用户名: 密码: 验证码:
小信号混沌动力学测量研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
利用混沌系统的初值敏感性进行小信号测量是一个很好的有应用潜力的方向,它的测量原理与现有的测量原理完全不同,其基本思想是将待测信号作为混沌系统的初值,在参数不变的条件下,利用混沌系统的初值敏感性,使混沌轨道随待测信号的变化而变化,定义轨道距离,通过测量轨道距离的变化即可测得该小信号。理论上这种测量方法的测量精度可以无限高,因此它可以用来测量极其微弱的信号。
    可是混沌系统也同样对噪声非常敏感,电路中的噪声会使某一初值对应的混沌轨道偏离原来的轨道,并且噪声越大轨道的偏离就越大,这样又会否定混沌测量小信号的可能性,问题的关键是能否抑制噪声,或在受干扰的混沌轨道中把真正有用的信息提取出来,只有这样才能真正利用混沌的初值敏感性来测量小信号。
    本文提出了一种消除混沌测量噪声的新方法。它是通过混沌电路的耦合,使耦合轨道相互靠拢,轨道距离减少,从而抑制电路中的噪声。两个混沌测量电路的耦合实验和计算机数值计算验证了这种方法是有效的,又进一步讨论了由N个单元电路构成的耦合实验,可得到随着N的增加它抑制噪声的能力也增强。
    另外,本文在分析原有非线性电路的基础上提出一种有源积分式混沌测量电路,它克服了恒压式测量电路映射函数存在非线性失真、恒流式测量电路不宜工作在开关状态的不足,利用普通的运放也获得较好的测量精度。又由于有源电路易于级联,因此它可以推广到高阶混沌测量电路的研究。
A potentially feasible method is the use of a chaotic system's high sensitivity under condition to detect weak signals, which is quite different from all present methods. Fixing parameter of components in a nonlinear circuit, chaotic orbits change with the measured signal. A distance has been defined. By measuring the distance of orbits, very weak signal can be detected because of the sensitive dependence on initial conditions. In theory, the measuring precision is infinite.
    But a chaotic system is also extremely sensitive to noise, an orbit in a circuit will exponentially drift apart the one of the map with identical initial condition. Is it impossible to measure very weak signals in a chaotic system? The key problem is whether we can reduce noise or depart the useful information from the interferential orbits or not. If we can, very weak signal can be measured based on the sensitive dependence on initial conditions.
    A new method of noise reduction is proposed in this paper. By coupling of many chaotic circuits, orbits can be closed each other, distance can be shorted, and noise in measuring can be reduced. Circuit experiments consisting of two measuring units and computer analysis prove the method is effective, and circuit experiments consisting of N measuring units show noise reduction will be better as N increases.
    Otherwise, an active integral chaotic measuring circuit is suggested based on the analysis of the present nonlinear circuits in this paper, which gets rid of nonlinear distortion of map function in constant-voltage mode and defect of constant-current source operating on-off state. Using a general operational amplifier, high precision can also be obtained. A nth-order chaotic measuring system can be composed of its interconnection.
引文
[1] J. Guckenheimer and P. Holmes, Nonlinear oscillations, dynamical systems, and bifurcations of vector fields[M], Springer-Verlag, 1997.
    [2] D. Kaplan and L. Glass, Understanding nonlinear dynamics[M], Spinger-Verlag, 1997.
    [3] Hao Bai-lin, Elementary symbolic dynamics and chaos in dissipative systems [M], World Scientific, 1989.
    [4] H. G. Schuster, Derterministic chaos: an introduction[MI,-2., rev. ed. Weinheim, Germany, VCH, 1988.
    [5] E.Ott, Chaos in dynamics systems[M], Cambridge University Press. 1993.
    [6] J.S. Nicolis, Chaos and information processing-a heuristic outline[M], World Scientific, 1991.
    [7] H.Kantz, T. Schreiber, Nonlinear time series analysis[M], Cambridge University Press, 1997.
    [8] L.M. Pecora and T. L. Carroll, Synchronization in chaos system[J], Phys. Rev. Lett., 1990, 64(8):821-824.
    [9] E. Ott, C. Greibogi and J. A. Yorke, Controlling chaos[J], Phys. Rev. Lett., 1990, 64(11): 1196-1199.
