用户名: 密码: 验证码:
机载环境下雷达波导的疲劳特性分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
波导是传播无线电波的导体,雷达中的波导是在雷达中传播射频信号的一种高频馈线。馈线系统将大功率电磁波脉冲由发射机传输到天线,然后又把微弱的反射信号从天线传回到接收机,它是由波导及一系列高频器件、组件所形成的系统。因此,研究馈线系统的疲劳特性对雷达的使用性能和使用寿命具有重要意义。
     本文以某一型号雷达的馈线系统作为研究对象,在理论分析和实验研究的基础上,借助有限元技术,开展馈线系统疲劳特性分析,研究馈线系统是否满足疲劳要求。
     基于馈线系统所处环境的特殊性,对组成馈线系统的各种波导进行了静强度有限元分析校核,并且通过实验验证了静强度分析校核的正确性。同时,在数值仿真和实验过程中,指出了波导结构中易发生塑性变形的危险区域。
     针对数值计算结果表明的波导结构的部分易发生塑性变形的区域,对波导进行了结构优化分析,并且对比分析了优化模型在七种不同工况下的计算结果,研究发现,优化后的关键区域的应力减小了50%以上。
     然后,对优化后的馈线结构进行了瞬态动力学分析,并根据冲击试验条件,对冲击试验过程进行了仿真。
     最后,利用对优化后的馈线结构进行了谱分析。在谱分析的基础之上,利用基于高斯分布和Miner线性疲劳累积定律的三区间法,对馈线结构进行了随机振动疲劳分析,分析结果表明,优化后的馈线结构满足疲劳要求。
     本文所研究的对象虽然仅是针对一种型号雷达的馈线系统,但所形成的数值分析和实验方法可以移植到其它型号雷达的馈线系统的疲劳特性分析中,从而可对提高我国雷达馈线系统的整体性能起到积极的推动作用。
Waveguide is the conductor of radio waves transmission. It is a kind of high-frequency feeder spreads the radio frequency signal in radar. The feeder system is consisted of waveguides and a series of high-frequency devices and other components. It transmits the high-power electromagnetic pulse from the transmitter to the antenna, and then spread the weak reflected signal from the antenna back to the receiver. Therefore, it is significant to study the fatigue property of the feeder system for the performance and the service life of radar.
     Based on theoretical and experimental analysis, the present paper develops an analysis of the fatigue property of a typical feeder system. The static strength is simulated for the various waveguides under their working conditions by means of finite element method. The static strength of numerical simulations is verified then by the experiments. The local area where plastic deformation occurred with high probability is also presented for the waveguides. To eliminate the plastic deformation area of the waveguide structures that the numerical results showed, the structure optimization of the waveguide is made. The comparison between the optimized modal and the previous modal under seven different loading conditions shows that the stress of the key parts gets a reduction over 50 percent.
     Then, the transient dynamic analysis of the optimized feeder structure is conducted by the numerical simulations under the impact test condition, and the spectral analysis of the optimized feeder structure is made. On the numerical results of the spectral analysis, the random vibration fatigue analysis of the feeder structure is obtained by means of the three interval method base on Gaussian distribution and Miner linear fatigue accumulation law. The results show that the optimized feeder structure meets the requirements of fatigue life.
     Although the object of our research is in only one type of the feeder system in radar, the numerical analysis and experimental methods also can be suitable for the other feeder system in almost any other type of radar. It can play an active role in promoting the improvement of the overall performance of the feeder system.
引文
[1]丁鹭飞,耿富录,雷达原理[M].西安:西安电子科技大学出版社,2002.
    [2]George W. Stimson, Introduction To Airborne Radar[M]. SciTech Publishing. Inc,1998.
    [3]Merrill I.Skolnik, Radar Handbook[M]. The McGraw-Hill Companies,1990.
    [4]殷连生,相控阵雷达馈线技术[M].北京:国防工业出版社,2006.
    [5]张祖稷,金林,束咸荣,雷达天线技术[M].北京:电子工业出版社,2005.
