用户名: 密码: 验证码:
乘用车悬架KnC特性试验技术与装备研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
汽车动力学主要与汽车惯性参数、轮胎力学特性、悬架KnC特性、减振器特性和汽车空气动力学特性等因素有关。目前主要通过调整悬架KnC特性改善汽车动力学性能,因为其它参数可调整的余地较小。而悬架KnC特性试验台则是底盘调校过程中使用率非常高的测试设备。
     本文主要内容包括:利用开发的汽车悬架KnC特性试验台测量转向系阿克曼误差以及车轮相对车身的六自由度位移;研究主销定位参数的解算方法;研究轮胎转偏力矩的实车测试方法;建立汽车低速转向动力学模型计算转弯时轮胎力变化特性和方向盘转矩,研究悬架KnC特性对汽车低速转向轻便性的影响。
     文章从理论、试验及应用三方面详细研究乘用车悬架KnC特性。悬架抗侧倾及抗纵倾特性和主销定位参数均需要应用动力学理论进行解算,属于论文理论研究部分;参数解算所需数据均来源于汽车悬架KnC特性试验台,试验台的开发属论文试验部分;部分主销定位参数及转向阿克曼误差随车轮转向角不断变化,研究悬架KnC特性对汽车低速转向轻便性的影响属论文应用部分。本文主要工作分为五部分,如下所示:
     首先,研究悬架抗纵倾特性和悬架抗侧倾特性的测试方法。
     其次,建立轮毂定轴转向模型研究转向过程中主销定位参数对车轮位移的影响。之后,建立ADAMS悬架模型仿真研究车轮上下跳动时等速万向节与水平面夹角对主销驱动力臂的影响。研究结果表明,转向时主销后倾距变化量等于车轮转动角变化量与轮胎负载半径的乘积。转向重力回正力矩与主销内倾角相关,与主销后倾角无关。轮毂定轴转向模型能够根据转向试验数据辨识麦弗逊悬架或双横臂悬架的主销定位参数。
     再次,建立轮毂瞬时轴转向模型,根据悬架KnC特性试验台转向工况测试数据解算麦弗逊悬架、双横臂悬架和多连杆悬架的主销定位参数。研究结果表明,当车轮转向角为零时,车轮转动角或轮胎侧倾角对车轮转向角的导数分别等于主销内倾角或主销后倾角的正切值;轮心纵向或侧向位移对车轮转向角的导数分别等于主销侧偏距或主销纵偏距;名义轮胎接地中心纵向或侧向位移对车轮转向角的导数分别等于主销偏移距或主销后倾距。应用ADAMS仿真结果及国外汽车悬架KnC特性试验台测试结果进行验证,对比结果说明轮毂瞬时轴转向模型解算结果准确,满足使用要求。
     然后,开发汽车悬架KnC特性试验台测量悬架系统特性。试验台由随动式车轮六向运动测量机构、六分力传感器、四轴解耦加载平台、自动转向机构和电器软件等系统组成。利用开发的随动式车轮六向运动测量机构辨识其相对轮心的位置参数,修正解算模型参数,减小测量误差,保证主销定位参数解算精度。试验台模拟汽车俯仰、侧倾、制动、转弯等工况下车轮受力及垂直运动,测量车轮定位参数变化特性。开发的试验台能够在悬架结构未知的情况下一次性完整测量悬架系统特性,为汽车设计提供巨大便利,目前已在国内多家汽车企业投入使用。
     最后,研究轮胎转偏力矩实车测试方法,并建立汽车低速转向动力学模型研究汽车低速转向特性。试验结果显示,前轴驱动汽车低速转弯时后轴轮胎侧偏角为零,轮胎回正力矩等于轮胎转偏力矩。仿真结果表明,轮胎转偏力矩、轮胎转向力矩、转向重力回正力矩及汽车侧向加速度增大方向盘转矩;轮胎侧向力减小方向盘转矩;对于前轴驱动的汽车,转向过程中外侧轮胎纵向力指向汽车后端,保证轮胎力对转弯中心合力矩为零,左右轮胎纵向力与主销侧偏距共同作用,使方向盘转矩增大。
     论文主要创新点如下:
     首先,利用开发的随动式车轮六向运动测量机构辨识测量机构相对轮心的位置参数,根据位置参数、测量机构结构尺寸及传感器数据解算车轮六自由度位移。
     其次,建立轮毂瞬时轴转向模型解算主销定位参数。模型能够根据转向工况车轮六自由位移变化特性解算麦弗逊悬架、双横臂悬架和多连杆悬架主销定位参数。
     最后,研究轮胎转偏力矩实车测试方法,建立汽车低速转向动力学模型研究汽车低速转向轻便性。阐明轮胎转偏力矩和转向重力回正力矩是后轴驱动汽车低速转向轻便性的主要影响因素。
Automotive inertial parameters, the tyre characteristics, the suspension kinematics andcompliance characteristics (suspension KnC characteristics in short), the dampercharacteristics and automotive aerodynamics are major factors to the vehicle dynamics. It isvery practical to improve the performance of vehicle dynamics by adjusting the suspensionKnC characteristics when it is very difficult to change other characteristics. And thesuspension kinematics and compliance characteristics test rig is used of high frequency inthe chassis tuning process.
