用户名: 密码: 验证码:
视觉导航式智能车辆横向与纵向控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
智能车辆(Intelligent Vehicle, Ⅳ)是车辆工程领域的研究前沿和未来汽车工业发展的新方向,其智能化集中体现在自动驾驶方面,是许多高新技术综合集成的载体。严峻的交通安全问题使得智能车辆作为智能交通系统(Intelligent Transportation System,ITS)的一个重要组成部分日益受到重视。
     运动控制是智能车辆研究领域中的核心问题之一,是其他相关研究的基础,且始终是智能车辆研究领域的热点,其研究内容主要包括横向控制和纵向控制。由于智能车辆为非完整运动约束系统,且具有高度非线性动态特性以及参数的不确定性等特点,因此如何设计可有效克服车辆非线性和参数不确定性等特性的横向及纵向运动控制策略,便成为实现智能车辆自主导航的重点和难点,具有深远的研究意义。针对此问题,本文以大连理工大学汽车工程学院自主研制开发的DUTIV-Ⅰ实验型智能车辆为试验研究平台,开展了智能车辆横向及纵向运动控制方法的研究,主要工作归纳如下:
     (1)设计视觉系统获取路径信息的图像处理算法
     阐述了DUTIV-Ⅰ智能车辆视觉系统的总体设计方案,探讨了DUTIV-Ⅰ智能车辆视觉系统CCD摄像机相关参数的选取原则,设计了智能车辆视觉系统获取路径信息的图像处理算法,为智能车辆导航控制提供了准确的路径信息。
     (2)建立用于横向及纵向运动控制系统仿真研究的车辆动力学模型
     针对智能车辆横向及纵向运动控制研究的特点以及本文试验车辆的结构,以试验车辆的基本数据为基础,采用分层模块化的思想建立了能够反映智能车辆主要运动状态、轮胎模型耦合特性和传动系统非线性特性的15自由度非线性车辆模型,包括:发动机模型、液力变矩器及自动变速器模型、制动系统模型、传动系统模型、车轮动力学模型、轮胎模型、整车模型、悬架模型、执行器模型。通过典型工况仿真与实车试验对比对本文建立的车辆模型进行了模型验证,结果表明,本文建立的车辆仿真模型可以准确描述车辆的动力学特性,具有较高的仿真精度,为智能车辆横向及纵向控制研究提供了准确的模型基础。
     (3)基于遗传算法的智能车辆横向模糊控制研究
     以视觉导航式智能车辆为研究对象,建立了视觉导航式智能车辆的横向控制模型,采用根轨迹法分析了预瞄距离和速度对横向控制系统的影响,设计了预瞄距离是速度一次函数的计算模型,从而优化了视觉系统获取的路径信息数据。针对智能车辆具有高度非线性动态特性及参数不确定性等特点,设计了由用于补偿参考路径曲率扰动的前馈控制器和模糊反馈控制器组成的可模拟人类驾驶行为的横向控制系统。考虑到采用试探方法或不断积累的经验来确定模糊控制隶属度函数参数和控制规则,难以根据系统特性进行自适应调整,易产生稳态误差,提出基于遗传算法的智能车辆模糊反馈控制策略,通过遗传算法对模糊反馈控制器的隶属度函数参数和控制规则进行自动优化,有效地确定出模糊反馈控制器的隶属度函数和控制规则。采用Popov-Lyapunov方法证明了横向模糊反馈控制系统的稳定性。在基于遗传优化的模糊反馈控制器的基础上,提出了基于速度分区的分层控制系统,提高了横向控制系统对速度变化的自适应能力。仿真结果表明,本文提出的横向控制算法具有良好的动态和稳态性能。
     (4)智能车辆纵向自适应模糊滑模控制研究
     首先建立用于纵向控制系统设计的智能车辆非线性纵向动力学控制模型;其次,采用经典PID控制方法设计纵向控制系统的上位控制器;再次,在完成纵向控制系统上位控制器设计的基础上,针对纵向动力学模型具有较大的参数不确定性、外界干扰和时滞等特性,采用自适应模糊滑模控制(Adaptive Fuzzy Logic Slide Mode Control, AFLSMC)方法设计纵向控制系统的下位控制器,利用模糊逻辑调节滑模控制增益系数和边界层厚度,可有效提高控制器的动态性能,实现对速度的快速和准确的跟踪控制;然后,基于Lyapunov方法对纵向控制系统的稳定性进行了证明,可保证纵向控制系统的稳定性。最后,构造了油门控制与制动控制的切换标准,避免油门执行器和制动执行器之间的频繁切换。仿真结果表明,本文所提出的纵向控制算法可保证油门执行器与制动执行器之间的平滑过渡,且能够实现智能车辆纵向模型存在较大参数不确定性和外部干扰时纵向运动合理、准确控制。
     (5)横向控制算法与纵向控制算法的实车试验
     为进一步验证文中所提出方法的有效性和准确性,应用课题组研发的DUTIV-Ⅰ智能车辆实验平台,针对横向路径跟踪控制和纵向速度跟踪控制中的部分典型工况,分别对文中设计的智能车辆横向运动控制系统和纵向运动控制系统性能进行试验研究。结果表明,基于本文方法所完成的智能车辆横向运动控制系统和纵向运动控制系统表现出良好的动态性能、稳态跟踪精度和鲁棒性能。
Intelligent Vehicles (IV)which are the integrated carriers of many advanced high-new technologies, are the research frontier of the vehicle engineering and will become a new direction for future development of automobile industry, and their intelligence is mainly incarnated in the automatic navigation. As an important subsystem of the Intelligent Transportation System (ITS), intelligent vehicles have attracted more and more attentions due to the critical traffic safety problems.
