用户名: 密码: 验证码:
基于电动轮汽车的制动踏板行程模拟器及制动平顺性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着汽车尾气排放及污染日趋严重,并逐渐成为大气环境最突出、最紧迫的问题之一,而且近几年成品油的价格变化成上涨的态势,全球不可再生能源日渐减少,用新能源汽车代替传统汽车是不可否认的事实,其中电动轮汽车有诸多优点,所以本文借助四轮独立驱动电动轮汽车为模型,对制动系统进行系统的研究,提出一些新颖的思想和方法来解决电动汽车制动过程中平顺性的问题。与传统汽车一样,电动汽车中的制动系统也是驾驶员主要的操纵机构,并且动作频繁,这影响并关系到驾驶员的安全和舒适度。通过深入研究制动踏板感觉和电动汽车制动模式的切换,设计符合常规制动感觉的行程模拟器,并保证电动轮汽车在制动模式切换过程中的平稳性,减少制动过程制动扭矩的波动,解决一些有关制动过程平顺性的实际问题。
     本文选择电动轮汽车作为研究载体,设计了配有制动踏板行程模拟器的无真空助力器线控制动系统,建立了可以用于仿真测试的15自由度电动轮汽车动力学模型。根据传统制动系统的特性建立了踏板行程模拟器的模型,并采用轨迹跟踪控制算法并结合模糊-PID方法控制电磁阀来模拟制动感觉,实现与传统制动系统相似的制动感觉。由于电动轮汽车的制动系统存在两套制动结构,即电机制动和机械液压制动,在进行制动过程中,制动模式切换问题是电动汽车制动控制的关键问题,在对电机制动和机械液压制动分析基础上,运用动态协调控制的方法对制动模式切换过程进行控制并进行离线仿真。最后利用搭建的dSPACE硬件在环试验台架验证提出的设想。
     根据上述思路展开如下研究:
     第一,根据电动轮汽车的特征,对电动汽车中各个主要部分进行分析,包括车身模块、悬架模块、转向模型、轮胎模块、电机模块及液压模块等,并以此为依据利用AMESim软件建立了比较精确的15自由度非线性电动轮汽车整车动力学仿真平台。为了验证模型的准确性,采用了城市工况进行模拟仿真,仿真结果表明模型的精度达到了动态仿真的要求。该仿真平台模块里的参数可以根据车型而修改,仿真自由度多,精度相对较高,也可以对电动轮驱动汽车的各种工况进行仿真。
     第二,首先介绍了传统制动系统,分析了主要组成部件,其中包括制动踏板、真空助力器、主动主缸和制动器等,描述了传统制动系统踏板感觉的特性。接着依据传统制动系统的踏板感觉特性,利用AMESim软件建立了行程模拟器模型并设计了结构方案。最后通过轨迹跟踪控制方法并结合模糊-PID控制方法控制电磁阀实现制动踏板行程模拟器的反馈制动踏板。在所建立的模型基础上进行离线仿真,结果表明通过上述方法实现与常规制动系统的制动脚感相近,即加入电机制动后该制动系统仍具有良好的制动踏板感觉。
     第三,对影响汽车平顺性的因素进行分析,介绍了电动轮汽车制动系统的几种制动模式,分析了典型电机制动控制方法。由于电动轮汽车存在两套制动系统(电机制动和机械液压制动),制动过程中制动模式切换是复合制动系统中普遍存在的。提出了由制动扭矩管理策略和动态协调控制算法两部分组成的控制方法,解决制动过程制动模式切换制动扭矩波动大的问题。根据车速、制动踏板、油门踏板及其他信号识别驾驶员对制动扭矩的需求,再根据电池SOC值和行驶状态,决定制动模式的切换和切换过程中的制动扭矩的调节。在整车动力学模型的基础上,分别就连续切换过程仿真和某定工况下就行离线仿真。仿真表明,在经过动态协调控制算法控制之后,实现了制动模式切换过程对电机和液压系统进行了调控,达到了预期的效果,有效的减小了电机制动和机械液压制动切换过程的波动,实现制动过程的平顺性。
     最后,介绍了硬件在环试验平台的特点,并设计了基于dSPACE实时平台的硬件在环试验台。该试验平台包括了硬件部分、软件部分和实时系统等,试验台中的制动系统无真空助力器,而且配有行程模拟器,利用搭建的硬件在环试验台对制动踏板行程模拟器和电动汽车制动模式切换控制策略进行试验和分析。根据硬件在环仿真试验结果可以看出,设计的踏板行程模拟器能够很好的模拟制动踏板的感觉,符合设计要求,同时通过动态协调控制算法有效的减小了制动模式切换过程中的制动扭矩的波动,保证了制动过程的平顺性,达到了预期的效果。
With the increasing of automotive exhaust emissions, the environmental pollutionbecomes more and more serious, and now it is the most outstanding one of the pressingproblems of environmental protection. Because of rising price in oil and less non-renewableresources, the traditional automobile will be replaced by new energy vehicles. Electric wheelvehicle can solve these problems. This article introduces4independently-driving andelectric wheel auto, and systemically studies Braking System. I propose some new ideas andmethods that can solve the ride comfort problem of electric vehicle braking process. Thesame as the traditional vehicle, the braking system of electric wheel vehicle is also the chiefmanoeuvre mechanism. Frequently movements will impact driver’s safety and comfort. Todispose of practical considerations on comfort during brake, I make an exhaustive studyabout switching on brake pedal feel and electric vehicle braking mode, and design the strokesimulator that accords with usual brake feel. During switchover on brake mode,we shouldkeep stability and reduce the brake torque fluctuations during brake.