     This thesis mainly includes: Developing a suspension kinematics and compliancecharacteristics test rig for the passenger vehicle to measure the Ackermann error and the6-DOF displacements of the wheel relative to the vehicle body; Building a mathematicalmodel to calculate the angles and positions of the kingpin axis based on the steering test data;Finding out a method to test the tyre scrub torque on a moving vehicle; Building a low-speedvehicle dynamics model to study the automotive low-speed portability which could calculatethe hand-wheel torque with the tyre forces and the kingpin geometry parameters.
     The study of the suspension KnC characteristics would include the theory research part,testing work and the application part. Calculation of the positions and angles of the kingpinaxis based on steering test data and determining the suspension anti-dive or anti-rollcharacteristics would make up the theory research part. Developing a suspension KnC testrig for the passenger vehicle would make up the test work. Studying effects of thesuspension KnC characteristics to the vehicle slow speed steering portability would make upthe application work when the castor offset and the steering Ackermann error changes withthe road wheel steering angle. The content of this paper includes five parts primarily:
     Firstly, the method to calculate the suspension anti-dive characteristics or thesuspension anti-roll characteristics is studied.
     Secondly, a mathematical model determining the hub rotating about a fixed axis is builtto research the relationship between the kingpin geometry parameters and the wheel6-DOFdisplacements. An ADAMS suspension model is built to research the influence of theuniversal-joint deflection angle on the traction-force radius. The results prove that the kingpin castor offset would change with the road wheel steering angle due to the kingpininclination angle. The storing torque due to the wheel load is influenced by the kingpininclination angle while having no relationship with the kingpin castor angle. Themathematical model could compute the angles and positions of the kingpin axis based on thesteering test data of a suspension KnC characteristics test rig.
     Thirdly, a mathematical model computing the hub rotating about the imaginary kingpinaxis is built to calculate the angles and positions of an imaginary kingpin axis based on thesteering test data of a suspension KnC characteristics test rig. The model shows arelationship between the kingpin positioning parameters and the derivative of the wheel’sdisplacements when the wheel steering angle equals to zero. The kingpin inclination angleequals to the derivative of the wheel rotation angle with respective to the wheel steeringangle. The kingpin castor angle equals to the derivative of the tyre inclination angle. Thecastor offset at wheel centre equals to the derivative of the wheel center lateral displacementwith respective to the wheel steering angle. The steering-axis offset at wheel centre equals tothe derivative of the wheel center longitudinal displacement. The initial value of the castoroffset at ground equals to the derivative of the lateral displacement of the nominal tyrecontact point with respective to the wheel steering angle. The kingpin offset equals to thederivative of the longitudinal displacement of the nominal tyre contact point. The change ofthe castor offset at ground equals to the product of the wheel rotation angle and the wheelload radius. The simulate results of an ADAMS suspension model and the test data of aforeign test bench are used to verify the accuracy of the model. The solver results of themathematical model are accurate, and meet the requirements.
