用户名: 密码: 验证码:
黄土丘陵区主要树种抗旱生理特性及荧光动力机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
半干旱黄土丘陵区是我国典型的生态脆弱地区,而水分是制约植被恢复与重建的主要因素。本文针对半干旱黄土丘陵区干旱缺水的主要特征,在山西省中阳县的车鸣峪林场,以白蜡(Fraxinus rhynchophyila Hance.)、刺梨(Rosa roxburghii Tratt.)、火炬树(Rhus typhina L.)、三角枫(Acer buergerianum Miq.)、蒙桑(Morus mongolica Schneid.)、家桑(Morus alba Linn.)、文冠果(Xanthoceras sorbifolia Bunge.)及五角枫(Acer mono Maxim.)8个树种为试验试料,进行盆栽试验设计,运用气体交换和叶绿素荧光监测技术与分析理论,阐明不同树种光合速率、蒸腾速率、水分利用效率等气体交换参数及叶绿素荧光参数在土壤饱和湿度至凋萎湿度内的连续变化过程;揭示不同树种光合特征参数发生显著变化的土壤水分临界点及其变化机制;确定维持不同树种较高光合速率和水分利用效率的土壤水分范围。研究成果对丰富和发展树木光合生理与水分生理研究具有理论价值,对科学指导黄土丘陵区合理树种选择及适地适树具有实践价值。主要研究成果如下:
     (1)8个树种叶片气体交换参数对土壤水分和光强具有明显的阈值响应
     ①白蜡、刺梨、火炬树、三角枫、蒙桑、家桑、文冠果和五角枫生长适宜的土壤水分范围分别为:39.5%~71.1%、43.6%~73.3%、37.9%~72.4%、37.3%~71.5%、41.6%~79.3%、42.7%~70.3%、42.7%~70.3%、44.2%~73.2%、49%~74.1%。土壤水分最大亏缺分别为:31.7%、36.5%、28.8%、29.8%、34.6%、34.7%、37.6%、33.1%。适宜的光照强度范围分别为:500~1100、300~1100、300~1300、300~900、500~900、500~1100、500~1100、500~1300μmol·m~(-2)·s~(-1)。土壤水分最大亏缺越低,表明植物在干旱条件下忍耐干旱的能力也就越强,从土壤水分最大亏缺可以看出主要造林树种抗旱性从高到低依次为:火炬树、三角枫、白蜡、五角枫、蒙桑、家桑、刺梨、文冠果。
     ②8个树种的Φ、R_d和LCP受土壤水分的影响显著,对RWC具有明显的阈值响应。植物对弱光的利用能力由高到低依次为:火炬树、蒙桑、白蜡、家桑、三角枫、五角枫、刺梨、文冠果;不同树种对光合产物的消耗由多到少的顺序为:蒙桑、火炬树、白蜡、家桑、文冠果、三角枫、刺梨、五角枫。耐荫性由高到低的顺序为:刺梨、五角枫、文冠果、家桑、三角枫、火炬树、白蜡、蒙桑。
     (2)土壤水分影响植物叶片气体交换参数对CO_2浓度的响应过程
     ①研究在不同水分条件下植物叶片气体交换参数对CO_2浓度水平的响应,有助于阐明植物对CO_2浓度和水分条件的响应特性。当RWC>75%时,P_n没有下降,T_r和G_s呈现下降的趋势。RWC为60%~75%时,P_n在达到CO_2饱和点以后缓慢下降,而Tr和G_s急速下降,此时WUE维持在较高值。随着水分胁迫的加剧,P_n、T_r和G_s的CO_2饱和点明显降低,植物的抗旱性增强。在重度水分胁迫下,P_n、Tr和Gs均维持在很低的水平。
     ②8个树种的CE、Γ和R_p对土壤水分的变化具有明显的阈值响应。CE和R_p随着RWC的增加,出现先增大后减小的趋势,且均在RWC为70%左右达到最大值。Г表现出相反的规律,在RWC为60.1%~70.3%左右达到最小值。刺梨的CE值最大,其次为白蜡;8个树种为典型的C3植物;白蜡和刺梨的R_p值较大,约2.1μmol·m~(-2)·s~(-1)左右,其它树种的R_p值在1.4~1.8μmol·m~(-2)·s~(-1)之间。
     (3)光合特征参数日动态对土壤水分变化的响应过程与机制
     ①土壤水分显著影响叶片气体交换参数的日动态过程
     在RWC>75%时,P_n、T_r、G_s均为单峰曲线,WUE差异不显著。当RWC为60%~75%时,白蜡、三角枫、家桑及五角枫没有表现出明显的午休现象,T_r、G_s和WUE为双峰曲线。当RWC达到45%~60%时,P_n、T_r及G_s为双峰曲线,刺梨、三角枫和文冠果的WUE为单峰曲线,其它树种为双峰曲线。在RWC<40%时,P_n和T_r严重午休,表现出典型的“凹”型曲线。除家桑外,其它树种WUE都维持在较高值。
     ②土壤水分显著影响植物光合效率水平
     在RWC>75%,8个树种之间P_n日均值变动幅度不大。RWC为60%~75%时,除五角枫外,其它树种的P_n维持在最高值,白蜡的P_n最高且与家桑种间差异不明显,文冠果次之。RWC为45%~60%时,五角枫具有最大的P_n,家桑次之,三角枫P_n最低。在RWC>75%,8个树种的T_r有较为明显变化,火炬树最大,三角枫次之,五角枫最低。RWC为60%~75%时,T_r水平维持在最高值,火炬树、家桑和文冠果的T_r较高,依次为刺梨、五角枫、白蜡、三角枫、蒙桑。RWC为45%~60%时,家桑具有最高的T_r。
     从WUE来看,RWC>75%,五角枫具有最高的WUE,其次为白蜡,三角枫的WUE最低。RWC为60%~75%时,白蜡的WUE最高,其次为蒙桑,火炬树最低。RWC为45%~60%时,树种的WUE维持在最高,白蜡最高,依次为蒙桑、文冠果、五角枫、家桑,刺梨、火炬树和三角枫三者差异不明显。
     ③土壤水分影响光合作用的光抑制,热耗散增加是植物抵御光抑制的主要机制
     在RWC>75%,树种没有发生光抑制,下午P_n的下降主要是由非气孔限制引起的。RWC为45%~75%时,树种发生了明显的光抑制,随着水分胁迫的缓解,受光抑制的程度降低。超过13:00以后,P_n从气孔限制转向非气孔限制。RWC<40%,植物叶片已发生光氧化破坏。不同水分条件下,林木的NPQ都有午间升高趋势,表明热耗散增加是林木抵御光抑制和缓解光合作用“午休”的主要机制之一。
     (4)植物叶片气体交换参数具有明显的季节变化和日动态
     在CK下,家桑和三角枫P_n呈单峰曲线;在T_1处理下,家桑和三角枫P_n最大值和日均值均在7月最高,在9月较低。在5月和9月为双峰曲线,7月为单峰曲线。在T_2处理下,家桑呈单峰曲线,三角枫在5月为双峰曲线,在7月和9月为单峰曲线。家桑的P_n最大值和日均值上表现出明显的季节变化,差异显著。