     This text aims at electric wheel car, designing without vacuum booster and includingbrake-by-wire system of brake pedal travel simulator,building electric wheel vehicledynamics model with15DOF that can be used for simulation test, using the trajectorytracking control algorithm to control braking feel, analysing the electric wheel car's brakingprocess, applying dynamic coordinated control method to control braking mode switchingprocess, at last dSPACE hardware in the loop test bench to verify the assumption.
     Based on the above ideas to expand the study as follows:
     Firstly, according to the characteristics of the electric wheel car, electric vehicles areanalyzed, including body modules, suspension modules, steering model, tire module, motormodule and hydraulic module, using AMESim software and as a basis to establish accurate15degrees of freedom nonlinear electric wheel automobile dynamics simulation platform.Urban conditions in order to verify the accuracy of the model simulation, the simulationresults show that the accuracy of the model the dynamic simulation requirements. Thesimulation platform module parameters can be modified depending on the model, simulationdegrees of freedom, a relatively high accuracy, the various conditions of the car to simulateelectric wheel drive.
     Secondly, I will introduce a conventional brake system, analysis of the variouscomponent parts, including the brake pedal, the vacuum booster, active master cylinder andthe brake, etc. to describe the characteristics of the pedal feel of a conventional brake system.Then, based on the traditional brake pedal feel characteristics, using AMESim softwarestroke simulator model and designing the structure of the program. Later, trajectory trackingcontrol method and fuzzy-PID control method for controlling the solenoid valve feedbackbrake pedal brake pedal travel simulator. Offline simulation on the basis of the establishedmodel, the results show that by the above method to achieve with the braking Jiaogan of theconventional braking system similar to the braking system, i.e. adding motor brake still has agood brake pedal feel.
     Thirdly, the analysis of factors affect car ride, several electric wheel car brake systembrake mode analysis of a typical motor brake control method. Electric wheel car there aretwo braking systems (motor brake and mechanical hydraulic braking) during braking thebraking mode switching is common composite braking system. The proposed control method,consisting of two parts, brake torque management strategy and dynamic coordinated controlalgorithm can solve the braking process Brake mode switching braking torque fluctuations.For braking torque according to the vehicle speed, brake pedal, accelerator pedal, and othersignals identifying the driver, according to the value and the traveling state of the batterySOC, resulting in the adjustment of the braking torque in the brake mode switching and theswitching process. Vehicle dynamics model based on the continuous the switching processsimulation and a condition on the simulation. Simulation results show that, behind dynamiccoordinated control algorithm control braking mode switching process regulation and controlof motor and hydraulic system, to achieve the desired effect, reduced motor brake andmechanical hydraulic brake switch fluctuations, the ride of the braking process.