     Navigation control is a key problem in the field of intelligent vehicles research, and it is a research hotspot and the basis of other relevant research. The research contents of navigation control mainly include lateral motion control and longitudinal motion control. Because intelligent vehicles are the nonholonomic motion constraint system, and have highly nonlinear dynamic characteristics and parametric uncertain properties, therefore, how to design the lateral and longitudinal motion control strategy, which can effectively overcome the characteristics of vehicle nonlinear and parameter uncertainties, is the emphasis and difficulty of IV automatic driving and has profound research significance. To solve this problem, in this paper, lateral and longitudinal motion control of intelligent vehicles are studied based on a prototype intelligent vehicle DUTIV-I, which is taken as the platform for experimental research and developed by the School of Automotive Engineering of Dalian University of Technology. The research work of this thesis consists of the following major parts:
     (1) Image processing algorithms of path information obtained by vision system are designed
     An overall design scheme of DUTIV-I's vision system is descirbed, the selection principle of relevant parameters for CCD camera of DUTIV-I's vision system is explored, and image processing algorithms of path information obtained by vision system are designed to provide accurate path information for intelligent vehicle navigation control.
     (2) A vehicle dynamic model is established for simulation research on lateral and longitudinal control system
     In view of the characteristic features of lateral motion control and longitudinal motion control of intelligent vehicle and the structure of the prototype vehicle DUTIV-I, a15degree-of-freedom nonlinear vehicle model which can accurately reflects the vehicle main movement states, the coupling characteristics of the tire model and the nonlinear characteristics of transmission system, is constructed by modularization method based on the basis data of the prototype vehicle. It is composed of engine model, hydraulic torque converter model, automatic transmission model,power train model, brake system model, wheel dynamics model, tire model, vehicle body model, suspension model and actuators model. The verification of established vehicle model is carried out by the simulation and experimental comparison under typical working conditions. The results show that the established vehicle model can accurately describe the vehicle dynamical characteristics and has the high simulation precision, which provides a reliable foundation for researching on lateral and longitudinal control.
     (3) Study on lateral fuzzy control of intelligent vehicle using genetic algorithms.
     A vision-based navigation of intelligent vehicle is taken as research object, and the lateral motion control model of vision-based navigation intelligent vehicle is established, which can describe the lateral motion behavior of intelligent vehicles. On this basis, the influence of look-ahead distance and speed on lateral control system is analyzed using root locus method, and the formula of look-ahead distance as a linear function of speed is established, which can optimize the path information data obtained by vision system. Aiming at highly nonlinear and parametric uncertain properties of non-holonomic intelligent vehicles, an automatic lateral controller consisting of a fuzzy feedback control law which can imitate human driving behavior and a feed-forward control law used to offset the disturbance of the curvature of reference paths is designed. In view of the membership functions and rules base designed either by experts knowledge, or iteratively by trial-and error are difficult to adaptive adjust according to the system characteristics and easy to produce overshoot or/and steady-state error. To confront this difficulty, the lateral fuzzy feedback control strategy of intelligent vehicles based on genetic algorithms is proposed. The membership functions and rules base of fuzzy feedback control law are automatically optimized and effectively determined by genetic algorithms. The stability of this fuzzy feedback control system is proved by Popov-Lyapunov. On this basis, the hierarchical control structure of fuzzy feedback control law according to driving speed, and in different layers fuzzy feedback controller is designed via genetic algorithms to optimize the parameters of membership functions and rules, which can effectively improve the adaptive ability lateral control system to the change of speed. The simulation results demonstrate the lateral control system proposed by this paper has better stable and dynamic performance.
     (4) Study on longitudinal adaptive sliding-mode control of intelligent vehicle using via fuzzy-logic.
     Firstly, the longitudinal nonlinear dynamic control model of intelligent vehicle is established which is used for the design of longitudinal control system. Secondly, the upper level controller of longitudinal control system is designed by classic PID control method. On the basis of upper level controller, aiming at the large parametric uncertain, external disturbance and time delay properties of longitudinal dynamic control model, the lower level controller of longitudinal control system is designed by adaptive fuzzy sliding mode control method, and the gain coefficients and boundary layers of sliding-mode control are adaptive tuned by fuzzy logic, which can effectively improve the performance and eliminate the chattering phenomenon, consequently, the vehicle speed can be controlled rapidly and exactly by proposed method. Then, the stability of the closed-loop longitudinal control system is proved by Lyapunov method. Finally, the switching criterion between the throttle actuator and brake actuator is presented, which can guarantee the smooth switching between throttle actuator and brake actuator. The simulation results demonstrate that the proposed control algorithm can guarantee the smooth transitions between throttle actuator and brake actuator and implement the rational and accurate control of longitudinal motion in presence of large model uncertainties and external distribution.
     (5) Experimental study on lateral and longitudinal control algorithms proposed by this paper.