    [6]张润连,雷达结构与工艺[M].北京:电子工业出版社,2007.
    [7]顾平,黄剑波,府大兴,机载雷达波导组件关键制造技术[J].北京:电子机械工程,2005,21(5):51-53.
    [8]王彦伟,罗继伟,叶军,陈立平,基于有限元的疲劳分析方法及实践[J].机械设计与制造,2008,1(22):22-24.
    [9]姚卫星,结构疲劳寿命分析[M].北京:国防工业出版社,2003.
    [10]赵少汴,抗疲劳设计[M].北京:机械工业出版社,1994.
    [11]李舜酩,机械疲劳与可靠性设计[M].北京:科学出版社,2006.
    [12]熊峻江,疲劳断裂可靠性工程学[M].北京:国防工业出版社,2008.
    [13]MINER MA, Cumulative damage in fatigue [J]. Journal of Applied Mechanics, 1945,12(3):A159-A164.
    [14]STULEN F B, Preventing fatigue failures [J]. Machine Design,1961,33: 897-904.
    [15]WEIBULL W, Fatigue testing and analysis of results [M]. New York:Macmiuan Company,1961,30-44.
    [16]高镇同,熊俊江,疲劳可靠性[M].北京:北京航空航天大学出版社,2000.
    [17]J. D. Morrow, Fatigue Properties of Metals [M]. Fatigue Design Handbook, SAE, 1986.
    [18]徐灏,疲劳强度[M].高等教育出版社,1998.
    [19]王习术,皮龙石,纪雄,载荷形式对疲劳寿命预测方法的影响[J].机械强度,2000,22(3):234-237.
    [20]孟宪红,张行,确定疲劳裂纹扩展速率的积分法[J].机械强度,2001,23(2):213-215.
    [21]朱付辉,傅衣铭,低速冲击下压电层合板的非线性动力响应与疲劳损伤寿命分析[J].应用力学学报,2009,1.
    [22]李贞子,何才,张国政,20CrMoH齿轮接触疲劳强度研究[J].汽车工艺与 材料,2020,2.
    [23]王文健,刘启跃,轮轧滚动接触疲劳与磨损耦合关系及预防措施研究[J],中国铁道科学,2009,4.
    [24]闫明,孙志礼,杨强,何雪宠,蠕变—热疲劳互交作用的力学机理[J].机械工程学报,2009,1.
    [25]周太全,陈鸿天,具初始裂纹钢桥梁焊接构件疲劳裂纹扩展和疲劳寿命计算[J].船舶力学,2009,1.
    [26]宋志坤,谢基龙,李强,郭少中,840D货车车轮CL60钢在300℃下的低周疲劳特性[J].北京:北京交通大学学报,2010,1.
    [27]张安哥,朱成九,陈梦成,疲劳、断裂与损伤[M].成都:西南交通大学出版社,2005.
    [28]Qaddoumi N, Ranu E, Mc Colskey JD, Mirshahi R, Zoughi R. Microwave detection of stress-induced fatigue cracks in steel and potential for crack opening determination. Res Nondestr Eval.2000(12):87-103.
    [29]Christian Lalanne, Mechanical Vibration & Shock: Fatigue damage [M],2009, Wiley.
    [30]Benounis M, Jaffrezic-Renault N. Elaboration of an optical fibre corrosion sensor for aircraft applications. Sensors and Actuators B,2004,100:1-8.
    [31]Gertsovsky B. Navy. Salyut radars:strenth, reliability and durability [J]. Military Parade,2005.
    [32]COFFIN L F. A study of the effects of cyclic thermal stresses on a ductile metal[J]. Transactions of the American society of Mechanical Engineers,1954, 76:931-950.
    [33]MANSON S S. Behaviour of materials under condition of thermal stress [M]. NACATN-2933,1954.
    [34]HAUGEN E B. Probabilistic approaches to design[M]. John Wiley& Sons,1968.
