用户名: 密码: 验证码:
跨座式单轨交通曲线梁桥车桥耦合振动分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
跨座式单轨交通是一种新型的城市轨道交通型式,具有爬坡能力强、适应城市复杂地形的优点,特别适用于地面起伏较大的山区城市。该交通系统以高架线路和曲线线形为主,其轨道梁既是承重结构,又是车辆运行的轨道;车辆采用橡胶轮转向架,其运行、导向机理和轮轨接触关系均不同于传统的钢轮一钢轨制式轨道交通系统,因而其车桥动力相互作用具有独特之处。目前,国内外对跨座式单轨交通动力性能的研究仅局限于分析直线梁桥的车桥动力作用,车桥耦合振动理论还不完善,影响了这项新技术的进一步推广应用。本文以重庆市跨座式单轨交通较新线Ⅰ期工程为依托,推导并建立了跨座式单轨交通曲线梁桥的车桥耦合振动方程,引入了轨道不平顺及地震激励的影响,开发了相应的车桥耦合分析程序,并进行了试验检测验证;进一步讨论了桥梁跨度、行车速度、轨道不平顺、曲线半径、地震激励等对跨座式单轨交通曲线梁桥车桥耦合振动性能的影响。主要研究工作和成果如下:
     (1)曲线梁桥动力分析模型的建立
     基于单纯扭转理论,采用结构力学的方法精确推导了曲梁单元的刚度矩阵,研究了曲梁单元节间集中荷载及节间均布荷载作用下的等效节点荷载矩阵。推导并建立了曲梁单元的一致质量矩阵。按照“对号入座”法则形成了曲线桥梁的整体刚度矩阵、质量矩阵和节点荷载矩阵。基于瑞利比例阻尼的形式建立了曲梁的阻尼矩阵。
     (2)跨座式单轨交通车辆动力分析模型的建立
     根据跨座式单轨交通车辆结构及走行部特点,建立了15个自由度的车辆空间振动分析模型。基于充气橡胶轮胎点接触模型,对轮胎进行了简化,并推导了跨座式单轨车辆各轮对的径向力、阻尼力、侧偏力和回正力矩以及走行轮的摇头力矩。基于达朗贝尔原理,并考虑曲线半径和超高的影响建立了跨座式单轨交通曲线梁桥的车桥耦合动力方程。曲线梁桥车桥耦合振动模型中曲线半径趋于无穷大时吻合于直线梁桥的车桥耦合振动分析模型。
     (3)轨道不平顺模拟及车桥耦合振动方程求解算法的编制
     借鉴美国六级轨道谱密度函数、公路不平度功率谱及日本文献实测钢轨道梁表面不平顺功率谱密度函数,对跨座式单轨交通PC轨道梁轨道不平顺进行了研究,基于三角级数法模拟生成了轨道不平顺时间序列。车桥耦合振动方程求解采用逐步积分的Newmark-β迭代法,每一时间步采用了“预测—校正”的方法。
     (4)跨座式单轨交通曲线梁桥车桥耦合振动分析程序编制和试验验证
     基于推导的车桥耦合振动理论方程和设计的车桥耦合振动分析求解思路,编制了车桥耦合振动分析程序。通过重庆市跨座式单轨交通较新线Ⅰ期工程直线段、曲线段试验检测结果的验证,证实了车桥耦合理论分析的正确性和程序的有效性。
     (5)桥梁结构设计参数及车辆运行参数对车桥振动响应的影响
     基于验证的车桥耦合分析程序,分析了桥梁跨度、曲线半径、行车速度、轨道不平顺等对车桥耦合振动性能的影响。研究表明:①桥梁跨度、行车速度对车桥动力性能的影响比较复杂,呈现出复杂的影响形态;②当曲线半径大于600m时,可以近似忽略曲线半径的影响;③轨道不平顺对车桥耦合动力性能影响显著,轨道不平顺模拟准确性直接关系着车桥耦合分析结果的准确性。
     (6)地震作用下的车桥耦合振动分析理论与参数敏感性分析
     研究了地震作用下车桥耦合振动分析合理的地震波输入方式,推导了地震作用下的车桥耦合振动方程,编制了地震作用下的车桥耦合振动分析程序,分析了车辆行驶速度、初始条件、曲线半径等对地震激励下车桥振动响应的影响。研究表明:①地震激励影响轨道梁和车辆的耦合振动;②地震激励可以按照地震加速度波的形式输入;③地震荷载作用下,单轨车辆在桥上相当于增加了阻尼器,桥梁的振动响应稍有削弱,但车辆的振动响应显著增加;④地震发生时车辆的初始位置对车桥耦合振动响应结果有很大的影响;⑤当曲线半径小于600m,曲线半径减小,车桥振动响应明显增加,曲线半径大于600m时,可以近似忽略曲线半径的影响;⑥地震作用下车辆行驶速度对车桥振动响应有一定的影响,但影响并不明显。
Straddle-type monorail transit is a new type of urban rail transit. It has better ability of grade climbing and better adaptability to pass complex terrain, and it is particularly well suited to be used for the primary transportation in the mountain cities that are more ups and downs on the ground. The construction of the new traffic system is mainly elevated bridge and the most of route is curve, its track beam is bridge structures that bear loads as well as the guide of the vehicles. The body's structure of monorail vehicles is unique, and bogies with rubber tires wheel are adopted, so the running and guiding mechanism and the wheel-rail contact relationship are obviously different from the tradition steel wheel and steel rail transit system, and all of the feature lead to the bridge-vehicle interaction to straddle monorail system is peculiarity. At present, research on straddle monorail transit is still little, only a few research papers are limited to the analysis of the dynamic interaction of the straddle-type monorail built by straight beam. The theory of bridge-vehicle coupling vibration interaction is imperfect and immature, and that has effect on the further promotion and application of the new technology. On the base of the straddle-type monorail system numbered two in Chongqing, equations of bridge-vehicle coupling vibration are derived and established, the track irregularity and seismic load are introduced to the analysis, the corresponding analysis software of vehicle-bridge coupling vibration is developed and also verified by test, based on the verification software, the author discuss the influence to the result of vehicle-bridge coupling vibration for the difference such as bridge span, vehicle speed, track irregularity, curve radius, earthquake, etc. The main contents and research results are as follows:
     1) Dynamic analysis model of curved track beam
     Based on the simple torsion theory, using the methods of structural mechanics, the stiffness matrix of the curved beam element is derived in the flow curve coordinate system, the concentrated load and uniform load on the curved element are equivalent to the node load, and all of the node load is assembled to the node matrix. Further more, the consistent mass matrix of a curved beam is derived and established. Final, the global stiffness matrix, mass matrix and node load matrix are established by "set-in-right-position" rule. The curved beam damping matrix is also created that is based on the Rayleigh proportional damping.
     2) Dynamic analysis model of monorail vehicle
     According to the structure and running gear features of straddle-type monorail vehicle, the dynamic model of monorail vehicle with15DOFS is established. Based on point contact model of the inflatable rubber tires, the tire has been simplified. That are deduced included the radial force of the wheel, damping force, side force, self aligning torque(SAT) and moment produced by yaw. According to D'Alembert principle, dynamic equations of straddle-type monorail bridge-train interaction are deduced. When the radius of curve beam tends to infinity, dynamic mode of straddle monorail transit with curve beam is approached to that with straight beam.
     3) The simulation of track irregularity and preparation for solution algorithm on bridge-vehicle coupling analysis program
     Referring to the sixth track irregularity power-spectral-density function of U.S.A railways, and power spectrum of road roughness and power spectral density function of surface roughness of rail beam measured in Japanese literatures, based on triangle series method, track irregularity series on time are simulated to be generated. Step by step integration algorithm of Nemark's β method is adopted to solve the vibration equations, and the "prediction-correction" method is used at each time step.
     4) Development program and test verification on analysis of bridge-vehicle coupling vibration to the curve bridge of straddle monorail transit
     Based on the theoretical equations on bridge-vehicle coupling vibration and design ideas to solve bridge-vehicle vibration analysis, the program on bridge-vehicle coupling vibration analysis is developed. By verification of test in straight and curve bridge of straddle monorail transit in Chongqing, theory on bridge-vehicle coupling vibration in this paper is proved to be accurate and the program is effective.
     5) The influence of bridge structure design parameters and operating parameters to dynamic response of bridge-vehicle system
     It is based on the bridge-vehicle coupling vibration program of verification for the dynamic behaviors analysis of straddle monorail bridge and vehicle, the influence is discussed of the bridge span, the radius of curve, train speed, track irregularity, etc. The results are as follows:①The influence of bridge-vehicle coupling vibration performance on the bridge span and train speed is complex and is showed the impact of complex shape.②When the curve radius is greater than600m, the influence of the curve radius can be approximation ignored;③Track irregularity on the surface of bridge significantly affect the bridge-vehicle coupling vibration performance, the accuracy of track irregularity simulated is directly related to the reliability of the analysis result.