     To further verify the effectiveness and accuracy of lateral and longitudinal control algorithms proposed this paper, aiming at the typical working conditions of lateral path tracking control and longitudinal speed tracking, the experimental tests of lateral motion control system and longitudinal motion control system of intelligent vehicle are carried out using the prototype vehicle DUTIV-I, respectively. The experimental results indicate that the lateral motion control system and longitudinal motion control system based on proposed method exhibit the better characteristics dynamic of dynamic response, tracking precision and robustness.
引文
[1]World Health Organization. World health statistics 2008:Report of WHO Scientific Group[R]. Geneva:WHO,2008.
    [2]徐友春,王荣本,李兵,等.世界智能车辆近况综述[J].汽车工程,2001,23(5):289-295.
    [3]HAMMOND G C. Evolution AGVS-from concept to present reality [C]//Proceeding of AGVEB, IFS Ltd, UK,1986:2-9.
    [4]SHLADOVER S E. PATH at 20-history and major milestones [J]. IEEE Transactions on Intelligent Transportation Systems,2007,8 (4):584-592.
    [5]布洛基,布图兹著,王武宏译.智能车辆—智能交通系统的关键技术[M].北京:人民交通出版社,2002.
    [6]BROGGI A. Automatic Vehicle Guidance:The Experience of the Argo Autonomous Vehicle [M]. World Science Publishing Co.Ltd,1999:25-32.
    [7]AUFRERE R, GOWDY J, MERTZ C, et al. Perception for collision avoidance and autonomous driving [J]. Mechatronics,2003,13 (10):1149-1161.
    [8]CARLSON J D. Mapping large, urban environments with GPS-Aided SLAM [D]. Robotics Institute, Carnegie Mellon University,2010.
    [9]BROGGI A, BUZZONI M, FELISA M, et al. Stereo obstacle detection in challenging environments:The VIAC experience[C]//2011 IEEE International Conference on Intelligent Robotics and Systems, San Francisco, USA, September 25-30, 2011:1599-1604.
    [10]BUZZONI M, BROGGI A, CARDARELLI E, et al.VIAC expedition toward autonomous mobility[J]. IEEE Robotics and Autonomous Magazine,2011,18 (3):120-124.
    [11]THRUN S, MONTEMERLO M, DAHLKAMP H, et al. Stanley:The Robot that won the DARPA Grand Challenge [J]. Journal of Field Robotics,2006,23 (9):661-692.
    [12]MASON R, RADFORD J, KUMAR D, et al. The Golem Group/University of Califoria at Los angeles autonomous ground vehicle in the DARPA Grand Challenge [J]. Journal of Field Robotics,2006,23 (8):527-553.
    [13]KAMMEL S, ZIEGLER J, PITZER B, et al. Team AnnieWAY's autonomous system for the 2007 DARPA Urban Challenge [J]. Journal of Field Robotics,2008,25 (9):615-539.
    [14]MONTEMERLO M, BECKER J, BHAT S, et al. Junior:The Stanford entry in the Urban Challenge [J]. Journal of Field Robotics,2008,25 (9):569-597.
    [15]TAKAHASHI A, ASANUMA N. Introduction of HONDA ASV-2, Proceedings of the IEEE Intelligent Vehicles Symposium, Dearborn, USA, October 3-5,2000:694-701.
    [16]BLACKMAN C P. The ROVA and MARDI projects[C]//IEE Colloquium on Advanced Robotic Initiatives in the UK,1991:1-3.
    [17]KIM K I, OH S Y, KIM S W, et al. An Autonomous Land Vehicle PRV Ⅲ [C]//Proceedings of the Intel ligent Vehicles Symposium, Tokyo, Japan, September,19-20,1996:159-164.
    [18]孙振平,安向京,贺汉根.CITAVT-Ⅳ-视觉导航的自主车[J].机器人,2002,24(2):116-121.
    [19]李兵,何克忠,张朋飞.自主轮式机器人THMR-V (?)勺混合模糊逻辑控制[J].机器人,2003,25(6):540-543.
    [20]马雷.高速智能车辆滑模变结构转向控制系统的研究[D].长春:吉林大学交通学院,2003.
    [21]刘铁,郑南宁.基于变形模板和遗传算法的道路检测方法[J].模式识别与人工智能,2004,17(3):32-34.
    [22]LI Q, ZHENG N N, CHENG H. Springrobot:a prototype autonomous vehicle and its algorithms for lane detection [J]. IEEE Transactions on Intelligent Transportation Systems,2004,5(4):300-308.
    [23]HAYAKAWA Y, WHITE R, KIMURA T, et al.Driver-compatible steering system for wide speed-range path following[J]. IEEE/ASME Transactions on Mechatronics,2004,9 (3):545-552.
    [24]CREMEAN L B, FOOTE T B, GILLUA J H, et al. Alice:An Information-Rich Autonomous vehicle for highway-speed desert navigation [J]. Journal of Field Robotics,2006, 23 (9):777-810.
    [25]NETTO M, BLOSSVILLE J M, LUSETTI B, et al. A new robust control system with optimized use of the lane detection data for vehicle full lateral control under strong curvatures[C]//IEEE Intelligent Transportation Systems Conference, September 17-20,2006:1382-1387.
    [26]孙振平.自主驾驶汽车智能控制系统[D].长沙:国防科技大学研究生院,2004.
    [27]赵熙俊,陈慧岩.智能车辆路径跟踪横向控制方法的研究[J].汽车工程,2011,33(5)383-387.