    [10] S. Hayes, C. Grebogi, E. Ott, Communication with chaos[J], Phys. Rev. Lett. 1993, 70(20): 3031-3034.
    [11] W. J. Freeman, Tutorial on neurobiology: from single neuron to brain chaos[J], Int. J. Bifurcation and chaos, 1992,2:451-482.
    [12] K. Aihara, T. takable and M. Toyoda, Chaotic neural networks[J], Phys. Leu. A, 1990, 144: 333-340.
    [13] R. Brown and L. Chua, ls sensitive dependence on initial conditions nature's sensory device[J], Int. J. Bifurcation Chaos, 1992, 2(1): 193-199.
    [14] W. Wiegerinck, H. Tennekes, On the information flow for one-dimensional maps[J], Phys. Lett. A, 1990,144(3): 145-152.
    [15] F.J. Romeiras, C. Grebogi, E. Ott. et al, Controlling chaos dynamical systems[J], Phys. D, 1992, 58:165-192.
    [16] A. S. Dmitriev, A. I. Panas and S.O. Starkov, Storing and recognizing information based on stable cycles of one-dimensional maps[J], Phys. Lett. A, 1991,155(8,9): 494-498
    [17] Yu. V. Andreyev, A. S. Dmitriev, D. A. Kuminov, et al,I -D maps, chaos and neural networks for information processing[J], Int. J. of Bifurcation and Chaos, 1996, 6(4):627-646.
    [18] Yu. V. Andreyev, A. S. Dmitriev, L.O. Chua et al, Associative and random access memory using one-dimensional maps[J], Int. J. of Bifurcation and Chaos, 1992, 2(3): 483-504.
    [19] A.S. Dmitriev, A. I. Panas and S.O. Starkov, Information processing in I-D systems with chaos[J], IEEE. Trans. on Circuits and Systems-I, 1997, 44(1): 21-28.
    [20] J. FrΦyland, Lyapunov exponents for multidimensional orbits[J], Phys. Lett. A, 1983, 97(1,2): 8-10.
    
    
    [21] J. Wright, Method for calculating a Lyapunov exponent[J], Phys. Rev. A, 1984, 29(5): 2925-2927.
    [22] A. Wolf, J. B. Swift, H. L. Swinney, et al, Determining Lyapunov exponents from a time series[J], Physica D, 1985, 16:285-317.
    [23] I. Goldhirsch, P. Sulem, S. A. Orszag, Stability and Lyapunov stability of dynamical systems: a differential approach and a numerical method[J], Physica D, 1987,27:311-337
    [24] J.A. Glazier, A. Libchaber, Quasi-periodicity and dynamical systems: an experimentalist's view[J], IEEE. Trans. on Circuits and Systems, 1988, 35(7): 790-809.
    [25] D.C. Hamill, J. H. B. Deane, D. J. Jefferies, Modeling of chaotic DC-DC converters by Iterated nonlinear mappings[J]. IEEE. Trans. on Power Electronic, 1992, 7(1): 25-34.
    [26] R.S. Mackay, C. Tresser, Transition to topological chaos for circle maps[J], Physics D, 1986, 19: 206-237.
    [27] S. Kim, S. Osylund, Universal scaling in circle maps[J], Physcis D, 1989, 39: 365-392.
    [28] M.H.Jensen,P. Bak,T Bohr, Transition to chaos by interaction of resonances in dissipative systems. I. Circle maps[J], Phys. Rev. A, 1984, 30(4): 1960-1969.
    [29] G. Wang, D. Chen, J. Lin et al., The application of chaotic oscillators to weak signal detection[J], IEEE Trans. Signal Proc. 1999, 46(2):440-444.
    [30] G. Kolumban, B. Vizvari, and A. Mogel, Chaotic systems: a challenge for measurement and analysis[C], IEEE Tech. Conf., Belgium, 1996, 1396-1401。
    [31] C. S. Hsu and M. C. Kim, Construction of maps with generating partitions for entropy evaluation[J],Phys. Rev. A, 1985, 31(5):3253-3265.
    [32] V. M. Alekseev and M. V. Yakobson, Symbolic dynamics and hyperbolic dynamic systems[J], Phys. Rep.,1981, 75(1):287-325.