     6) Theory of bridge-vehicle coupling vibration analysis with earthquake and parameter sensitivity analysis
     The input pattern of earthquake wave is study, bridge-vehicle coupling vibration equations with earthquake is derived, the program is developed, the bridge-vehicle coupling vibration performance under earthquake is discussed on the influence of the initial conditions, train speed, the curve radius, etc. The research results are as follows:①Seismic influence the coupled vibration of the track beam and vehicle;②The input pattern of seismic excitation can be seismic acceleration wave;③Monorail vehicle is equivalent to the role of the bridge damper, the vibration response of the bridge is slightly weakened, but the vehicle has a significantly increase in the vibration response;④The initial position of the train at the time of earthquake coming has a great impact on the results of bridge-vehicle coupling vibration.⑤When the curve radius is less than600m, the bridge-train vibration significantly increased with the reduction of the radius, and when the curve radius is greater than600m, the influence of the radius can be ignored.⑥The effect of train speed to vibration response under earthquake is not obvious.
引文
[1]吕清泉.谈谈我国城市轨道交通的发展[J].铁道学报,2004,22(5):93-98.
    [2]毛保华,姜帆,刘迁.城市轨道交通[M].北京:科学出版社,2001.
    [3]王省茜.跨座式单轨铁路的特点及其应用前景[J].中国铁道科学,2004:25(1):131-135.
    [4]周庆瑞.重庆跨座式单轨交通的建设与技术创新[J].城市轨道交通研究,2005(4)
    [5]周庆瑞,金峰.新型城市轨道交通[M].北京:中国铁道出版社,2005.
    [6]吴爽.大阪单轨铁路系统[J].地铁与轻轨,1993(1):44-47.
    [7]金正彪.日本城市交通考察报告.城市公共交通,2004(3):37-38.
    [8]马超,岳渠德,刘昌裕.石家庄市单轨交通规划[J].石家庄铁道学院学报,2001,14(4):44-46.
    [9]中华人民共和国建设部.跨座式单轨交通设计规范[S].GB50458-2008,2008.
    [10]邢佶慧,宋月箫,杨庆山.跨座式单轨交通系统动力学问题研究[J].科学技术工程,2007,11(7):2724-2726.
    [11]俞展猷.城市单轨交通系统.机车电传动,2002(5).
    [12]蔡蔚,鲁强,李慕君.单轨城市交通城市新形象.交通与运输,2002(2):9-11.
    [13]李海川.城市单轨交通系统的选用探讨.铁道机车车辆,2003(6):34-36.
    [14]雷慧峰,刘永峰.跨座式单轨交通设计中的关键技术[J].铁道标准设计,2001,21(1)1-4.
    [15]刘邵勇.重庆跨座式单轨车辆转向架[J].现代城市轨道交通,2006(1):5-9.
    [16]赵洪伦,许小强,沈钢,任利惠.城市轨道交通车辆弹性车轮的开发研究[J].同济大学学报,2003,31(2):196-200.
    [17]程玉璞.跨座式单轨PC轨道梁设计[J].桥梁建设,2001,2:31-34
    [18]夏禾,张楠.车辆与结构动力相互作用(第二版)[M].北京:科学出版社,2005:146-153.
    [19]韩艳.地震作用下高速铁路桥梁的动力响应及行车安全性研究[D].北京交通大学,2005
    [20]张楠.高速铁路铰接式列车的车桥动力耦合问题的理论分析与试验研究[D].北京交通大学,2002
    [21]郭薇薇.风荷载作用下大跨度桥梁的动力响应及行车安全性分析[D].北京:北京交通大学,2004.
    [22]王贵春,潘家英.轨道不平顺导致的车桥耦合振动分析[J].铁道工程学报,2006(8):30-33.
    [23]Goda K, Nishigaito T, HiraishiM, et al.A curving simulation for a monorail car Railroad Conference[J]. Proceedings of the 2000 ASME/IEEE Joint,2000; 171-177.
    [24]Lee Chang Hun, Kim Chul Woo, Kawatani M, et al.Dynamic response analysis of monorail bridges under moving trains and riding comfort of trains [J]. Engineering Structures,2005; 27 (14):1999-2013.
    [25]C.H. Lee, et al. Dynamic response of a monorail steel bridge under a moving train[J], Journal of Sound & Vibration 294(2006),562-579.
    [26]杨威.跨座式单轨交通PC轨道梁结构计算理论与程序分析系统[D].北方交通大学,2002
    [27]杨威,朱尔玉,张波,闻之琦.风荷载作用下跨座式单轨交通系统导向轮受力和变形分析 [J].北方交通大学学报,2002,26(4):1-4.
    [28]徐瑞龙.PC轨道梁制作工法理论及软件系统[D].北京:北方交通大学,2003.
    [29]刘磊.单轨交通应急梁支座与超高研究以及轨道梁生产用模板误差分析[D].北京:北方交通大学,2009.
    [30]任利惠,周劲松,沈钢,刘绍勇.基于特征根的跨坐式独轨车辆的稳定性分析[J].同济大学学报,2003,31(4):469-472.