     Finally, it introduces the characteristics of the hardware in the loop test platform anddesigned dSPACE real-time platform-based hardware in the loop test rig. The test platformincludes a hardware part and software part and real-time systems, etc. The brake systemvacuum booster of the test with the stroke simulator build the hardware in the loop test standon the brake pedal travel simulator electric vehicle braking mode switching control strategiesfor test and analysis. According to the hardware, results of the loop simulation test can beseen, the design of the pedal travel simulator can be a good analog feel of the brake pedal,meeting the design requirements, through dynamic coordination control algorithmeffectively reduces the braking mode switching process braking torque fluctuations, I ensurethat the ride of the braking process achieving the desired effect.
引文
[1]百度文库[EB/OL].http://wenku.baidu.com/view/d8531823aaea998fcc220e95.html
    [2]汽车通[EB/OL].[2012-06-29].http://baike.bitauto.com/other/20120629/1405745420.html
    [3]中商情报网[EB/OL].[2010-04-27]http://www.askci.com/freereports/2010-04/201042794154.html
    [4]任世源.浅议混合动力汽车[J].天津汽车,1999(01):14-16.
    [5]何洪文.混合驱动车辆动力传动系合理匹配研究[D].长春:吉林大学汽车工程学院,2000.
    [6]陈清泉,孙逢春.混合动力电动汽车基础[M].北京:北京理工大学出版社,1993.
    [7]曾小华.混合动力客车节能机理与参数设计方法研究[D].长春:吉林大学汽车工程学院,2006.
    [8]郑伟.HEV再生制动系统与ABS协调控制建模与仿真的研究[D].武汉:武汉理工大学汽车工程学院,2005.
    [9]段幼华.混合动力轿车复式制动系统的研究[D].长春:吉林大学汽车工程学院.2007.
    [10]蒋励.基于理想制动力分配曲线的复合制动设计[J].汽车科技,2006(4):19-22.
    [11] Yimin Gao and Mehrdad Ehsani, Electronic Braking System of EV andHEV-Integration of Regenerative Braking,Automatic Braking Force Control andABS.SAE2001-01-2478.
    [12]刘川.电动汽车四轮独立驱动控制系统的研究[D].武汉:武汉理工大学汽车工程学院.2009.
    [13]王军年.电动轮独立驱动汽车差动助力转向技术研究[D].长春:吉林大学汽车工程学院.2009.
    [14]曾蓓.电动汽车动力驱动系统初探[J].知识经济.2010(07):106.
    [15]李隐卓.电动轮驱动汽车驱动助力转向理论及动力学控制研究[D].长春:吉林大学汽车工程学院.2007.
    [16] Michael Panagiotidis,George Delagrammatikas,etc. Development and use of aregenerative braking model for a parallel hybrid electric vehicle. SAE2000-01-0995.
    [17] S.R Cikanek.Electric Vehicle Braking System[C]. Proceedings of the14thInternational Electric Vehicle Symposium,Orlando,Florida,USA,1997.
    [18] Morimasa Hayashida, Kazuyuki Narusawa and Yushi Kamiya.Energy regeneration ofCity Commuter-car By Ultracapaxitor and Battery. EVS-15,proceeding CD,1998.
    [19] Shuiwen Shen, Alex Serrarens, etc. Coordinated control of a mechanical hybriddriveline with a continuously variable transmission. JSAE Review(2001):453~461.
    [20] Hongwei Gao, Yimin Gao and Mehrdad Ehsani. A Neural Network Based SRM DriveControl Strategy for Regenerative Braking in EV and HEV [C]. Electric Machines andDrives Conference,2001.
    [21] Hoon Yeo, Talchol Kim,Chulsoo Kim, and Hyunsoo Kim. Development ofRegenerative Braking Hydraulic Module and HIL Simulator for Hybrid ElectricVehicle. EVS-19,proceeding CD,2002.
    [22] Motomu Hakiai, Toshio Taichi, Masahiko Shoda, Takashi Koizumi, Tadashi Ashikaga,Hiroshi Shimizu. Brake system of “Eco-Vehicle”. The14th International ElectricVehicle Symposium and Exposition, Orlando, USA,1997.
    [23]张缓缓.采用电动轮驱动的电动汽车转矩协调控制研究[D].长春:吉林大学汽车工程学院.2009.
    [24] TOYOTA Motor Corporation. Development of electric motors for the Toyota hybridvehicle“PRIUS”. The16th International Electric Vehicle Symposium and Exposition.Beijing, China,1999.
    [25] Masami Ogura, Yasushi Aoki. The HONDA EV PLUS regenerative braking system.The14th International Electric Vehicle Symposium and Exposition, Orlando, USA,1997.