    [33] C. W. Wu and L. O. Chua, Symbolic dynamics of piecewise linear maps[J], IEEE Trans. on circuit & syst.,1994, 41(6)420-424.
    [34] M. Cencini, M. Falcioni, E. Olbrich, H. Kantz, A. Vulpian, Chaos or noise: Difficulties of a distinction[J], Phys. Rev. E, 2000, 62:427-437.
    [35] G. Paladin, M. Serva, and A. Vulpiani, Complexity in dynamical systems with noise[J], Phys. Rev. Lett., 1995, 74:66.
    [36] W. Genovese and M. A. Munoz, Recent results on multiplicative noise[J], Phys. Rev. E, 1999, 60:69-78.
    [37] T. Tanaka, K, Aihara and M. Taki, Lyapunov exponents of random time series[J], Phys. Rev. E, 1996, 54:2122-2124.
    [38] G. Sugihara & R. M. May, Nonlinear forecasting as a way of distinguishing chaos from measurement error in time series[J], Nature, 1990, 344:734-741.
    [39] H. C. Papadopoulos and G. W. Wornell, Maximum likehood estimation of a class of chaotic signals[J], IEEE Trna. On Info. Theor., 1995, 43(1):312-316.
    [40] S. Kay, Asymptotic maximum likehood estimator performance for chaotic signals in noise[J], 1995, 43(4):1009-1011.
    [41] S. Kay and V. Nagesha, Methods for chaotic signal estimation[J], IEEE Trans. on Signal Proc., 1995, 43(8):2013-2016,
    [42] Z. Jk, G. Kolumbn and H. delicu, On some recent development of noise clearing algorithms for chaotic signals[J], IEEE Trans. on circuits & syst., 2000, 47(9): 1403-1406.
    [43] C. Pantalen, D. Luengo and I. Santamaria, Bayesian estimation of a class of chotic
    
    signals[C], IEEE conference on signals proc, 2000.
    [44] L. Cong, W. Xiaofu and S. Songgeng, A general efficient method for chaotic signal estimation[J], IEEE Trans. on Signal Proc., 1997, 47(5):1424-1427.
    [45] E. Rosa, S. Hayes and C. Grebogi, Noise filtering in communication with chaos[J], Phys. Rev. lett., 1997, 78(7):1247-1250.
    [46] J. Schweizer, T. Schimming. Symbolic dynamics for processing chaotic signals-Ⅰ: Noise reduction of chaotic sequences[J]. IEEE Trans. on Circuits and Syst, Ⅰ, 2001,48(11):1269-1282.
    [47] T. L. Carrol. Noise-resistance chaotic maps [J]. Chaos, 2002, 12(2): 275-278.
    [48] R. Benzi, A. Sutera and A. Vulpiani, The mechanism of stochastic resonance[J], J. Phys. A, 1981, 14:L453-L457.
    [49] F. Chapeau-Blondeau, Input-output gains for signal in noise in stochastic resonance[J], Phys. Lett. A, 1997, 232: 41-48.
    [50] B. McNamara, K, Wiesenfeld, Theory of stochastic resonance[J], Phys. Rev. A, 1989, 39(9): 4854-4869.
    [51] S. Fauve, F. Heslot, Stochastic resonance in a bistable system[J], Phys. Lett., 97A(1,2): 5-7.
    [52] T. Ohira, Resonance with noise and delay[J], Phys. Rev. Lett., 1999, 82:2811-2814.
    [53] T. Kapitaniak, Mechanism of noise-induced resonance[J], Phys. Rev. E52(1995),1200-1201.
    [54] A. R. Bulsara and M. E. Inchiosa, Noise controlled resonance behavior in nonlinear dynamical systems with broken symmetry[J], Phys. Rev. Lett., 1996, 77:2162-2165.
    [55] R. N. Mantegna and B. Spagnolo, Noise enhanced stability in an unstable system[J], Phys. Rev. Lett., 1996. 76:563.
    [56] S. Kim, S. H. Park, and C. S. Ryu, Noise-enhanced multistability in coupled oscillator systems[J], Phys. Rev. Lett., 1997, 78:1616.