    [31]任利惠,周劲松,沈钢.跨坐式独轨车辆动力学模型及仿真[J].中国铁道科学,2004,25(5):26-32.
    [32]周劲松,宫岛,任利惠.铁道车辆弹性车体被动减振仿真分析[J].同济大学学报(自然科学版),2009,37(8):1085-1089.
    [33]闵思鹏,沈钢,任利惠.跨座式独轨车辆动力学仿真研究[J].都市快轨交通,2004.
    [34]沈钢,周劲松,任利惠.列车动力学模型的研究[J].铁道机车车辆,2004,24:1-5.
    [35]沈钢,周劲松,任利惠.单轮对耦合径向转向架曲线通过性能的研究[J].铁道学报,2004,26(5):20-25.
    [36]周君峰.重庆跨座式单轨列车运行平稳性研究[D].北京:北方交通大学,2007.
    [37]赵晓亮.跨座式单轨交通列车动力学仿真研究[D].北京:北方交通大学,2008.
    [38]王行聪.跨座式单轨车辆动力学性能仿真分析[D].重庆:重庆交通大学,2009.
    [39]郑凯锋.跨座式单轨车辆动力学仿真分析与优化[D].重庆:重庆交通大学,2010.
    [40]张建全.跨座式单轨车动力学研究[D].成都:西南交通大学,2009.
    [41]司学通.跨座式轻轨车与汽车同时作用下的公轨两用特大桥梁动力响应及行车舒适性研究[D].长沙:中南大学,2007.
    [42]马继兵,蒲黔辉,夏招广.跨坐式单轨交通系统车辆的乘坐舒适性性能测试与评定[J].都市快轨交通,2006,19(6).
    [43]Shi Zhou, et al.Research on dynamic testing of straddle-type monorail transit sysytem in chongqing city[A].The Eighth International Conference of Chinese Logistics and Transportation Professionals[C],2008.
    [44]马继兵.跨座式单轨交通系统结构静动力行为研究[D].成都:西南交通大学,2008.
    [45]Chul-Woo Kim, Mitsuo Kawatani. Effect of train dynamics on seismic response of steel monorail bridges under moderate ground motion, Earthquake Engineering and Structural Dynamics,2006; 35,1225-1245.
    [46]Diana G., Cheli F. A numerical method to define the dynamic behavior of a train running on deformable structure [J], MECCANICA, Special Issue,1988:27-42.
    [47]Miyamoto T., Ishida H., Matsuo M. Running safety of railway vehicle as earthquake occurs [R]. Quarterly Report of RTRI,1997,38(3),117-122.
    [48]Yang Y.B., Wu Y.-S. Dynamic stability of trains moving over bridges shaken by earthquakes[J]. Journal of Sound and Vibration,2002,258(1):65-94.
    [49]Flyba L. Vibration of solids and structures under moving loads [M], Thomas Telford,1999.
    [50]Yau J.D., Yang Y.B.. Vertical accelerations of simple beams due to successive loads traveling at resonant speeds [J]. Journal of Sound and Vibration,2006,289:210-228.
    [51]Luo Xiu. An applicable assessment methodology for running safety of railway vehicles during earthquakes [J], Journal of JSCE,2001,197-206.
    [52]马坤全,朱金龙.高速列车-连续刚架桥系统地震反应分析[J].上海铁道大学学报, 1998,19(10):29-36
    [53]李忠献,黄健,张媛,张国忱.地震作用对轻轨铁路车桥系统耦合振动的影响[J].地震工程与工程振动,2005,25(6):183-188.
    [54]熊建珍,高芒芒,俞翰斌.天兴洲长江大桥斜拉桥在地震作用下的车-桥耦合振动分析[J].中国铁道科学,2006,27(5):54-59.
    [55]张国忠,闫维明,李洪泉.地震作用下磁悬浮车-桥垂向耦合动力学研究[J].世界地震工程,2006,22(3):148-155.
    [56]谭长建,祝兵.地震作用下高速列车与桥梁耦合振动分析[J].振动与冲击,2009,28(1):4-8.
    [57]张志勇.地震作用下高速铁路连续钢桁梁桥的车桥耦合振动研究[D].中南大学硕士论文.2008.
    [58]阎贵平,夏禾.列车与刚梁柔拱组合系桥系统的地震响应分析[J].北方交通大学学报,1994,18(1):10-16.
    [59]韩艳,夏禾.地震作用下列车过桥安全性分析[J].中国安全科学学报,2006,16(7):24-30.
    [60]韩艳,夏禾,郭薇薇.斜拉桥在地震与列车荷载同时作用下的动力影响分析[J].工程力学.2006,23(1):93-98,68.