    [28]PENG H, TOMIZUKA M. Optimal preview control for vehicle lateral guidance[R]. PATH Research Report UCB-ITS-PRR-91-16, Berkeley:Univ. of California,1991
    [29]PENG H, TOMIZUKA M. Preview control for vehicle lateral guidance in highway automation [J]. Journal of Dynamic Systems, Measurement and Control,1993,115 (4):679-686.
    [30]王荣本,李兵,徐友春,等.基于视觉的智能车辆自主导航最优控制器设计[J].汽车工程,2001,23(2):98-100.
    [31]马莹,李克强,高峰,等.改进的有限时间最优预瞄横向控制器设计[J].汽车工程,2006,28(5):434-438.
    [32]Wang J Y, Tomizuka M. Robust H_∞ lateral control of heavy-duty vehicles in automated highway system[C]//Proceedings of the American control conference, San Diego, USA, June 2-4,1999:3671-3675.
    [33]GANZELMEIER L, HELBIG J, SCHNIEDER E. Robustness and performance advanced control of vehicle dynamics [J].IEEE Intelligent Transportation Conference Proceedings, Oakland, USA, August 25-29,2001:798-801.
    [34]EOM S I, KIM E J, SHIN T Y. The Robust Controller Design for Lateral Control of Vehicles[C]//IEEE international Conference on advanced intelligent Mechatronics, Kobe, Japan, July 20-24,2003:570-573.
    [35]TAN H S, BU F, BOUGLER B. A Real-world Application of lane guidance technologies automated snowblower [J]. IEEE Transactions on Intelligent Transportation systems, 2007,8 (3):538-548.
    [36]TAYLOR C J, KOSECKA J, BLASI R, et al. A Comparative study of vision based lateral control strategies for autonomous highway driving [J]. International Journal of Robotics Research,1999,18 (5):442-453.
    [37]HUANG J, TOMIZUKA M. LTV Controller design for vehicle lateral control under fault inrear sensors [J].IEEE Transactions on Mmechatronics,2005,10 (1):1-7.
    [38]RAJAMANI R, ZHU C, ALEXANDER L. Lateral control of a backward driven front-steering vehicle [J]. Control Engineering Practice,2003,11 (5):531-540.
    [39]陈扬,刘大学,贺汉根,等.基于车辆动力学的轨迹跟踪器设计[J].中国工程科学,2007,9(11):69-73.
    [40]CHOI S B. [J]. IEEE Transactions on vehicular technology,2000,29 (6):2257-2269.
    [41]NETTO M S, CHAIB S, MAMMAR S. Lateral adaptive control for vehicle lane keeping[C]//Proceeding of the American Control Conference, Boston, Massachusetts, June 30-July 2,2004:2693-2698.
    [42]SAIFIZUL A A, ZAINON M Z, OSMAN N A. An ANFIS controller for vision based lateral vehicle control system[C]//International Conference on Control, Automation, Robotics and Vision, Singapore, December,5-8,2006:1-4.
    [43]ACKERMAN J, GULDNER J, SIENEL W, et al. Linear and nonlinear controller design for robust automatic steering [J]. IEEE Transactions on Control Systems Technology, 1995,3 (1):132-143.
    [44]TAI M, TOMIZUKA M. Experimental study of lateral control of heavy vehicles for automated highway systems[C]//Proceedings of the American Control Conference, Anchorage, AK, May,8-10,2002:851-865.
    [45]王荣本,马雷,施树明,等.高速智能车辆变结构转向控制器切换超平面选取方法[J].机械工程学报,2004,40(10):83-86.
    [46]龚建伟,陆际联,黄文宇.轮式移动机器人航向跟踪预估控制算法[J].机器人,2001,23(3):194-197.
    [47]FALCONE P, BORRELLI F, ASGARI J. Predictive active steering control for autonomous vehicle systems[J]. IEEE Transactions on Control Systems Technology,2007,15 (3):566-580.
    [48]HESSBURG T, TOMIZUKA M. Fuzzy logic control for lateral vehicle guidance [J]. IEEE Control System,1994,14 (4):55-63.
    [49]TRABIA M B, SHI L Z, HODGE N E. A fuzzy logic controller for autonomous wheeled vehicles [J], Mobile Robots, Moving intelligence,2006:176-200.
    [50]WU S J, CHIANG H H, PERNG J W, et al. The heterogeneous systems integration design and implementation for lane keeping on a vehicle [J]. IEEE Transactions on intelligent transportation systems,2008,9 (2):246-263.
    [51]PEREZ J, MILANES V, ONIEVA E. Cascade Architecture for lateral control in autonomous vehicles [J]. IEEE Transactions on Intelligent transportation systems, 2011,12 (1):73-82
    [52]BROGGI A, BERTOZZI M, FASCIOLI A, et al.The ARGO Autonomous vehicle's vision and control systems [J]. International journal of Intelligent Control and Systems,1999, 3 (4):409-441
    [53]ENACHE N M, MAMMAR S, NETTO M, et al. Driver steering assistance for lane-departure avoidance based on hybrid automata and composite lyapunov function [J]. IEEE Transaction Intelligent transportation systems,2010,11 (1):28-39.
    [54]SOTELO M A. Lateral control strategy for autonomous steering of Ackerman-like vehicles [J]. Robotics and Autonomous Systems,2003,45 (3):223-233.
    [55]郭景华,胡平,李林辉,等.智能车辆横向混合切换控制器设计[J].农业机械学报,2012,2(43):1-5.