    [57] J. F. Lindner, S. Chandramouli, A. R. Bulsara, M. Locher, and W. L. Ditto, Noise enhanced propagation[J], Phys. Rev. Lett., 1998, 81:5048-5051.
    [58] M. Shiino and K. Yoshida, Chaos-nonchaos phase transitions induced by external noise in ensembles of nonlinearly coupled oscillators[J], Phys. Rev. E, 2001, 63:026210.
    [59] Lei Yu, E. Ott and Qi Chen, transition to chaos for random dynamical systems[J], Phys. Rev. Lett., 1990, 65:2935-2938.
    [60] F. Castro, A. D. Sanchez, and H. S. Wio, Reentrance phenomena in noise induced transitions[J], Phys. Rev. Lett., 1995, 75:1691-1694.
    [61] A. Maritan and J. R. Banavar, Chaos, Noise, and Synchronization[J], Phys. Rev. Lett., 1994, 72:1451.
    [62] J. Teramae and Y. Kuramoto, Strong desynchronization effects of weak noise in globally coupled systems[J], Phys. Rev. E, 2001, 63: 036210.
    [63] P. Khoury, M. A. Lieberman and A. J. Lichtenberg, Degree of synchronization of noisy maps on the circle[J], Phys. Rev. E, 1996, 54:3377-3387.
    [64] M. N. Loreno and V. P. Munuzuri, Colored-noise-induced chaotic array synchronization[J], Phys. Rev. E, 1999, 60:2779-2787.
    [65] J. M. G. Vilar and J. M. Rubi, Noise suppression by noise[J], Phys. Rev. Lett., 2001, 86: 950.
    
    
    [66] J. B. Gao, S. K. Hwang, and J. M. Liu, When can noise induced chaos[J]? Phys. Rev. Lett., 1999, 82:1132.
    [67] S. Rim, D. U. Hwang, I. Kim, and C. M. Kim, Chaotic transition of random dynamical systems and chaos synchronization by common noises[J], Phys. Rev. Lett., 2000, 85:2304.
    [68] T. Shibata, T. Chawanya, and K. Kaneko, Noiseless collective motion out of noisy chaos[J] Phys. Rev. Lett., 1999, 82: 4424-4427.
    [69] S. L. Ginzburg and M. A. Pustovoit, Noise-induced hypersensitivity to small time-dependent signals[J], Phys. Rev. Lett., 1998, 80: 4840.
    [70] H. Fujisaka and T. Yamada, Stability theory of synchronized motion in coupled oscillator systems[J], Prog. Theor. Phys.,1983, 69(1):32-45.
    [71] S. Boccaletti, H. Farini and F. T. Arecchi, Adaptive synchronization of chaos for secure communication[J], Phys. Rev. E, 1997, 55:4979-4981.
    [72] Zonghua Liu, and Shigang Chen, Symbolic analysis of generallized synchronization of chaos[J], Phys. Rev. E, 1997, 56: 7297-7300.
    [73] S. Boccaletti, J. Bragard, F. T. Arecchi and H. Mancini, Synchronization in nonidentical extended systems[J], Phys. Rev. Lett.,1999, 83,536-539.
    [74] D. Y. Tang, R. Dykstra, M. W. Hamilton and N. R. Heckberg, Observation of generalized synchronization of chaos in a driven chaotic system, Phys. Rev. E, 1998, 57: 5247-5251.
    [75] Ying Zhang, Gang Hu, Partial synchronization and spontaneous spatial ordering in coupled chaotic systems[J], Phys. Rev. E, 2001, 63: 026211.
    [76] M. Hasler, Yu Maistrenko, O. Popovych, Simple example of partial synchronization of chaotic systems[J], Phys. Rev. E,1998, 58:6843-6846.
    [77] R. Mainieri and J. Rehacek, Projective synchronization in three dimensional chaotic systems[J], Phys. Rev. Lett., 1999, 82:3042-3045.
    [78] D. E. Postnov, A. G. Balanov, N. B. Janson and E. Mosekilde, Homoclinic bifurcation as a mechanism of chaotic phase synchronization[J], Phys. Rev. Lett., 1999, 83: 1942-1945.
    [79] M. A. Zaks, E. H. Park, M. G. Rosenblum and J. Kurths, Alternating locking ratios in imperfect phase synchronization[J], Phys. Rev. Lett., 1999, 82: 4228-4231.