    [61]韩艳,夏禾,张楠.考虑非一致地震输入的车-桥系统动力响应分析[J].中国铁道科学,2006,27(5):46-53.
    [62]韩艳.地震作用下高速铁路桥梁的动力响应及行车安全性研究[D].北京交通大学博士学位论文,2005.
    [63]张楠,夏禾,De Roeck Guido.多点激励作用下车-桥-地震耦合系统分析[J].哈尔滨工程大学学报.32(1):26-32.
    [64]林玉森.地震作用下高速铁路桥上列车行走性研究[D].西南交通大学博士学位论文,2007.
    [65]Yau J.D. Vibration of arch bridges due to moving loads and vertical ground motions [J]. Journal of Chinese Institute of Engineers,2006,29:1017-1027.
    [66]Zhang Z.C., J.H. Lin. Non-stationary random vibration analysis for train-bridge systems subjected to horizontal earthquakes [J]. Engineering Structures.2010,32:3571-3582.
    [67]Xia He, Han Yan, Guo Weiwei. Dynamic analysis of train-bridge system subjected to non-uniform seismic excitations [J], Journal of Earthquake Engineering & Structural Dynamics, 2006, (35):1563-1579.
    [68]Yau J.D. Dynamic response analysis of suspended beams subjected to moving vehicles and multiple support excitations [J]. Journal of Sound and Vibration,2009,1-16.
    [69]Yau J.D. Vibration of arch bridges due to moving loads and vertical ground motions [J]. Journal of Chinese Institute of Engineers,2006,29:1017-1027.
    [70]Luo Xiu. An applicable assessment methodology for running safety of railway vehicles during earthquakes [J], Journal of JSCE,2001,197-206.
    [71]李乔.薄壁曲箱梁的空间分析理论[D].成都:西南交通大学,1988.
    [72]孙光华.曲线梁桥计算[M],北京:人民交通出版社,1995
    [73]姚玲森.曲线梁[M],北京:人民交通出版社,1986
    [74]邵容光.混凝土弯梁桥[M],北京:人民交通出版社,1994
    [75]李惠生,张罗溪.曲线梁桥结构分析[M],北京:中国铁道出版社,1992
    [76]Dongzhou Huang, Ton-Lo Wang,M.Shahawy.Vibration of horizontally curved box girder bridges due to vehicles[J].Computers and Structures,68(1998)513-528.
    [77]M.Yener,K.Chompooming.Numerical methed of lines for analyses of vehicle-bridge dynamic interaction[J].Computers and Structures,Vol.53,NO.3,pp709-726,1994.
    [78]Ton-Lo Wang,Vijay K.Garg,Kuang-Han Chu.Railway Bridge-Vehicle Interaction Studies with New Vehicle Model[J]. Journal of structural Engineering, Vol.117,NO.7,July,1991,ASCE.
    [79]N.H.Galdos,D.R.Schelling and M.A Sahin.Methodology for Impact Factor of Horizontally Curved Box Bridge[J]. Journal of structural Engineering. Vol,119, No.6, June,1993,ASCE,pp 1917-1934.
    [80]Dongzhou Huang, Ton-Lo Wang,Mohsen Shahawy.Shahawy.Vibration of Thin-walled Box-Girders Excited By Vehicle [J]. Journal of structural Engineering, Vol,121,No.9,September 1995,ASCE,PP1330-1337.
    [81]Rahamt Ollah Rabizadeh and Sidney Shore. Dynamic Analysis of Curved Box-Girder Bridges[J]. Journal of the Structural Division, ASCE, Vol.101,No.ST9,September,1975,PP255-272.
    [82]Komatsu S. and Nakai H.Study on Free Vibration of Curved Girder Bridge[J].Transaction of the Japanese Society of Civil Engineers, No.136, December,1966, pp35-50
    [83]Komatsu S. and Nakai H.Fundamental Study on Forced Vibration of Curved Girder Bridge[J]. Transaction of the Japanese Society of Civil Engineers, Vol.2, part 1,1970, pp37-42.
    [84]Komatsu S. and Nakai H. Study on Free Dynamic Response and Impact of Horizontally Curved Girder Bridges under Moving Vehicles[J]. Transaction of the Japanese Society of Civil Engineers,Vol.3, Part2,1971, pp132-143.
    [85]单德山,李乔.曲线弯梁桥振动理论分析[J].公路交通科技.22(5):71-74.
    [86]单德山,李乔.铁路曲线连续梁桥车桥耦合振动分析[J].中国铁道科学.25(5):61-65.
    [87]刘慧茹.开口薄壁杆件的约束扭转[M],北京:北方交通大学力学研究所材料力学学科组,1987
    [88]包世华,周坚.薄壁杆件结构力学[M],北京:中国建筑工业出版社,1991
    [89]郭文华,曾庆元.多跨简支曲线轨道折线梁桥空间振动分析模型[J].工程力学.2003,20(2):1-6.