    [56]HEDRICK J K, MCMAHON D H. Vehicle modeling and control for automated highway systems[R]. PATH Research Report UCB-ITS-PRR-93-24, Berkeley:University of California,1994.
    [57]HOYONG K. An intelligent control of vehicle dynamic systems by artificial neural network [D].Doctoral dissertation, Berkeley:university of California,1994.
    [58]KACHROO P, TOMIZUKA M, AGOGINO A M. A comprehensive strategy for longitudinal vehicle control with fuzzy supervisory expert system[C]//IEEE international conference on systems, Man and Cybernetics, Vancouver, Canada, October 22-25, 1995:765-770.
    [59]ZALILA Z, LEZY P. Longitudinal control of an autonomous vehicle through a hybrid fuzzy/classical control[C]//Conference Record on WESCON/94. 'Idea/Microelectronics', Anaheim, USA, September 27-29,1994:118-124.
    [60]FERRARA A, PISU P. Minimum sensor second-order sliding mode longitudinal control of passenger vehicles [J]. IEEE Transactions on Intelligent Transportation systems, 2004,5 (1):20-32.
    [61]FERRARA A, VECCHIO C. Second order sliding mode control of vehicles with distributed collision avoidance capabilities [J]. Mechatronics,2009,19 (4):471-477.
    [62]FRITZ H. Neural speed control for autonomous road vehicles [J]. Control Engine Practice,1994,4 (4):507-512.
    [63]TOULOTTE P F, DELPRAT S, GUERRA T M. Vehicle spacing control using robust fuzzy control with pole placement in LMI region [J]. Engineering Application of Artificial Intelligence,2008,21 (5):756-768.
    [64]PENG Y. Adaptive intelligent backstepping longitudinal control of vehicle platoons using output recurrent cerebellar model articulation controller [J]. Expert Systems with Applications,2010,37 (3):2016-2027.
    [65]李果,张良起,张彭.汽车纵向控制系统的研究与设计[J].自动化学报,1996,22(5)582-586.
    [66]林粤彤,王飞跃,肖靖.基于模糊神经元网络的智能车辆人性自动驾驶系统的设计与实现[J].自动化学报,2001,27(4):432-542.
    [67]李贻斌,阮久宏,李彩虹,等.智能车辆的纵向运动控制[J].机械工程学报,2006,42(11):95-102.
    [68]宾洋,李克强,于建强,连小珉低速行驶重型车辆的动力学建模与非线性控制[J].自动化学报,2007,33(3):266-272.
    [69]宾洋,李克强,冯能莲.车辆全速巡航系统的干扰解耦鲁棒控制[J].中国科学E辑:技术科学,2009,29(12):1963-1982.
    [70]KURAGAKI S, KURODA H, MINOWA T, et al. An adaptive control using wheel torque management technique[C]. SAE paper 980606,1998.
    [71]LIANG H, CHONG K T, NO T S, et al. Vehicle longitudinal brake control using variable parameter sliding control [J]. Control Engineering Practice,2003,11 (4):403-411.
    [72]侯德藻.汽车纵向主动避撞系统的研究[D].北京:清华大学汽车工程系,2004.
    [73]YI K, Hong J, Kwon Y D. A vehicle control algorithm for stop and go cruise control [C]. Proceedings of the Institution of Mechanical Engineers, Part D:Journal of Automobile Engineering,2001:1099-1115.
    [74]GERDES J C, HEDRICK J K. Vehicle speed and spacing control via coordinated throttle and brake actuation[J]. Control Engineering Practice,1997,5 (11):1607-1614.
    [75]NOUVELIERE L, MAMMAR S. Experimental vehicle longitudinal control using a second order sliding mode technique [J]. Control Engineering Practice,2007,15 (8) 943-954.
    [76]侯德藻,高锋,李克强,等.基于模型匹配方法的汽车主动避撞下位控制系统的研究[J].汽车工程,2003,25(4):399-402.
    [77]GAO F, Li K Q. Hierarchical switching control of longitudinal acceleration with large uncertainties [J]. International journal of Automotive Technology,2006,8 (3):351-359.
    [78]高锋,李家文,李克强.大模型不确定性下的汽车纵向加速度分层切换控制[J].中国机械工程,2007,18(5):495-499.
    [79]LU X, HEDRICK J K. Longitudinal control design and experiment for heavy-duty trucks[C]//Proceedings of the American Control Conference, Colorado, USA, June 4-6, 2003:36-41.
    [80]YI K, MOON I, KWON Y. A vehicle-to-vehicle distance control algorithm for stop and go cruise control[C]//IEEE Intelligent Transportation Systems Conference, Oakland, USA, August 25-29,2001:478-482.
    [81]SETO Y, MURAKAMI T, INOUE H, et al. Development of a headway distance control system [C].SAE Paper 980616,1998.
    [82]YAMAMURA Y, TABE M, KANEHIRA M, et al. Development of an adaptive cruise control system with stop and go capability[C]. SAE Technical paper,2001-01-0798.
    [83]CANALE M, MALAN S. Tuning of stop and go driving control strategies using driver behavior analysis[J]. IEEE Intelligent Vehicle Symposium, Versailles, France, June 17-21,2002:407-412
    [84]VENHOVENS P, NAAB K, ADIPRASITO B. Stop and go Cruise Control [C]//Proceedings of FISITA world automotive congress, Seoul,Korea, June 12-15,2000:1-8.
