, Zhang P, Ho TH. Functional dissection of an abscisic acid(ABA)-inducible gene revealstwo independent ABA-responsive complexes each containing a G-box and a novel cis-actingelement. Plant Cell,1995,7:295-307.
    182. Shen Q, Zhang P, Ho TH. Modular nature of abscisic acid (ABA) response complexes:compositepromoter units that are necessary and sufficient for ABA induction of gene expression inbarley. Plant Cell,1996,8:1107-1119.
    183. Narusaka Y, Nakashima K, Shinwari ZK, Sakuma Y, Furihata T, Abe H, Narusaka M, Shinozaki K,Yamaguchi-Shinozaki K. Interaction between two cis-acting elements ABRE and DRE,inABA-dependent expression of Arabidopsis Rd29A gene in response to dehydration andhigh-salinity stresses.Plant Journal,2003,34(2):137-148
    184. Yuichi Uno, Takashi Furihata, Hiroshi Abe, Riichiro Yoshida, Kazuo Shinozaki and KazukoYamaguchi-Shinozaki. Arabidopsis basic leucine zipper transcription factors involved in an abscisicacid-dependent signal transduction pathway under drought and high-salinity conditions. Proc. Natl.Acad. Sci. USA,2000,97:11632-11637.
    185. Song F. Goodman R M. Cloning and identification of the promoter of the tobacco Sar8.2b gene, agene involved in systemic acquired resistance.Gene,2002,290(1-2):115-124.
    186. Chen P W, Lu C A, Yu T S, Tseng T H, Wang C S, Yu S M. Rice alpha-amylase transcriptionalenhancers direct multiple mode regulation of promoters in transgenic rice.JBiol Chem,2002,277(16):13641-13649.
    187. Yamaguchi-Shinozaki, K. and Shinozaki, K. A novel cis-acting element in an Arabidopsis gene isinvolved in responsiveness to drought, low-temperature, or high-salt stress. PlantCell,1994,6:251-264.
    188. Baker S S, Wilhelm K S, Thomashow M F. The5’-region of Arabidopsis thaliana cor15a hascis-acting elements that confer cold-, drought-and ABA-regulated gene expression. PlantMolecular Biology,1994,24:701-713.
    189. Dunn M A, White A J, Vural S, Hughes M A. Identification of promoter elements in alow-temperature-responsive gene (blt4.9) from barley (Hordeum vulgare L.). Plant MolecularBiology,1998,38:551-564.
    190. Yamaguchi-Shinozaki, K., and Shinozaki, K. Transcriptional regulatory networks in cellularresponses and tolerance to dehydration and cold stress. Annu. Rev. Plant Biology,2006,57:781-803.
    191. White AJ: Molecular analysis of the low temperature and stress responsive barley gene family blt4.Ph.D. thesis, University of Newcastle upon Tyne, UK,1995.
    192. Jiang C, Lu B, Singh J. Requirement of a CCGAC cis-acting element for cold induction of theBN115gene from winter Brassica napus. Plant Molecular Biology,1996,30:679-684.
    193. Medina J, Bargues M, Terol J, Perez-Alonso M, Salinas J. The Arabidopsis CBF gene family iscomposed of three genes encoding AP2domain-containing proteins whose expression is regulatedby low temperature but not by abscisic acid or dehydration. Plant physiology,1999,119(2):463-469.
    194. Prermarti A, Bassie L, Zhu C, Christou P, Capell T. Molecular characterization of the Argininedecarboxylase gene family in rice. Transgenic Res,2010,19:785-797.
    195. Brown APC, Duun M A, Goddard N J, Hughes M A. Identification of a newlow-temperature-response element in the promoter of barley (Hordeum vulgare L.) gene blt101.1.Planta,2001,213:770-780.
    196. Urao T, Yamaguchi-Shinozaki K, Urao S, Shinozaki K. An Arabidopsis myb homolog is induced bydehydration stress and its gene product binds to the conserved MYB recognition sequence. PlantCell,1993,5:1529-1539.
    197. Yamaguchi-Shinozaki K, Shinozaki K. The plant hormone abscisic acid mediates thedrought-induced expression but not the seed-specific expression of rd22, a gene responsive todehydration stress in Arabidopsis thaliana. Molecular Genetics and Genonmics,1993,238:17-25.