    [90]郭金琼,房贞政,郑振.箱形梁设计理论[M],北京:人民交通出版社,1989
    [91]项海帆.高等桥梁结构理论[M],北京:人民交通出版社,2002
    [92]项海帆,刘光栋.拱结构的稳定与振动[M],北京:人民交通出版社,1991
    [93]李国豪.桥梁结构稳定与振动[M],北京:中国铁道出版社,2002
    [94]吴鸿庆,任侠.结构有限元分析[M],北京:中国铁道出版社,2002
    [95]韩清凯,孙伟.弹性力学及有限元法基础教程[M],沈阳:东北大学出版社
    [96]高秀华,张小江,王欢.有限单元法原理及应用简明教程[M],北京:化学工业出版社
    [97]曾攀.有限元基础教程[M],北京:高等教育出版社,2009
    [98]宋一凡.公路桥梁动力学[M],北京:人民交通出版社,1999
    [99]张汝清,殷学纲,董明.计算结构动力学[M],重庆:重庆大学出版社,1987
    [100]胡用生.现代轨道车辆动力学[M],北京:中国铁道出版社,2009
    [101]雷雨成.汽车系统动力学及仿真[M],北京:国防工业出版社,1997
    [102]庄继德.汽车轮胎学[M],北京:北京理工大学出版社,1995
    [103](英)Dave Crolla,喻凡.车辆动力学及其控制[M],北京:人民交通出版社,2004
    [104]余志生.汽车理论(修订本)[M],北京:机械工业出版社,1989
    [105]王福天.车辆系统动力学[M],北京:中国铁道出版社,1994
    [106]田红旗.轨道车辆结构分析理论[M],长沙:中南大学出版社,2009
    [107]张定贤.机车车辆系统动力学[M].北京:中国铁道出版社,1996.
    [108]V.K.Garg著,沈利人译.铁道车辆系统动力学[M].成都:西南交通大学出版社,1998.
    [109]翟婉明.车辆-轨道耦合动力学(第三版)[M],北京:科学出版社,2007.
    [110]吴定俊,李奇,高丕勤.轨道不平顺速度项对车桥动力响应的影响分析[J].同济大学学报(自然科学版),2006,34(4):494-498,531
    [111]单德山.高速铁路曲线梁桥车桥耦合振动分析及大跨度曲线梁桥设计研究[D].成都:西南交通大学,1999.
    [112]唐光武,贺学峰,颜永福.路面不平整度的数学模型及计算机模拟研究[J].中国公路学报,2000,13(1):76-79.
    [113]段虎明,石峰,谢飞,张开斌.路面不平度研究综述[J].振动与冲击,2009,28(9):95-100.
    [114]汪铸,帅克,钱明军.利用汽车垂直振动加速度判别路面等级的方法[J].南京师范大学学报,2003,3(3):63-65.
    [115]国际标准组织标准.机械振动路面谱测量数据的报告[S].IS08608-1995.
    [116]中华人民共和国建设部.车辆振动输入路面平度表示方法.GB/T7031-1986,1986
    [117]蒋海波,罗世辉,董仲美Blackman-Tukey法的轨道不平顺数值模拟[J].中国测试技术,2006,32(4):97-100.
    [118]刘寅华,李芾,黄运华.轨道不平顺数值模拟方法[J].交通运输工程学报,2006,6(1):29-33.
    [119]陈果,翟碗明.铁路轨道不平顺随机过程的数值模拟[J].西南交通大学学报,1999,34(2):138-142.
    [120]王亚洲,朱东生.仿人工模拟地震波的方法模拟轨道谱[J].兰州交通大学学报(自然科学版),2006,25(6):93-96.
    [121]贺拴海,宋一凡,崔军.桥面凹凸不平引起车辆荷载冲击内力的理论分析[J].西安公路交通大学学报,1999,19(4):18-21.
    [122]曾宇清,王卫东,贺启庸.车辆激励谱的时频转换复现技术[J].中国铁道科学,1996,17(4):26-32.
    [123]张钧博.公路桥梁的车桥耦合振动研究[D].成都:西南交通大学硕士学位论文,2004.
    [124]吴光华.基于车桥耦合振动的公路桥梁动力工作性能分析.哈尔滨:哈尔滨工业大学硕士学位论文,2007.
    [125]曹雪琴,刘必胜,吴鹏贤.桥梁结构动力学[M],北京:中国铁道出版社,1987
    [126]克拉夫,J.彭津(美)著,王光远译(第二版修订版)[M],北京:高等教育出版社,2006.