    [85]ZHANG L, WANG J, YAN F, et al. A Quantification Method of driver Characteristics based on driver Behavior questionnaire[C]//2009 IEEE Intell igent Vehicle Symposium, Xian, China, June 3-5,2009:616-620.
    [86]蔡自兴,贺汉根,陈虹.未知环境中移动机器人导航控制理论与方法[M].北京:科学出版社,2009.
    [87]游峰.智能车辆自动换道与自动超车控制方法的研究[D].长春:吉林大学交通学院,2005.
    [88]FOSBURY A. Control and Kalman Filtering for relative Dynamics of a Formation of Uninhabited Autonomous Vehicles [M].New York:State University of New York at Buffalo,2006.
    [89]DONN H. MCMAHON, HEDRICK J K. Longitudinal Model Development for Automated Road vehicles[R]. California PATH Research report, University of California at Berkeley, UCB-ITS-PRR-89-5,1989.
    [90]YI J, HOWELL A, HOROWITZ R, et al. Fault detection and handling for longitudinal control[R]. California PATH Research report, University of California Berkeley, UCB-ITS-PRR-2001-21,2001.
    [91]SHARAF A M, RAHNEJAT H, KING P D. Analysis of handing characteristic of all-wheel-drive off-road vehicles [J]. International journal of Heavy Vehicle Systems,2008,15 (1):89-106.
    [92]余志生,汽车理论[M].北京:清华大学出版社,2006.
    [93]BAKKER E, NYBORG L, PACEJKA H B. Tyre modeling for use in vehicle dynamics studies[C]. SAE Technical Paper,870421,1987.
    [94]BAKKER E, PACEJKA H B, LINDER L. A New Tire Model with an Application in Vehicle Dynamics Studies[C]. SAE Technical Paper,890087,1989.
    [95]PACEJKA H B, BAKKER E. The magic formula tyre model [J]. Vehicle System Dynamics, 1992,21 (1):1-18.
    [96]PACEJKA H B, BESSELINK I J M. Magic Formula tyre model with transient properties [J]. Vehicle System Dynamics,1997,27 (1):65-79.
    [97]郭孔辉.轮胎侧倾力学特性模型[J].汽车技术,1993,(10):1-4.
    [98]GUO K, REN L. A unified semi-empirical tire model with higher accuracy and less parameter[C]. SAE Technical Paper,990785,1999.
    [99]GUO K, REN L. A non-steady and non-linear tire model under large lateral slip condition[C]. SAE Technical Paper,2000-01-0358,2000.
    [100]赵建.轻型越野汽车牵引力/制动力控制系统研究[D].长春:吉林大学汽车工程学院,2007.
    [101]喻凡,林逸.汽车动力学[M].北京:机械工业出版社,2005.
    [102]李彦俊,张科.系统辨识理论及应用[M].北京:国防工业出版社,2003.
    [103]MITSCHKE M, WALLWNTOWITZ H. Dynamik der Kraftfahrzeuge[M]. Verlag:Berlin Heidelberg,2004.
    [104]KOSECKA J, BLASI R, TAYLOR C J, et al. Vision-based lateral control of vehicles[C]//IEEE Conference on Intelligent Transportation System, Boston, USA, Nov,9-12,1997:900-905.
    [105]MALAN S, MILANESE M, BORODANI P, et al. Lateral control of autonomous electric cars for relocation of public urban mobility fleet [J]. IEEE Transactions on Control Systems Technology,2007,15 (3):590-598.
    [106]HATIPOLU C, OZGUNER U, KEITH A, et al. Automated lane change controller design[J]. IEEE Transactions on Intelligent Transportation Systems,2003,4 (1):13-22.
    [107]安部正人著,陈辛波译.汽车的运动和操纵[M].北京:机械工业出版社,1998.
    [108]胡寿松.自动控制原理[M].北京:科学出版社,2001.
    [109]DONG W. On trajectory and force tracking control of constrained mobile manipulators with parameter uncertainty [J]. Automatic,2002,38 (9):1475-1484.
    [110]FUKAO T, NAKAGAWA H, ADACHI N. Adaptive tracking control of a nonholomic mobile robot[J]. IEEE Transactions on Robotics and Auromation,2000,16 (5):609-615.
    [111]LEE C C. Fuzzy logic in control systems:fuzzy logic controller-part Ⅰ [J]. IEEE Transactions on systems, Man, and Cybernetics,1990,20 (2):419-435.
    [112]RAIMODNI F M, MELLUSO M. Fuzzy motion control strategy for cooperation of multiple automated vehicles with passengers comfort[J]. Automatica,2008,44 (11):2804-2816.
    [113]HODGE N E, SHI L Z, TRABIA M B. A distributed fuzzy logic controller for an autonomous vehicle [J]. Journal of Robotic Systems,2004,21 (10):495-416.
    [114]姜长生,王从庆,魏海坤等.智能控制与应用[M].北京:科学出版社,2007.
    [115]GOLDBERG D E. Genetic Algorithms in Search, Optimization, and Machine Learning [M]. Addison Wesley, New York,1989.
    [116]POURSAMAD A, MORTAZAVI M. Design of genetic-fuzzy control strategy for parallel hybrid electric vehicles [J]. Control Eng Practice,2008,16 (7):861-873.