     Fourthly, a suspension KnC characteristics test rig is developed to measure6-DOFdisplacements of the wheel and the tyre forces. The suspension kinematics and compliancecharacteristics test rig for the passenger vehicle is composed of two wheel deflectionmeasure systems, two platforms loading wheels in four directions, an automatic steeringmechanism and the software. The wheel deflection measure system could accuratelymeasure6-DOF displacements of the wheel with the sensor data, the system dimensions andthe geometry parameters relative to the wheel which is identified by the measure system.Through simulating bounce and roll of the vehicle body, making up force between the tyreand the road, the test rig measures the alignment parameters. Measurement results areconsistent with that of the foreign test bench. The facility could measure the suspensioncharacteristics with no care of the suspension structure and provide great benefits for the vehicle design. The facility has been put into use in some domestic automotive companies.
     Finally, a method is developed to test the scrub torque when the vehicle corning slowly.And a low-speed vehicle dynamics model is built to calculate the tyre lateral force inducedby the Ackermann error and to compute the hand-wheel torque with the tyre forces and thekingpin geometry parameters. Test results show that the tyre aligning moment of the rearaxle equals to the tyre scrub torque when a front-wheel drive car cornering slowly.Simulation results show that the tyre scrub torque, the tyre steering torque, the storing torquedue to the wheel load, and the lateral acceleration would increase the hand-wheel torquewhile the tyre lateral force would decrease it. The aligning moment due to the tyre slip angleshows no effect to the hand-wheel torque. The tyre traction forces of a front-wheel drive carwould increase the hand-wheel torque as the longitudinal force of outer wheel changesdirection to balance the moment of the inner traction force about the cornering centre.
     Major Innovations of the Dissertation:
     Firstly, a new wheel deflection measure system is developed to measure6-DOFdisplacements of the wheel with the sensor data, the system dimensions and the geometryparameters relative to the wheel that is identified by the measure system.
     Secondly, a mathematical model determining the hub to rotate about an imaginarykingpin axis is built to calculate the angles and positions of the kingpin axis. The model is fitto the McPherson suspension, the double wishbone suspension and the multi-linksuspension.
     Finally, a method is developed to test the scrub torque when corning slowly. Thelow-speed vehicle dynamics model is built to research the automotive low-speed portability.Simulation results show that the scrub torques and the storing torques are the maininfluencing factors of the hand-wheel torque.
引文
[1]郭孔辉.汽车操纵动力学[M].长春:吉林科学技术出版社,1991.
    [2] MATSCHINSKY W. Road vehicle suspensions[M]. London: Professional Engineering PublishingLimited,2000.
    [3] HOWARD G, BASTOW D, WHITEHEAD J P. Car suspension and handling[M].4th ed.Warrendale: Society of Automotive Engineers,2004.
    [4] DIXON J C. Tyres, Suspension and handling[M].2nd ed. Warrendale: Society of AutomotiveEngineers,1996.
    [5] REIMPELL J, STOLL H, BETZLER J. Automotive chassis: engineering principles[M].2nd ed.London: Butterworth-Heinemann,2001.
    [6] MILLIKEN D L. Race car vehicle dynamics: problems, answers, and experiments[M].2nd ed.Warrendale: Society of Automotive Engineers,2003.
    [7] GILLESPIE T D. Fundamental of vehicle dynamics[M]. Warrendale: Society of AutomotiveEngineer,1992.
    [8] GENTA G, MORELLO L. The automotive chassis: volume1: components design[M]. Berlin:Springer-Verlag,2009.
    [9] MILLIKEN W F, MILLIKEN D L, OLLEY M. Chassis design: principles and analysis[M].Warrendale: Society of Automotive Engineer,2002.
    [10]耶尔森·赖姆帕尔.汽车底盘基础[M].张洪欣,余卓平,译.北京:科学普及出版社,1992.
    [11]阿达姆·措莫托.汽车行驶性能[M].黄锡朋,解春阳,译.北京:科学普及出版社,1992.
    [12]米奇克.汽车动力学C卷[M].陈荫三,译.2版.北京:人民交通出版社,1997.
    [13]安部正人.汽车的运动与操纵[M].陈幸波,译.北京:机械工业出版社,1998.
    [14]余志生.汽车理论[M].3版.北京:机械工业出版社,2002.
    [15]陈家瑞.汽车构造[M].3版.北京:机械工业出版社,2002.
    [16]喻凡,林逸.汽车系统动力学[M].北京:机械工业出版社,2005.
    [17] LANCHESTER F W. Some problems peculiar to the design of an automobile [J]. Institution ofAutomobile Engineers,1908(2):187-257.