    [80] M. Saucer and F. Kaiser, Synchronized spatiotemporal chaos and spatiotemporal on-off intermittency in a nonlinear ring cavity[J], Phys. Rev. E, 1996, 53:2468-2473.
    [81] S. Bottani, Synchronization of integrate and fire oscillator with global coupling[J], Phys. Rev. E 1996, 53:2334-2350.
    [82] L. G. Moreli and D. H. Zanette, Synchronization of stochastically coupled cellular automata[J], Phys. Rev. E, 1998,58: R8-R11.
    [83] J. H. Peng, Synchronizing hyperchaos with a scalar transmitted signal[J]. Phys. Rev. Lett.,1996, 76: 904-907.
    [84] Ying-cheng Lai, Synchronization in symmetric hyperchaotic systems[J], Phys. Rev. E,1997, 55: R4861-R4864.
    [85] J. Guemez, C. Martin and M. A. Matias, Approach to the chaotic synchronized state of some driving methods[J], Phys. Rev. E, 1997, 55:124-134.
    [86] J. Y. Chen et al., Phase signal coupling induced n:m phase synchronization in drive-response oscillators, Phys. Rev. E, 2001, 63:036214.
    [87] Wu C. W. And Chua L. O., Synchronization in an array of linearly coupled dynamical systems[J], IEEE Trans. Circuits Syst.,1995,42(8):430-447.
    
    
    [88] K. Pyragas, Synchronization of coupled time-delay systems: analytical estimations[J], Phys. Rev. E, 1998, 58: 3067-3071.
    [89] M. J. Bunner and W. Just, Synchronization of time-delay systems[J], Phys. Rev. E, 1998. 58: R4072-4075.
    [90] Rong he and P. G. Vaidya, Time delayed chaotic systems and their synchronization[J], Phys. Rev. E, 1999, 59:4048-4051.
    [91] S. K. Taap, C. Schouten and C. M. Van den Bleek, Synchronizing chaos in an experimental chaotic pendulum using methods from linear control theory[J], Phys. Rev. E, 1999,59: 5303-5312.
    [92] A. Maybhate and R. E. Amritkar, Use of synchronization and adaptive control in parameter estimation form a time series[J], Phys. Rev. E, 1999, 59: 284-293.
    [93] T. C. Newell, P. M. Alsing, A. Gavrielides and V. Kovanis, Synchronization of chaotic resonators based on control theory[J], Phys. Rev. E, 1995, 51: 2963-2972.
    [94] M. K. Ali, Synchronization of a chaotic map in the presence of common noise[J], Phys. Rev. E, 1997, 55: 4804-4805.
    [95] N. Sharma and E. Ott, Synchronization-based noise reduced method for communication with chaotic systems[J], Phys. Rev. E, 1998, 58: 8005-8008.
    [96] Yu Zhang et al., Digital communication by active-passive-decomposition synchronization in hyperchaotic systems[J], Phys. Rev. E, 1998, 58: 3022-3027.
    [97] J. R. Terry et al. Synchronization of chaos in an array of three lasers[J], Phys. Rev. E. 1999, 59: 4036-4043.
    [98] Wu C. W. And Chua L. O., Synchronization in an array of linearly coupled dynamical systems[J], IEEE Trans. Circuits Syst., 1995,42(8):430-447.
    [99] N. Inaba and T. Nitanai, Synchronization of chaos in a pair of forced Rayleigh circuits with diodes[J], IEEE Trans. Circuits and Syst.Ⅰ, 1999, 46(5):645-647.
    [100] A. Kittel, J. Parisi and K. Pyragas, Generalized synchronization of chaos in electronic circuit experiments[J], Physica D 1998, 112: 459-471.
    [101] E. Mozdy, T. C. Newell, P. M. Alsing, V. Kovanis, and A. Gavrielides, Synchronization and control in a unidirectionally coupled array of chaotic diode resonators[J], Phys. Rev. E, 1995, 51:5371-5376.
    [102] P. Parmananda, Generalized synchronization of spatiotemporal chemical chaos[J], Phys. Rev. E, 1997, 56:1595-1598.