    [26]刘溧.汽车ABS仿真试验台的开发与液压系统动态特性的研究[D].长春:吉林工业大学汽车工程学院,2000.
    [27]王会义.汽车防抱死制动系统模糊控制方法的应用及其仿真试验台的构建.博士后工作报告[R].长春:吉林工业大学.1998.
    [28]丁海涛.制动防抱死系统模糊控制的初步研究.硕士学位论文[D].长春:吉林工业大学,1999年.
    [29]李玉璇.防抱死制动系统(ABS)的仿真、性能评价与参数选择[D].长春:吉林工业大学汽车工程学院.1999.
    [30] Zdenek Peroutka, Karel Zeman, and Jiri Flajtingrt. Active Regenerative Braking:Braking of Induction Machine Traction Drive with Maximum Torque in HighSpeeds.[C] EPE-PEMC2006, Portoro2, Slovenia.2006IEEE.P485~490
    [31] Yimin Gao,Liping Chen and Mehrdad Ehsani. Investigation of the Effectiveness ofRegenerative Braking for EV ang HEV..SAE1999-01-2910.
    [32] Niels J.Schouten,,Mutasim A.Salman,Naim A.Kheir..Energy management strategiesfor parallel hybrid vehicles using fuzzy logic.Control Engineering Practice,2003,Vol.11:171-177.
    [33]彭栋.混合动力汽车制动能量回收与ABS集成控制研究[D].上海:上海交通大学机械与动力工程学院,2007年.
    [34]周云.红旗轿车EBC430型ABS系统的检修[J].汽车维修与保养,2001(6):38-41.
    [35]曲金玉.红旗牌轿车ABS的结构与工作原理[J].汽车电器,2001(5):17-20.
    [36]赵国柱.杨正林,魏民祥,潘松,等.电动微型客车的机电复合制动稳定性分析[J],汽车工程,2006(7):681-684.
    [37]赵国柱.电动汽车再生制动稳定性研究[D].南京:南京航空航天大学能源与动力学院,2006.
    [38]刘博,杜继宏,等.电动汽车制动能量回收控制策略的研究[J],电子技术应用,2004,(1):34-36.
    [39]王庆年,金启前等.传动系参数和控制参数对并联混合动力轿车性能的影响[J].吉林大学学报(工学版),35(3):243-248.
    [40] Chitoshi Yokota,Yoshimori Nakamura,Shigeru Yada.Development of the2001yearmodel Civic.JSAE Review2002,Vol.23:387-399.
    [41] Walter Ortmann, Daniel Colvin Incorporating an Electric Machine into theTransmission Control of Ford's Modular Hybrid Transmission SAE2004-01-0069.
    [42] Chan-Chiao Lin et al. Integrated Feed-forward Hybrid Electric Vehicle Simulation inSIMULINK and its Use for Power Management Studies.SAE2001-01-1334.
    [43]余志生.汽车理论[M].机械工业出版社,2004年第三版.
    [44]方泳龙.汽车制动理论与设计[M],国防工业出版社,2005年1月.
    [45]孙大威.电动轮驱动MACCP电子差速控制策略研究[D].长春:吉林大学汽车工程学院,2007.
    [46]靳立强;王庆年;岳巍强;宋传学.基于四轮独立驱动电动汽车的动力学仿真模型[J]系统仿真学报.2005-12-20
    [47] WATANABE K, YAMAKAWA J, TAMAKA M, et al. Turning characteristics ofmulti-axle vehicles [J].Journal of Terramechanics,2007(44):81-87.
    [48] KUNSOO H, KYUNGYOUNG J, JAEEUNG O, et al. Development of a SimulationTool for the Cornering Performance Analysis of6WD/6WS Vehicles [J].KSMEInternational Journal,1999,13(3):211-220.
    [49] OLIVIER L, MANFRED S, CESAR Z. Evaluation of Tire Wear Performance[C].Detroit: SAE International Congress and Exposition,1998.
    [50] FRANCESCO B, FEDERICO C,STEFANO M, et al. Tyre Wear Model:Validationand Sensitivity Analysis[J].Meccanica,2006(41):143-156.
    [51] BAKKER E, PACEJKA H B, LIDNER L. A New Tire Model with an Application inVehicle Dynamics Studies [J].SAE Paper No.890087,1997.