    [18] LANCHESTER F W. Automobile steering gear problems and mechanism [J]. Institution ofAutomobile Engineers,1928(2):726-741.
    [19] LANCHESTER F W. Motor car suspension and independent springing [J]. Automobile Engineers,1936(15):668-762.
    [20] OLLEY M. Independent wheel suspensions–its whys and wherefores [J]. SAE,1934,34(3):73-81.
    [21] EVANS R D. Properties of tyres affecting riding, steering and handling [J]. SAE,1935,36(2):41-49.
    [22] MILLIKEN W F, WHITCOMB D W.General introduction to a program of dynamic research [J].Automobile Division,1956:287-309.
    [23] SEGEL L. Research in the fundamentals of automobile control and stability [J]. SAE,1957(65):527-540.
    [24] MICHAEL W S. Vehicle models for RTS applications[J]. Vehicle System Dynamics,1999(32):421-438.
    [25]赵又群,管欣,郭孔辉.开发型驾驶模拟器[J].公路交通科技,1995,12(3):64-66.
    [26]吴振昕.基于总成结构的车辆动力学实时仿真方法的研究[D].长春:吉林大学汽车工程学院,2007.
    [27]庞淑一.面向主观评价的汽车动力学建模研究[D].长春:吉林大学汽车工程学院,2011.
    [28]景立新.基于操纵稳定性的汽车悬架稳健性设计研究[D].长春:吉林大学汽车工程学院,2011.
    [29] SAYERS M W. A generic mutibody vehicle model for simulating handling and braking[J]. VehicleSystem Dynamics.1996,25(sup):599-613.
    [30] RAO P S, ROCCAFORTE D, CAMPBELL R. Developing an ADAMS model of anautomobileusing test data[C]. SAE Technical Paper2002-01-1567.
    [31] BLUNDELL M V, HARTY D. The multibody systems approach to vehicle dynamics[M].Warrendale, PA: Society of Automotive Engineer,2004.
    [32] PARK J, GUENTHER D A, HEYDINGER G J. Kinematic suspension model applicable to dynamicfull vehicle simulation[C]. SAE Technical Paper2003-01-0859.
    [33] CASSARA S J, ANDERSON D C, OLOFSSON J M. A multi-level approach for the validation of atractor-semitrailer ride and handling model[C]. SAE Technical Paper2004-01-2694.
    [34]上官文斌,黄虎,刘德清.多刚体系统动力学在转向系和悬架运动学分析中的应用[J].汽车工程,1992,14(1):19-30.
    [35]宋传学,蔡章林.基于ADAMS/CAR的双横臂独立悬架建模与仿真[J].吉林大学学报(工学版),2004,4:554-558.
    [36]张越今.汽车多体动力学及计算机仿真[M].长春:吉林科学技术出版社,1998.
    [37]林逸.带有非完整约束的汽车多刚体系统动力学研究[D].长春:吉林工业大学汽车工程学院,1989.
    [38]王爽.某微车悬架KnC特性研究及其对整车操纵稳定性的影响[D].长春:吉林大学汽车工程学院,2008.
    [39]金凌鸽. C级车悬架KnC特性优化设计方法研究[D].长春:吉林大学汽车工程学院,2010.
    [40]高晋.基于虚拟样机技术的悬架K&C特性及其对整车影响的研究[D].长春:吉林大学汽车工程学院,2010.
    [41] SHABANA A. Flexible multibody dynamics: review of past and recent development[J]. MultibodySystem Dynamics,1997,1(2):189-222.
    [42] BLUNDELL M V.The influence of rubber bush compliance on vehicle suspension movement[J].Materials and Design,1998,19:29-37.
    [43] YANG X, MEDEPALLI S. Sensitivities of suspension bushings on vehicle impact harshnessperformances[C]. SAE Technical Paper2005-01-0827.
    [44]陈欣,林逸.弹性元件对奥迪轿车前悬架力学特性及顺从性的影响[J].汽车工程,1995,17(3):157-168.
    [45]吕振华,徐建国.五连杆悬架的刚体运动学与弹性运动学分析[J].汽车技术,2002(11):10-14.
    [46]赵振东,雷雨成.橡胶元件在汽车悬架中的应用分析[J].汽车工程,2006(1):19-22.