    [117]BABAEI A R, MORTAZAVI M, MORADI M H. Classical and fuzzy-genetic autopilot design for unmanned aerial vehicles [J]. Applied Soft Computing,2011,11 (1):365-372.
    [118]SHARKAWY A B. Genetic fuzzy self-tuning PID controllers for antilock braking systems [J]. Engineering Applications of Artifical Intelligence,2010,23 (7):1041-1052.
    [119]POURSAMAD A, Mortazavi M. Design of genetic-fuzzy control strategy for parallel hybrid electric vehicles [J]. Control Engineering Practice,2008,16 (7):861-873.
    [120]诸静.模糊控制理论与系统原理[M].北京:机械工业出版社,2005.
    [121]谈庆明.量纲分析[M].合肥:中国科学技术大学出版社,2005.
    [122]ONIEVA E, NARANJO J E, MILANES V. Automatic lateral control for unmanned vehicles via genetic algorithms[J]. Applied soft Computing,2011,11 (1):1303-1309.
    [123]王立新.模糊系统与模糊控制[M].北京:清华大学出版社,2003.
    [124]CHOI J J. Fuzzy parameter adaption in neural systems[C]//Proceedings of International Joint on Neural Networks, Baltimore, USA, Jun,7-11,1992:232-238.
    [125]CHEN C T, PENG S T. Intelligent process control using neural fuzzy techniques [J]. Journal of Process Control,1999,9 (6):493-503.
    [126]MOK T K, LIU H, NI Y, etal. Tuning the fuzzy damping controller for UPFC through genetic algorithm with comparison to the gradient descent training [J]. Electrical Power and Energy Systems,2005,27 (4):275-283.
    [127]LIQUAN Z, CHENG S. Designing fuzzy inference system based on improved gradient descent method [J]. Journal of Systems Engineering and Electronics,2006,17 (4):852-863.
    [128]NYONGESA H O, Genetic algorithms for fuzzy control [C]//IEE Proceedings on Control Theory and applications,1995,142 (3):177-185.
    [129]黄友锐.智能优化算法及其应用[M].北京:国防工业出版社,2008.
    [130]CAI L, RAD A B, CHAN W L. A genetic fuzzy controller for vehicle automatic steering control [J]. IEEE Transactions on Vehicular Technology,2007,56 (2):529-543.
    [131]王晶,李玉兰,蔡自兴,等.基于遗传算法的模糊系统优化设计方法[J].1999,16(5):700-704.
    [132]MENC C, FANELLI A M. Interpretability constraint for fuzzy information Granulation [J]. Information Sciences,2008,178 (24):4585-4618.
    [133]HERRERA F, LOZANO M, VERDEGAY J L. Tuning fuzzy logic controllers by Genetic Algorithms [J]. International Journal of Approximate Reasoning,1995,12 (3-4) 299-315.
    [134]周明,孙树栋.遗传算法原理与应用[M].北京:国防工业出版社,1999.
    [135]ACOSTA G, TODOROVICH E. Genetic algorithms and fuzzy control:a practical synergism for industrial applications [J]. Computers in Industry,2003,52 (2):183-195.
    [136]KANDEL A, LUO Y, ZHANG Y Q. Stability analysis of fuzzy control systems [J]. Fuzzy Sets and Systems,1999,105 (1):33-48.
    [137]PRECUP R E, DOBOLI S, PREITL S. Stability analysis and development of a class of fuzzy control systems [J]. Engineering Applications of Artificial Intelligence, 2000,13 (1):237-247.
    [138]ARACIL J,GORDILLO F. Describing functions method for stability analysis of PD and PID fuzzy controllers [J]. Fuzzy Set and Systems,2004,143 (2):223-249.
    [139]顾树生,平力.模糊控制系统稳定性分析及控制器设计[J].控制与决策,1991,6(3):178-183.
    [140]MICHELS K, KRUSE R. Numerical stability analysis for fuzzy control [J]. International Journal of Approximate Reasoning,1997,16 (1):3-24.
    [141]CHENG C M, REES N W. Stability analysis of fuzzy multivariable systems:vector lyapunov function approach [C]//IEE Proceedings Control Theory and Applications, 1997,144 (5):403-412.
    [142]FUH C C, TUNG P C. Robust stability analysis of fuzzy control systems [J].Fuzzy Sets and Systems,1997,88 (3):289-298.
    [143]MEYER K R. On the existence of Lyapunov functions for the problem on Lure [J]. Journal of Society for Industrial and Applied Mathematics on Control and Optimization,1965,3 (3):373-383.
    [144]UTKIN V I. Sliding Modes in Control and Optimization [M]. Spring-Verlag, New York, 1992.
    [145]胡跃明.变结构控制理论与应用[M].北京:科学出版社,2002.
    [146]贺昱曜,闫茂德.非线性控制理论及应用[M].西安:西安电子科技大学出版社,2007.
    [147]胡剑波,庄开宇.高级变结构控制理论及应用[M].西安:西北工业大学出版社,2008.
    [148]DORLING C M, ZINOBER A S I. Two approaches to hyperplane design in multivariable structure control systems [J]. International Journal of Control,1986,44 (1):922-926.
    [149]ZINOBER A S I, DORLING C M, XINGHUA Y. Design techniques for multivariable structure control systems[C]//Proceedings of the 25th IEEE Conference on Design and Control,1986,1:306-311.