    [52] SPENTZAS K, ALKHAZALI I, DEMIC M. Kinematics of four-wheel-steeringvehicles [J]. Forschung im Ingenieurwese2001,66:211-216.
    [53] TAHAMI F, KAZEMI R, SAMADI B. Fuzzy based stability enhancement system fora four-motor-wheel electric vehicle[C].SAE Paper,2002-01-1588.
    [54] UNYELIOGLU K A, OZGUNER U, HISSONG T, et al. Wheel torque proportioning,rear steering, and normal force control: a structural investigation [J]. IEEETransactions on Automatic Control,1997,42(6):803-818.
    [55]靳立强;王庆年;宋传学.电动轮驱动汽车动力学仿真模型及试验验证[J].吉林大学学报(工学版),2007(4):743-748.
    [56]电工电气行业专业的技术交流论坛[EB/OL].[2009-05-14]http://bbs.byf.com/showtopic.aspx?forumid=7&topicid=19937&go=prev
    [57]黄金凤.基于油气悬架的车身姿态控制[D].长春:吉林大学汽车工程学院,2007.
    [58]靳立强;王庆年;宋传学.电动轮驱动汽车动力学仿真模型及试验验证[J]吉林大学学报(工学版).2007(4):743-748.
    [59]瞿宏敏,程军.汽车动力学模拟中的轮胎模型述评[J].汽车技术.1996(7):1-8.
    [60]玄圣夷.面向主动安全的汽车底盘行驶稳定性控制策略研究[D].长春:吉林大学汽车工程学院.2010.
    [61]王聪.混合动力轿车制动踏板行程模拟器即控制策略研究[D].长春:吉林大学汽车工程学院.2012.
    [62]百度文库[EB/OL].http://wenku.baidu.com/view/13a5bd8aa0116c175f0e4883.html
    [63]刘平;刘刚;张庆荣.磁悬浮飞轮用BLDC系统的仿真方法与实验分析[J].航天控制.2007(1):56-61.
    [64]王鹏宇.混合动力轿车再生制动系统研究[D].长春:吉林大学汽车工程学院.2008.
    [65]胡安平.基于AMESim-Simulink联合仿真的再生制动系统研究[D].长春:吉林大学汽车工程学院.2008.
    [66]唐先智.基于制动轨迹的汽车制动性能检测技术研究[D].黑龙江:东北林业大学交通学院.2009.
    [67]博洋.解析汽车制动系统[J].汽车与安全.2012(9):44-46.
    [68]百度百科[EB/OL].http://baike.baidu.com/view/2235434.htm
    [69]德国imc集成控制有限公司[EB/OL].http://www.imcaccess.com/company/company.asp
    [70]王宁.转子在线自动平衡技术控制原理及工程应用中的研究[D].北京:北京化工大学硕士论文.2008.
    [71]王军年.电动轮独立驱动汽车差动助力转向技术研究[D].长春:吉林大学汽车工程学院.2009.
    [72]温淑焕.不确定性机器人力/位置智能控制及轨迹跟踪实验的研究[D].河北:燕山大学博士论文.2005.
    [73]宋传学,郑竹安,靳立强等.油门踏板安全辅助系统开发[J].吉林大学学报(工学版),2012,42(3):527-533
    [74] http://www.gems.gd.cn:80/products/pressure-gems-347.html
    [75]李建华.基于ESC控制系统的ABS控制策略研究及试验[D].长春:吉林大学汽车工程学院.2010.
    [76]宋传学,郑竹安,靳立强等.踏板行程模拟器在线控制动系统中的应用[J].江苏大学学报(自然科学版),2013,34(1):17-22.
    [77]范振.车身静电流及LIN信息采集分析系统的设计与实现[D].黑龙江:哈尔滨工业大学硕士论文.2011.
    [78]万宇;邵义龙.基于IMC设备的直升机飞行测试系统研究[J].直升机技术,2008(2):58-60.
    [79]陈庆樟.汽车再生制动稳定性与制动踏板平稳性控制研究[D].镇江:江苏大学汽车工程学院.2008.
    [80]孙华,左曙光,杨占春,胡子正,魏宏.轿车乘坐舒适性主观感觉评价及实践[J].同济大学学报(自然科学版).2001(2):239-241.
    [81]解洪江;刘恒.电动汽车再生制动技术的发展研究[J].轻型汽车技术.2012(10):3-6.