    [47]郭孔辉.驾驶员-汽车闭环系统操纵运动的预瞄最优曲率模型[J].汽车工程,1984(3):1-16.
    [48]郭孔辉.人-车-路闭环操作系统主动安全性的综合评价指标和优化设计[J].汽车技术,1993(4):4-12.
    [49]赵又群,郭孔辉.汽车操纵稳定性评价的发展研究意义与基本问题[J].汽车技术,1998(5):1-4.
    [50]郭孔辉,丁海涛,宗长富.人-车闭环操纵性评价与优化的研究进展[J].机械工程学报,2003(10):27-35.
    [51] BELL S C, ELLIS J R, GARROTT W R. Suspension testing using the suspension parametermeasurement device[C]. SAE Technical Paper870577.
    [52] NEDLEY A L, WILSON W J. A new laboratory facility for measuring vehicle parameters affectingundersteer and brake steer[C]. SAE Technical Paper720473.
    [53] WINKLER C B, HAGAN M. A test facility for the measurement of heavy vehicle suspensionparameters[C]. SAE Technical Paper800906.
    [54] ELLIS J R. The design of a suspension parameter measurement device[C]. SAE Technical Paper870576.
    [55] COOVERT D A, CHEN H F, GUENTHER D A. Design and operation of a new-type suspensionparameter measurement device[C]. SAE Technical Paper920048.
    [56] CHEN H F, COOVERT D A, GUENTHER D A. Suspension testing on the new type suspensionparameter measurement device[C]. SAE Techical Paper920049.
    [57] HOLDMANN P, K HN P, M LLER B. Suspension kinematics and compliance measuring andsimulation[C]. SAE Technical Paper980897.
    [58] HILL R L. Suspension testing apparatus and method: US,5569836[P].1996-10-29.
    [59] BEST T, NEADS S J, WHITEHEAD J P. Design and operation of a new vehicle suspensionkinematics and compliance facility[C]. SAE Technical Paper970096.
    [60] JEFF W, NORMAN F. A facility for the measurement of heavy truck chassis and suspensionkinematics and compliances[C]. SAE Technical Paper2004-01-2609.
    [61]王蠡. K&C悬架试验台设计及操纵稳定性分析[D].长春:吉林大学汽车工程学院,2007.
    [62] KLING M J, SURWILLO J M, PUETZ P A, et al. Caster and steering axis inclination measurementtechnique: US,5,014,227[P].1991-05-07.
    [63] KOERNER A. Method and apparatus for determing caster and steering axis inclination angles: US,5257458[P].1993-11-2.
    [64] BARTKO R J, ROSEN J H. Intelligent sensor method and apparatus for an optical wheel alignmentmachine: US,5,600,435[P].1997-02-04.
    [65] KOERNER A, HANSON J. Non-contact method and apparatus for determining camber and casterof a vehicle wheel: US,5,978,077[P].1999-11-02.
    [66] LAWRENCE D. Caster angle measurement system for vehicle wheels: US,7265821[P].2007-09-04.
    [67]臧继嵩,任国柱.汽车主销后倾角的测量原理分析[J].北华航天工业学院学报,2009,19(1):4-6.
    [68]魏道高.汽车前轮定位参数研究与展望[J].合肥工业大学学报(自然科学版),2004,27(12):1594-1598.
    [69]王德超,涂亚庆.基于计算机视觉的汽车四轮定位参数检测数学模型及方法研究[J].汽车工程,2008,30(3):243-246,278.
    [70] MERRILL M S. Method and apparatus for determing caster trail: US,3793734[P].1974-02-02.
    [71] LEE U, AHN B. A method to analyze “the imaginary kingpin axis” in multi-Link type Suspensionsystems[C]. SAE Technical Paper930262.
    [72]宋健,石磊.多连杆式前悬架主销轴线的确定[J].公路交通科技,2001,18(6):1-4.
    [73]管欣,逄淑一.基于转向几何试验的主销轴线角度和位置的解算[J].科学技术与工程,2009,9(21):6693-6695.
    [74] POST J W, LAW E H. Procedure for the characterization of friction in automobile power steeringsystems[C]. SAE Technical Paper960933.