    [150]高为炳.变结构控制理论及设计方法[M].北京:科学出版社,1996.
    [151]钱学森,宋健.工程控制论(上册)[M].北京:科学出版社,1980.
    [152]STOTINE J J, WEIPING L. Applied Nonlinear Control(影印本)[M].北京:机械工业出版社,2004.
    [153]SONG B, HEDRICK J. Design and experimental implementation of longitudinal control for automated transit buses[C]//Proceedings of the 2004 American Control Conference, Boston, Massachusetts, June 30-July 2,2004,2751-2756.
    [154]米阳,潘伟,井元伟.一类不确定时滞系统的模糊滑模控制[J].控制与决策,2006,21(11):1281-1288.
    [155]PERRUQUETTI W. Sliding mode control in engineering [M].CRC Press, Boca Raton, 2002.
    [156]YAGIZ N, HACIOGLU Y, Fuzzy sliding modes with moving surface for the robust control of a planar robot [J], Journal of Vibration and Control,2005,11 (7):903-922.
    [157]NOROOZI N, ROOPAEI M, ZOLGHADRI M. Adaptive fuzzy sliding mode control scheme for uncertain systems[J]. Communications in Nonlinear Science and Numerical Simulation,2009,14 (11):3978-3992.
    [158]SLOTINE J J, SASTRY S S. Tracking control of nonlinear systems using sliding surfaces with application to robot Manipulator [J]. International Journal of Control, 1983,38 (2):465-492.
    [159]CHOI S, KIM J. A fuzzy-sliding mode controller for robust tracking of robotic manipulators [J].Mechatronics,1997,7 (2):199-216.
    [160]AHAMED F A, ELSAYED A S, WAEL M E. Adaptive fuzzy sliding mode control using supervisory fuzzy control for 3 DOF planar robot manipulators [J]. Applied Soft Computing,2011,11 (8):4943-4953.
    [161]HUANG S J, HUANG K S, CHIOU K C. Development and application of a novel radial basis function sliding mode control [J]. Mechatronics,2003,13 (4):313-329.
    [162]ERTUGRUL M, KAYNAK 0. Neuro sliding mode control of robotic manipulators [J].Mechatronics,2000,10 (1-2):239-263.
    [163]张天平,冯纯伯.一类非线性系统得自适应模糊滑模控制[J].自动化学报,1997,23(3):362-369.
    [164]CHEN X K. Adaptive sliding mode control for discrete-time multi-output systems [J]. Automatic,2006,42 (3):427-435.
    [165]HUANG S J,CHEN H Y. Adaptive sliding controller with self-tuning fuzzy compensation for vehicle suspension control [J]. Mechatronics 2006,16 (10):607-622.
    [166]LIN S C, CHEN Y Y. Design of self-learning fuzzy sliding mode controllers based on genetic algorithms[J]. Fuzzy Sets and Systems,1997,86 (2):139-153.
    [167]LIN F J, CHOU W D. An induction motor servo drive using sliding mode controller with genetic algorithm [J]. Electric Power Systems Research,2003,64 (2):93-108.
    [168]YAU H, CHEN C. Chattering-free fuzzy sliding-mode control strategy for uncertain chaotic system [J]. Chaos Solitons Fractals,2006,30 (3):709-718.
    [169]ROOPAEI M, JAHROMI Z. Chattering-free fuzzy sliding mode control in MIMO uncertain systems [J]. Nonlinear Analysis:Theory, Methods & Applications,2009,71 (10) 4430-4437.
    [170]ZADEH L A. Fuzzy sets, Inform, Control [M],1965,338-353.
    [171]ERBATUR K, KAWAMURA A. Chattering elimination via fuzzy boundary layer tuning[C]//Proc of the 28th Annual Conf of the Industrial Electronics Society, Sevilla, Spain,2002,11:2131-2136.
    [172]WONG L K, LEUNG F H, TAM S K. A Fuzzy sliding controller for nonlinear systems [J].IEEE Transactions on Industrial Electronics,2001,48 (1):32-37.
    [173]CHEN M S, HWANG Y R, TOMIZUAKA M. A state-dependent boundary layer design for sliding mode control[J]. IEEE Transactions on Automatic Control,2002,47 (10):1667-1681.
    [174]VICENTE P V, GERD H. Chattering-free sliding mode control for a class of nonlinear machnical systems[J]. International Journal of Robust and Nonlinear Control,2001,11 (12):1161-1178.
    [175]SESHAGRl S, KHALIL H K. On introducing intergral action in sliding mode control[C]//Proceeding of the 41st IEEE Conference on Decision and Control, Las Vegas, USA, Dec,10-13,2002,2:1472-1478.
    [176]ELHALWAGY Z Y, TARBOUCHI M. Fuzzy logic sliding control for command guidance law design [J]. ISA Transactions,2004,43 (2):231-242.
    [177]张相洪,龚建伟,陆际联.基于油门与制动的轮式移动机器人纵向速度控制[J].北京理工大学学报,2003,23(1):63-65.
    [178]HUANG S, REN W. Vehicle longitudinal control using throttles and brakes [J]. Robotics and Autonomous systems,1999,26 (4):241-253.
    [179]Kim H M, Dickerson J, Kosko. Fuzzy Throttle and Brake Control for platoon of smart cars [R].California PATH Research Report, UCB-ITS-PRR-95-42, University of Southern California,1995.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700