    [82]冀尔聪.并联混合动力汽车模式切换中的协调控制问题研究[D].长春:吉林大学汽车工程学院.2006.
    [83]王吉.电动轮汽车制动集成控制策略与复合ABS控制研究[D].长春:吉林大学汽车工程学院.2011.
    [84] Sohel Anwar,et al.A Predictive Control Algorithm for an Anti-LockBraking System.SAE2002-01-0302,2002.
    [85] Terry D.Day et al.A Simulation Model for Vehicle Braking SystemFitted withABS.SAE2002-01-0559,2002.
    [86] William B.Ribbens,et al.A Sliding Mode Observer Based ABS foAircraft and LandVehicle,SAE2003-01-0252,2003
    [87] Sascha Semmler,et al.Wheel Slip Control for Antilock BrakingSystems UsingBrake-by-Wire Actuators,SAE2003-01-0325,2003
    [88] Mauricio Blanco Infantini,Development of an anti-lock braking system model,SAE2005-01-4032,2005.
    [89]何仁,崔文燕.应用微分Petri网分析汽车再生制动模式的切换[J].江苏大学学报(自然科学版),2013,31(6):640-644.
    [90]段幼华.混合动力轿车复式制动系统的研究[D].长春:吉林大学汽车工程学院.2007.
    [91]童毅.并联式混合动力系统动态协调控制问题的研究[D].北京:清华大学汽车工程系.2004.
    [92]云非.混合动力客车动力系统设计[D].武汉:武汉理工大学汽车工程学院,2008.
    [93]杨平龙.基于人工神经网络的发动机转矩估计[D].武汉:武汉理工大学汽车工程学院,2007.
    [94]李孟海.混合动力车辆驱动转矩的协调控制方法及其硬件在环仿真[D].北京:清华大学汽车工程系,2006.
    [95]中国电子网[EB/OL].[2012-06-16.]http://www.21ic.com/app/power/201206/127871.htm
    [96]百度文库[EB/OL].http://wenku.baidu.com/view/765d780490c69ec3d5bb75e7.html
    [97]丁荣军.快速控制原型技术的发展现状[J].机车电传动.2009(4):1-4.
    [98]赵永安.煤炭皮带传送机液压伺服拉紧系统的研究与应用[D].河北:燕山大学硕士论文.2005.
    [99]崔胜民,余群.汽车轮胎行驶性能与测试[M].北京:机械工业出版社,1995
    [100]张春秋.三轴车辆电控多轮转向控制策略研究与仿真[D].长春:吉林大学机械科学与工程学院,2005.
    [101]吕廷秀.混合动力轿车再生制动与防抱死集成控制系统研究[D].长春:吉林大学汽车工程学院,2007.
    [102]李艳彩.基于四轮模型的汽车ABS控制策略的研究[J].河北:河北工业大学汽车工程学院,2007.
    [103]刘景辉.轿车制动系建模与仿真及ABS控制策略[D].上海:上海交通大学机械与动力工程学院,2007.
    [104]吴昭润等.计算机仿真汽车ABS性能评价方法[J].交通与计算机,2005,23(3):67-69.
    [105]张滨刚,姜正根.汽车制动过程的理论分析与试验[J].车辆与动力技术,1998(04):1-5.
    [106]熊坚,胡永平.汽车制动过程的计算机仿真研究[J].云南工业大学学报,1995,(01)33-41.
    [107]汽车制动系统结构、性能和试验方法GB12676-1999
    [108]罗玉涛等.电动车制动能量再生反馈控制研究[J].机床与液压,2002,(5):162-164.
    [109]孙逢春等编著.电动汽车[M],北京:北京理工大学出版社,1997年:25-26.
    [110]张毅,杨林,朱建新等.电动汽车能量回馈的整车控制[J].汽车工程,2005,27(1):24-27.
    [111] dSPACE产品介绍.北京:北京九州恒润科技有限公司2003.1-110.
    [112] dSPACE GmbH,Install and Configuration Documents for Release.北京:北京九州恒润科技有限公司,4.0.2003.
    [113] dSPACE GmbH,Implementation Guide Documents for Release.北京:北京九州恒润科技有限公司,4.0.2003.
    [114] dSPACE GmbH,Experiment Guide Documents for Release.北京:北京九州恒润科技有限公司,4.0.2003.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700