    [127]曹雪琴.桥梁结构动力分析[M],北京:中国铁道出版社,1987.
    [128]何发礼.高速铁路中小跨度曲线梁桥车桥耦合振动研究[D].成都:西南交通大学,1999.
    [129]单德山,李乔.考虑桩土作用的铁路曲线梁桥车桥耦合振动分析[J].重庆交通学院学报,2004,23(6):10-14.
    [130]李文会.铁路曲线桥的车桥体系空间动力响应分析[D].北京:北方交通大学,1999
    [131]田杰.铁路曲线梁桥车桥耦合振动分析[D].北京:北方交通大学,2002
    [132]沈锐利.高速铁路桥梁与车桥耦合振动研究[D].成都:西南交通大学,1998.
    [133]宁晓骏.高速铁路列车—桥梁—基础空间耦合振动研究[D].成都:西南交通大学,1998.
    [134]岳祖润.铁路桥梁三维耦合振动仿真与墩台状态评估[D].北京:铁道部科学研究院,2002.
    [135]常春伟.高速铁路车—线—桥系统动力分析—桥上列车走行性研究[D].北京:铁道部科学研究院,1997
    [136]曾婵娟.大跨度桥梁车桥竖向耦合振动的研究以及程序实现[D].武汉:武汉理工大学,2007.
    [137]曾庆元、郭向荣.列车桥梁时变系统振动分析理论及应用[M].中国铁道出版社.1999.
    [138]Diana G., Cheli F.Dynamic interaction of railway systems with large bridges [J], Vehicle System Dynamics,1989,18,71-106.
    [139]Lei X, Noda NA. Analyses of dynamic response of vehicle and track coupling system with random irregularity of track vertical profile [J] Journal of Sound and Vibration,2002; 258 (1): 147-65
    [140]Ju S H, Lin H T. Numerical investigation of a steel arch bridge and interaction with high-speed trains [J]. Engineering Structures,2003,25 (2):241-250.
    [141]Flyba L.Vibration of solids and structures under moving loads [M], Thomas Telford,1999.
    [142]Xia He, Han Yan, Guo Weiwei. Dynamic analysis of train-bridge system subjected to non-uniform seismic excitations [J], Journal of Earthquake Engineering & Structural Dynamics, 2006, (35):1563-1579.
    [143]Diana G., Cheli F. A numerical method to define the dynamic behavior of a train running on deformable structure [J], MECCANICA, Special Issue,1988:27-42.
    [144]Yau J.D. Dynamic response analysis of suspended beams subjected to moving vehicles and multiple support excitations [J]. Journal of Sound and Vibration,2009,1-16.
    [145]Xia He, Guo Weiwei. Analysis of resonance mechanism and conditions of train-bridge system [J], Journal of Sound & Vibration,2006,297(2):810-822.
    [146]Bhatti, et al. Dynamic interaction between freight train and steel bridge,[J]. Dynamics System Measure and Control, ASME,1985,107:27-41
    [147]Xu. Y.L., Ko, J.M. and Zhang, W.S. (1997), Vibration studies of Tsing Ma suspension bridges [J], J. Bridge Eng., ASCE,2(4),149-156.
    [148]Yang YB, Lin C W. Vehicle-bridge interaction dynamics and potential applications [J]. Journal of Sound and Vibration,2005,284(1):205-226
    [149]Lin C W, Yang Y B. Use of a passing vehicle to scan the fundamental bridge frequencies an experimental verification [J]. Engineering Structures,2005,27(13):1865-1878
    [150]Dinh-Van Nguyena, Ki-Du Kim, Pennung Warnitchai. Simulation procedure for vehicle-substructure dynamic interactions and wheel movements using linearized wheel-rail interfaces [J]. Finite Elements in Analysis and Design,2009,45:341-356.
    [151]Ju Shen-Haw, Lin Hung-Ta. A finite element model of vehicle-bridge interaction considering braking and acceleration [J]. Journal of Sound and Vibration,2007,303:46-57.
    [152]Michaltsos G.T. The influence of centripetal and coriolis forces on the dynamic response of light bridges under moving vehicles [J]. Journal of Sound and Vibration,2001,247(2): 261-277.
    [153]Abdel-Ghaffar AM., Vertical vibration analysis of suspension bridges [J], ASCE Journal of Structural Division,1980,106:2053-2075.
    [154]Chatterjee P.K., Datta T.K., Surana C.S.. Vibration of suspension bridges under vehicular movements[J], ASCE Journal of Structural Division 1993,120:681-703
    [155]Yang Y.B., Yau J.D., Y.S. Wu. Vehicle-bridge interaction dynamics [M], World Scientific, Singapore,2004.