    [103] S. Bottani, Pulse-coupled relaxation oscillators: from biological synchronization to self-organized critically[J]. Phys. Rev. Lett., 1995, 74:4189-4191.
    [104] S. Coombes and G. J. Lord, Desynchronization of pulse-coupled integrate-and-fire neurons[J], Phys. Rev. E, 1997, 55: R2104-R2107.
    [105] M. Lehrman and A. B. Rechester, Symbolic analysis of chaotic signals and turbulent fluctuations[J], 1997, 78(1):54-57.
    [106] Zonghua Liu and Shigang Chen, Symbolic analysis of generalized synchronization of chaos[J], Phys. Rev. E, 1997, 56(6):7297-7300.
    [107] Xiao-Song Yang, Concepts of synchronization in dynamical systems[J], Phys. Lett. A, 1999, 260(9)340-344.
    [108] H. Herzel and J. Freund, Chaos, noise and synchronization reconsidered[J], Phys. Rev. E52(1995), 3238-3241.
    
    
    [109] L. Kocarev, U. Parlitz, Phys. Rev. Lett., 1995, 74, 5028-5031.
    [110] Yu. L. Maistrenko et al. Desynchronization of chaos in coupled logistic maps[J], Phys. Rev. E, 1999, 60:2817-2830.
    [111] K. Kaneko, Period-doubling of kink-antikink pattern quasiperiodicity in antiferro-like structure and spatial intermittency in coupled logistics lattices[J], Prog. Theor. Phys., 1984,72(8): 480-486.
    [112] K. Kaneko, Clustering, coding, switching, hierarchical ordering and control in a network of chaotic elements[J], Physica D, 1990,41:137-172. reference therein.
    [113] K. Kaneko, Relevance of dynamic clustering to biological networks[J], Physica D, 1994,75: 55-73.
    [114] Hu Gang, Xiao Jinghua, Gao Jihua et al., Analytical study of spatiotemporal chaos control by apply local injections[J], Phys. Rev. E, 2000,62, R3043-R3046.
    [115] C. Schittenkopf and G. Deco, Exploring the intrinsic information loss in single-humped maps by refining multi-symbol partitions[J], Physica D, 1996, 94: 57-64.
    [116] S. J. Orfanidis, Introduction to signal processing[M], Prentice Hall International, Inc.,1998.
    [117] B. E. Boser, B. A. Wooley, The design of sigma-delta modulation analog-to-digital converters[J], IEEE. J. of Solid-State circuits, 1988, 23(6):1298-1308.
    [118] B. P. Agrawal, K. Shenoi, Design methodology for ΣΔAM[J], IEEE. Trans. on communications, 1983,31(3):360-369.
    [119] N. He, F. Kuhlmann, A. Buzo, Double-loop sigma-delta modulation with dc input[J], IEEE. Trans. on communications, 1990,38(4):487-495.
    [120] J. C. Candy, O. J. Benjamin, The structure of quantization noise from sigma-delta modulation[J], IEEE. Trans. on communications, 29(9): 1316-1323.
    [121] J. C. Candy, A use of double integration in sigma delta modulation[J], IEEE. Trans. on communications, 1985, 33(3): 249-258.
    [122] R. M. Gray, Oversampled sigma-delta modulation[J], IEEE. Trans. on communications[J], 1987, 35(5): 481-488.
    [123] J. C. Candy, Decimation for sigma delta modulation[J], IEEE. Trans. on communications[J], 1986, 34(1): 72-76.
    [124] R. M. Gray, Quantization noise spectra[J], IEEE. Trans. on information theory[J], 1990, 36(6): 1220-1244.
    [125] L. O. Chua, T. Lin, Chaos in digital filter[J], IEEE. Trans. on Circuits and Systems, 1988, 35: 648-658.