    [75] GARY P B, ROBERT M H. Applying Driving simulation to quantify steering effort preference as afunction of vehicle speed[C]. SAE Technical Paper1999-01-0394..
    [76] HEATHERSHAW A. Optimizing variable ratio steering for Improved On-Center Sensitivity andCornering Control[C]. SAE Technical Paper2000-01-0821.
    [77] ADAMS W, TOPPING R. The Steering characterizing functions (SCFs) and their use in steeringsystem specification, simulation, and synthesis[C]. SAE Technical Paper2001-01-1353.
    [78] SALAANI M, HEYDINGER G, GRYGIER P. Modeling and implementation of steering systemfeedback for the national advanced driving simulator[C]. SAE Technical Paper2002-01-1573.
    [79]王其东,杨孝剑.电动助力转向系统的建模及控制[J].农业机械学报,2004,35(5):1-4.
    [80]孟涛,余卓平.电动助力转向系统的回正与主动阻尼控制策略研究[J].汽车工程,2006,28(12):1125-1128.
    [81]高勇,陈龙.电动助力转向系统回正控制研究[J].农业机械学报,2007,38(5):6-10.
    [82]赵林峰,陈无畏.基于转向轻便性及回正性能设计的EPS应用[J].机械工程学报,2009,45(6):181-187.
    [83]李绍松,宗长富.电动助力转向主动回正控制方法[J].吉林大学学报(工学版),2012,42(6):1355-1359.
    [84]郑宏宇.汽车线控转向路感模拟与主动转向控制策略研究[D].长春:吉林大学汽车工程学院,2009.
    [85]赵林峰,陈无畏.电动助力转向系统全工况建模及试验验证[J].农业机械学报,2009,40(10):1-7.
    [86]王鹏.汽车实时动力学仿真中转向回正特征建模方法研究[D].长春:吉林大学汽车工程学院,2008.
    [87]包志超.低速转向时转向梯形对回正力矩和路感效应的影响[J].国外汽车,1980(3):28-34.
    [88]出先洋一,刘家声.极低速、大转向角时转向系的回正力[J].国外汽车,1983(1):28-31.
    [89]姚革,郭孔辉.汽车转向轻便性仿真模拟[J].汽车技术,1997(2):11-16.
    [90]薛立军.前轮定位角对汽车转向回正作用的影响[J].汽车工程,2003,25(2):198-200.
    [91]靳立强,宋传学.基于回正性与轻便性的前轮定位参数优化设计[J].机械农业学报,2006,37(11):20-23.
    [92]王润琪,周永军.汽车前轮定位及回正力矩和转向力的计算[J].湖南科技大学学报(自然科学版),2010,21(1):42-46.
    [93]高军,马骏.汽车转向轻便性试验数学解析研究[J].合肥工业大学学报(自然科学版),2012,35(4):467-471.
    [94]兀光波,李毅.卡车转向轻便性仿真分析与评价技术[J].机械与电子,2012(9):53-55.
    [95] CHO Y G. Vehicle steering returnability with maximum steering wheel angle at low speeds[J].International Journal of Automotive Technology,2009,10(4):431439.
    [96] TATEISHI Y, YOSHIMORI K, KOIDE M, et al. The effects of the tire camber angle on vehiclecontrolability and stability[C]. SAE Technical Paper860245.
    [97] PACEJKA H B. Tyre and vehicle dynamies[M]. Oxford: Butterworth-Heinemann,2002.
    [98]郭孔辉.用于汽车制动、驱动与转向运动模拟的轮胎力学统一模型[J].汽车技术,1992(1):11-18.
    [99]袁忠诚. UniTire轮胎稳态模型研究[D].长春:吉林大学汽车工程学院,2006.
    [100]郭孔辉,吴海东,李宁.轮胎原地转向离散仿真模型[J].汽车技术,2006(11):5-8.
    [101] PACEJKA H B. Spin: camber and turning[J]. Vehicle System Dynamics,2005,43(sup):3-17.
    [102] GOBBI M, AIOLFI M, PENNATI M. Measurement of the forces and moments acting on farmtractor pneumatic tyres[J]. Vehicle System Dynamics,2005,43(sup):412-433.
    [103]豪格.机械系统的计算机辅助运动学和动力学:第1卷基本方法[M].北京:高等教育出版社,1995:237-239.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700