    198. Chinnusamy V, Schumaker K, Zhu J K. Molecular genetic perspectives on cross talk and specificityin abiotic stress signaling in plants. Journal of Experimental Botany,2004,55:225-236.
    199. Abe H, Yamaguchi-Shinozaki K, Urao T, Iwasaki T, Hosokawa D,Shinozaki K. Role of ArabidopsisMYC and MYB homologs in drought-and abscisic acid-regulated gene expression. Plant Cell,1997,9:1859-1868.
    200. Tran L S, Nakashima K, Sakuma Y, Simpson S D, Fujita Y, Maruyama K, Fujita M, Seki M,Shinozaki K, Yamaguchi-Shinozaki K. Isolation and functional analysis of arabidopsisstress-inducible NAC transcription factors that bind to a drought-responsive cis-element in the earlyresponsive to dehydration stress promoter. Plant Cell,2004,16:2481-2498.
    201. Simpson S D, Nakashima K, Narusaka Y, Seki M, Shinozaki K, Yamaguchi-Shinozaki K. Twodifferent novel cis-acting elements of erd1, a clpA homologous Arabidopsis gene function ininduction by dehydration stress and dark-induced senescence. Plant Journal,2003,33:259-270.
    202. Zahur M, Maqbool A, Ifran M, Barozai M Y, Rashid B, Riazuddin S, Husnain T. Isolation andfunctional analysis of cotton universal stress protein promoter in response to phytohormones andabiotic stresses. Mol Biology (Mosk),2009,43(4):628-635.
    203. Ribeiro D T, Farias L P, Almeida J D, Kashiwabara P M, Alberto F C. Marcio C S F, Menck C F M,Sluys M A V.Functional characterization of the thi1promoter region from Arabidopsis thaliana.Journal of Experimental Botany,2005,56(417):1797-1804.
    204. Li J, Lu Y M, Xue L, Xie H, A structurally novel salt-regulated promoter of duplicated carbonicanhydrase gene1from Dunaliella salina. Molecular Biology Reports,2010,37:1143-1154.
    205. Woodrow P, Pontecorvo G, Ciarmiello L F, Fuggi A, Carillo P. Ttd1a promoter is involved inDNA–protein binding by salt and light stresses. Molecular Biology Reports,2011,38:3787-3794.
    206. Prabu G, Prasad D T. Functional characterization of sugarcane MYB transcription factor genepromoter (PScMYBAS1) in response to abiotic stresses and hormones.Plant Cell Rep,Published online,15November2011
    207. Schoffl F, Raschke E, Nagao R T. The DNA sequence analysis of soybean heat-shock genes andidentification of possible regulatory promoter elements. EMBO J,1984,3:2491-2497.
    208. Schoffl F, Rieping M, Baumann G, Bevan M, Anger muller S. The function of plant heat shockpromoter elements in the regulated expression of chimeric genes in transgenic tobacco. MolecularGenetics and Genomics,1989,217:246-253.
    209. Liu A Y-C, Lin Z, Choi H S., Sorhage F, Li B. Attenuated induction of heat shock gene expressionin aging diploid fibroblasts. J Biol Chem,1989,264,12037-12045.
    210. Prandl R, Schoffl F. Heat shock elements are involved in heat shock promoter activation duringtobacco seed maturation.Plant Molecular Biology,1996,31:157-162.
    211. Coca M A, Almoguera C, Tomas T L. Differential regulation of small heat-shock genes in plants:analysis of a water-stress-inducible and developmentally activated sunflower promoter.PlantMolecular Biology,1996,31:863-876.
    212. Rojas A, Almoguera C, Jordano J. Transcriptional activation of a heat shock gene promoter insunflower embryos: synergism between ABI3and heat shock factors. PlantJournal,1999,20:601-610.
    213. Rojas A, Almoguera C, Carranco R. Selective activation of the developmentally regulatedhahsp17.6G1promoter by heat stress transcription factors.Plant Physiology,2002,129:1207-1215.