    [126] 吕金虎,陆君安,陈士华,混沌时间序列分析及应用[M],武汉:武汉大学出版社,2002。
    [127] [美]C.格里博格,J.A.约克箸,杨立,刘巨斌译,混沌对科学和社会的冲击[M],长沙:湖南科学技术出版社,2000
    [128] 陈予恕,非线性振动系统的分叉和混沌理论[M],北京:高等教育出版社,1993。
    [129] 赵淑清,郑薇,随机信号分析[M],哈尔滨,哈尔滨工业大学出版社,1998。
    [130] 方兆本,走出混沌[M],湖南教育出版社,1995。
    [131] 刘振华,尹萍,信息隐藏技术及其应用[M],北京,科学出版社,2002。
    [132] 张玉慧,混沌保密通信研究[J],北方交通大学学报,23(2):35-40。
    [133] 王相生,甘骏人,一种基于混沌的序列密码生成方法[J],计算机学报,2002,25(4):
    
    351-356。
    [134] 赵耿,郑德玲,方锦清,混沌保密通信的最新进展[J],自然杂志,2002,23(2):97-106。
    [135] 童勤业,严筱刚,孔军等,混沌理论在测量中的应用[J],电子科学学刊,1999,21(1),42-29.
    [136] 童勤业,严筱刚,钱鸣奇,混沌测量的一种改进方案[J],仪器仪表学报,2000,216(2),22-27.
    [137] 曾以成,金文光,童勤业,通过耦合混沌测量系统抑制噪声[J],浙大学报(工学版),2003,37(1),98-103。
    [138] 周作领,符号动力系统[M],上海:上海教育科技出版社,1997。
    [139] 江泽涵,拓扑学引论[M],上海:上海科学技术出版社,1978。
    [140] 尤承业,基础拓扑学讲义[M],北京:北京大学出版社,1997。
    [141] 陈瑞熊,陈式刚,一维单峰映射的拓扑熵[J],物理学报,1986,35(10):1338-1345。
    [142] 郝柏林,从抛物线谈起——混沌动力学引论[M],上海:上海教育科技出版社,1993。
    [143] 郑伟谋 郝柏林,实用符号动力学[M],上海:上海教育科技出版社,1994。
    [144] 陈式刚,圆映射[M],上海:上海教育科技出版社,1998.
    [145] 杨维明,时空混沌和耦合映象格子[M],上海:上海教育科技出版社,1994.
    [146] 胡岗,萧井华,郑志刚,混沌控制[M],上海:上海教育科技出版社,2000.
    [147] 王跃科,林嘉宇,黄芝平,混沌信号处理[J],国防科技大学学报,2000,22(5):73-77。
    [148] 成雁翔,王光瑞,用非线性反馈实现混沌同步化[J],物理学报,1995,44:1382。
    [149] 郑志刚,胡岗等,耦合混沌系统的相同步:从高维混沌到低维混沌[J],物理学报,2000,49(12):2320-2327.
    [150] 李国辉,周世平,徐得名等,间隙线性反馈控制混沌[J],物理学报,2000,49(11):2123,2127。
    [151] 杨祥龙,汪乐宇,一种强噪声背景下弱信号检测的非线性方法,电子与信息学报,2002,24(6):812-815。
    [152] 汪芙平,王赞基,郭静波,混沌背景下信号的盲分离[J],物理学报,2002,51(3):474-481。
    [153] 裴流庆,顾勇,混沌与噪声[J],电子学报,1991,19(6):80-90。
    [154] 方锦清,非线性系统中混沌控制方法、同步原理及应用前景(二)[J],物理学进展,1996,16(2):137-199.
    [155] 童勤业 金敏 虞捷,混沌运算器的实现[J],电路与系统学报,2000,5(4),33-37.
    [156] 黄文高,童勤业,电容式混沌测量[J].电子与信息学报,2002,24(9):1257:1262.
    [157] 金文光,曾以成 童勤业,非线性动力学在电容测量中的应用[J],电路与系统学报。2003,8(1):94-96。
    [158] 金文光,童勤业,混沌测量电路的改进[J],浙大学报(理学版),2001,28(6):640-644。
    [159] 金文光,童勤业,单驱动源混沌测量方法[J],计量学报,2003,24(1):56-59
    [160] 曾以成,金文光,耦合受迫RC振子的混沌同步[J],电路与系统学报,2002,7(4):93:97。
    [161] 王冠宇,陶国良,陈行等,混沌振子在强噪声背景信号检测中的应用[J],仪器仪表学报,1997,18(2):209-212。
    [162] 范影乐,混沌动力学在参数估计中的应用,浙江大学博士论文,2001,5。
    [163] 曾以成,信号的混沌测量研究,浙江大学博士论文,2002,9。

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700