    [156]Yang Y.B., Yau J.D., L.C. Hsu, Vibration of simple beams due to trains moving at high speeds [J], Engineering Structures.1997,19:936-944.
    [157]Xia H, et al. Experimental study of train-induced vibrations of environments and buildings [J], Journal of Sound & Vibration,2005,280,1017-1029
    [158]Xia He. Numerical analysis of vibration effects of metro trains on surrounding environment [J], International Journal of Structural Stability and Dynamics,2007,7(1):154-166.
    [159]Xia He, Cao Yanmei, De Roeck G. and Degrande G. Environmental problems of vibrations induced by railway traffic[J], Frontiers of Architecture and Civil Engineering in China,2007,2: 142-152.
    [160]Xia He, Zhang Nan. Dynamic analysis of a train-bridge system under wind action [J], Computers & Structures [J],2008,86:1845-1855.
    [161]单德山,李乔.车桥耦合振动数值模拟及软件实现[J].西南交通大学学报,1999,34(6):663-667.
    [162]彭国伦.Fortran 95程序设计[M],北京:中国电力出版社,2002
    [163]刘卫国,蔡旭晖.Fortran 90程序设计教程[M],北京:北京邮电大学出版社,2007
    [164]肖莜南.现代数值计算方法[M],北京:北京大学出版社,2003
    [165]石洞,石志源,黄东州.桥梁结构电算[M].上海:同济大学出版社,1987
    [166]万家,王澜,宣言,姜坚白.城市轨道交通高架桥动力学性能仿真研究[J].中国铁道科学,2004,25(4):90-93.
    [167]赵更新.土木工程结构分析程序设计[M],北京:中国水利水电出版社,2002
    [168]薛德明,戴仁杰,杨忠汉.计算结构力学[M],上海:同济大学出版社,2003
    [169]蒋友谅,赵学仁.计算结构力学[M],北京:北京理工大学出版社,1988
    [170]朱慈勉,王溜,江利仁.计算结构力学[M],上海:上海科学技术出版社,1992
    [171]熊汉伟,张培源.空间曲杆有限元分析[J].重庆大学学报.1997,20(4):31-36.
    [172]重庆市单轨交通系统动载试验研究报告[R].重庆轨道交通总公司,西南交通大学结构工程试验中心,2005.
    [173]铃木浩明等(日).车辆通过缓和曲线时乘坐舒适度评价法[J].国外铁道车辆,2001,38(3):36-40.
    [174]中华人民共和国人民共和国铁道部.铁路桥梁检定规范[S].北京:中国铁道出版社,2004.
    [175]中华人民共和国建设部.铁道车辆动力学性能评定和试验鉴定规范[S].GB5599-1985,1986.
    [176]朱光汉,王正玲.传入人体的振动和环境振动的评价与标准[J].振动与冲击,1992,11(3,4),1993,12(1,2,3).
    [177]国际标准组织标准.振动和冲击对人的影响评价准则[S].IS02631.
    [178]国际铁路联盟.铁路车辆内旅客振动舒适性评价准则[S].UIC513,1998.
    [179]马继兵,蒲黔辉,夏招光.跨座式单轨交通系统车辆的乘坐舒适性性能测试与分析[J].都市快轨交通,2006,19(6):46-50.
    [180]马继兵,蒲黔辉,夏招光.重庆跨座式单轨交通动载试验研究[J].铁道工程学 报,2007,11:69-75.
    [181]范立础.现代化城市桥梁抗震设计若干问题[J].同济大学学报,1997,25(2):147-154.
    [182]范立础.桥梁抗震[M].上海:同济大学出版社,1997
    [183]曾珂,牛荻涛.基于时变ARMA序列的随机地震动模型[J].工程抗震与加固改造,2005,27(3):81-86.
    [184]刘铁.地震波的时域分析及人工合成[D].武汉:华中科技大学硕士学位论文,2007.
    [185]王丽.大跨度立交桥抗震设计理论与方法[D].北京:北京工业大学博士学位论文,2005.
    [186]中华人民共和国人民共和国建设部.建筑抗震设计规范[S].GB50011-2006,2006.
    [187]中华人民共和国建设部.铁路工程抗震设计规范[S].GB50111-2006,2009.
    [188]单德山,李乔.铁路曲线梁桥抗震设计分析[J].重庆交通学院学报,2005,24(1):1-4.
    [189]单德山,李乔.曲线弯梁桥振动理论分析[J].公路交通科技,2005,22(5):71-74.
    [190]焦驰宇.城市曲线高架桥的计算模型与动力反应分析[D].西安:西安建筑科技大学硕士论文,2005.
    [191]高晓安.曲线桥梁抗震设计方法研究[D].北京:北京工业大学博士学位论文,2003.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700