    [35]HAUGEN E B, WIRSCHING P H. Probabilistic fatigue design alternative to miner'scumulative damage rule [M]. Proe. R&M Symo,1973.
    [36]KECECIOLU D. Designing a specified reliability directly into a component [C]. Proc. Of 3th Annual Aerospace R&M. Conference,1964.
    [37]KECECIOGLU D. Preliability analysis of mechanical components and system [J]. Nuclear Engineering and Design,1977.
    [38]KECECIOGLU D. Probability design methods for reliability and their data and research requirements [J]. Failure Prevention and Reliability, ASME,1977.
    [39]MANN N R, SCHAFER R E, SINGPRWALL N D. Methods for statistical analysis of reliability and life data [M]. John Wiley&Sons,1974.
    [40]KECEIOGLU D, CHESTER L B, GARDNER E O. Sequential cumulative fatigue reliability [J]. Proc. R&M Symp,1974.
    [41]KECEILGLU D, LAMARRE G B. Reliability of mechanical components subjected to combined alternating and mean stress with a non-cinstant stress ratio [C].5th International Conference on Structural Mechanics in Reactor Technology,1979.
    [42]Weaver, William, Jr. and Paul R. Johnston, Finite Elements For Structual Analysis [M], Prentice-Hall,1984.
    [43]杜平安,有限元网格划分的基本原则[M].机械设计与制造,2000,1:34-36.
    [44]龙驭球,有限元法概论[M].北京:人民教育出版社,1978.
    [45]王瑁成,邵敏,有限单元法基本原理和数值方法[M].清华大学出版社,1996.
    [46]刘尔烈等,有限单元法及程序设计[M].成都:西南交通大学出版社,1999.
    [47]胡红军,ANSYS材料工程有限元分析实例教程[M].北京:电子工业出版社,2008.
    [49]胡家顺,冯新,周晶,呼吸裂纹梁非线性动力特性研究[M].振动与冲击,2009,(1).
    [50]蒋友谅,非线性有限元法[M].北京市:北京理工大学,1988.
    [51]邹小魁,李健仍,车辆轨道耦合作用下轨道系统的瞬态动力响应[J].铁道技术监督,2010,2.
    [52]马尚君,刘更,周建星,赵阳东,辐板式人字齿轮结构稳态响应特性研究[J].机械科学与技术,2010,2.
    [53]汤秀丽,李和平,固定式起重机的支撑圆筒在地震载荷下的动态特性研究[J].港口装卸,2009,1.
    [54]杨宇军,ANSYS动力学仿真技术在航天计算机机箱结构设计中的应用[J].北京:电子机械工程,2003,5(19):42-47.
    [55]祝效华,余志祥,ANSYS高级工程有限元分析范例精选[M].北京:电子工业出版社.
    [56]黄雨华,刘树桐,受随机载荷机械构件的疲劳可靠性[J].东北重型机械学院学报,1986,6(3):78-83.
    [57]叶先磊,史亚杰,ANSYS工程分析软件应用实例[M].北京:清华大学出版社.
    [58]鞠彦忠,祝贺,白俊峰,基于PSD法输入的输入塔德输电塔结构随机振动 分析[J].中国电力,2008,4(41).
    [59]JOAKIM S. Spectrum fatigue loading of composite bolted joints-small cycle elimination [J]. International Journal of Fatigue,2006,28(1):73-78.
    [60]GOMATAM RAJESH R, SANCKTAR EROL. A comprehensive fatigue life predictive modal for electronically conductive adhesive joints under constant-cycle loading [J]. Journal of Adhesion Science and Technology,2006, 20(1):87-104.
    [61]VASSILOPOULOS ANASTASIOS P, GEORGOPOULOS EFSTRATIOS F, et al. Artificial neural networks in spectrum fatigue life prediction of composite materials [J]. International Journal of Fatigue,2007,29(1):20-29.
    [62]成伟,何铁宁,随机振动响应计算在ANSYS中的一种实现方法[J].西南交通大学学报,2002,5(34).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700