    214. An G, Costa M A, Ha S B. Nopaline synthase promoter is wound inducible and auxin inducible.Plant Cell,1990,2:225-233.
    215. Clarke H R, Davis J M, Wilbert S M, Bradshaw H D J, Gordon M P. Wound-induced anddevelopmental activation of a poplar tree chitinase gene promoter in transgenic tobacco. PlantMolecular Biology,1994,25(5):799-815.
    216. Li H, Zhu Q, Bai Y Y. Wound-induced transcription of a new rice chitinase gene and deletionanalysis of its promoter.Acta Biologiae Experimentalis Sinica,1997,30(4):431-436(in Chinese).
    217. Zhu Q, Doerner P W, Lamb C J. Stress induction and developmental regulation of a rice (Oryzasativa) chitinase gene promoter in transgenic tobacco.Plant J.,1993,3:203-212.
    218. Wang S J, Lan Y C, Chen S F, Chen Y M, Yeh K W. Wound-response regulation of the sweet potatosporamin gene promoter region. Plant Moecularl Biology.2002,48(3):223-231.
    219. Asao H, Yoshida K, Nishi Y, Shinmyo A. Wound-response cis-element in the5’-Upstream region ofCucumber Ascorbate Oxidase gene. Biosci Biotechnol Biochem,2003,67(2):271-277.
    220. Xu W R, Yu Y H, Zhou Q, Ding J H, Dai L G, Xie X Q, Xu Y, Zhang CH H, Wang Y J. Expressionpattern, genomic structure, and promoter analysis of the gene encoding stilbene synthase fromChinese wild Vitis pseudoreticulata. Journal of Experimental Botany,2011,62(8):2745-2761.
    221. Yu G H, An G. Regulatory roles of benzyl adenine and sucrose during wound response of theribosomal protein gene, rpL34. Plant Cell and Environment,2000,23:1363-1371.
    222. Joan E G, William R B. Isolation of a ubiquitin-ribosomal protein gene (ubi3) from potato andexpression of its promoter in transgenic plant.Plant Molecular Biology,1995,24(1):119-127.
    223. Palm C J, Costa M A, An G, Ryan C A. Wound-inducible nuclear protein binds DNA fragments thatregulate a proteinase inhibitor II gene from potato. Proc Natl Acad Sci USA,1990,87:603-607.
    224. Jorda L, Vera P. Local and systemic induction of two defense-related subtilisin-like proteasepromoters in transgenic Arabidopsis plants.Luciferin induction of PR gene expression.PlantPhysiol.,2000,124(3):1049-1058.
    225. Belbahri L, Boucher C, Candresse T. A local accumulation of the Rolstonia solonocearum PopAprotein in transgenic tobacco renders a compatible plant pathogen interaction in compatible. PlantJpurnal,2001,28(4):419-426
    226. Ayliffe M A, Roberts J K, Mitchell H J, et al. A plant gene up regulated at rust infection sites. PlantPhysiology,2002,129(1):169-177
    227. Biegalke B J. Regulation of human cytomegalovirus US3gene transcription by a cis-repressivesequence.J Virol,1995,69(9):5362-5367.
    228. Xu N, Hagen G, Guilfoyle T, Multiple auxin response modules in the soybean SAUR15A promoter,Plant Sci.1997,126:193-201.
    229. Goda H, Sawa S, Asami T, Fujioka S, Shimada Y, Yoshida S, Comprehensive comparison ofauxin-regulated and brassinosteroid-regulated genes in Arabidopsis, Plant Physiology.2004,134:1555-1573.
    230. Xiong L M., Karen S S., Zhu J K. Cell signaling during cold, drought, and salt stress, The Plant CellSupplement,2002,14:165-183.
    231. Qi X T, Zhang Y X, Chai T Y. Characterization of a Novel Plant Promoter Specifically Induced byHeavy Metal and Identification of the Promoter Regions Conferring Heavy Metal Responsiveness.Plant Physiology,2007,143(1):50-59.
    232. Ren Y J, Jie Z. Functional analysis of the rice metallothionein gene OsMT2b promoter in transgenicArabidopsis plants and rice germinated embryos. Plant Science,2009,176:528-538.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700