     在CK下,家桑在7月的T_r最大,与5、9月差异显著,而三角枫在5月和7月没有明显的差异。两个树种日均值差异显著;在T_1处理下,两树种在5月和7月为双峰曲线;在T_2处理下,两树种在5月出现了蒸腾午休现象,在7月和9月为单峰曲线。家桑T_r要明显高于三角枫;在T_3处理下,T_r一直维持在较低值。
     两个树种的WUE变化曲线比较平缓,呈不明显的双峰曲线,总体来说,上午的WUE要高于下午。三角枫在不同时期的WUE要高于家桑,在不同水分处理下,家桑和三角枫均在T_2处理下达到最大值,T_1次之,5月份的WUE较高。
     (5)不同生长期植物光合作用的光抑制、光化学效率及热耗散
     在CK处理下,家桑和三角枫没有出现明显的光抑制和电子传递效率降低的情况,F_v/F_m、Φ_(PSⅡ)、NPQ在7月份具有较大值,其次为5月。在T_1和T_2处理下,两个树种都发生了明显的光抑制和电子传递效率降低的情况,7月份光抑制发生的时间提前。家桑在抵抗光抑制,电子传递效率方面要高于三角枫,两个树种都具有较高的耗散过剩光能的能力。
     在CK处理下,P_n的下降是由非气孔限制引起的。在T_1处理下,上午阶段主要是气孔限制,而在下午转化为非气孔限制,在5月和9月,非气孔限制发生的转折点在13:00,7月份提前到11:00。随着水分胁迫的加剧,植物发生非气孔限制的时间提前。在T_3处理下,P_n的下降主要受到非气孔限制。
The semi-arid hill area of Loess Plateau is the typical fragile area in our country. In this region, moisture is the key factor to limit the vegetation restoration and reconstruction. Considering semi-arid hill area of Loess Plateau scarce water resource, eight trees of Fraxinus rhynchophyila Hance., Rosa roxburghii Tratt., Rhus typhina L., Acer buergerianum Miq., Morus mongolica Schneid., Morus alba Linn., Xanthoceras sorbifolia Bunge. and Acer mono Maxim. were chose as experimental material to carry out pot experiment in Chemingyu forestry center, Zhongyang county, Shanxi province. Mensuration technology, an analysis theory of gas exchange and chlorophyll fluorescence, was used. In this study, we clarified continuous variety process of gas exchange parameters, such as photosynthesis rate, transpiration rate and water use efficiency etc., and chlorophyll fluorescence parameters from soil saturation humidity to languish humidity; revealled the critical soil moisture in which photosynthesis characteristic parameters took remarkable changes, and its mechanism of taking remarkable changes; and also confirmed the fitting soil moisture range mainting higher photosynthesis rate and water use efficiency. The results have the theoretic value to the practical meaning of scientific directing the reasonable tree choice and fitting area and trees in semi-arid Loess Hilly region. The main results are as follows:
     (1) The gas exchange parameters of eight trees have notable threshold response value to soil moisture and photosynthetic active radiation.
     ①The range of relative water content (RWC) being suitable for the growth of Fraxinus rhynchophyila Hance., Rosa roxburghii Tratt., Rhus typhina L., Acer buergerianum Miq., Morus mongolica Schneid., Morus alba Linn., Xanthoceras sorbifolia Bunge. and Acer mono Maxim. was 39.5%~71.1%, 43.6%~73.3%, 37.9%~72.4%, 37.3%~71.5%, 41.6%~79.3%, 42.7%~70.3%, 42.7%~70.3%, 44.2%~73.2% and 49%~74.1% respectively. The maximum soil moisture deficit was 31.7%, 36.5%, 28.8%, 29.8%, 34.6%, 34.7%, 37.6% and 33.1%, respectively. The range of most suitable PAR was 500~1100, 300~1100, 300~1300, 300~900, 500~900, 500~1100, 500~1100 and 500~1300μmol·m~(-2)·s~(-1), respectively. According to maximum soil moisture deficit, the drought resistance are Rhus typhina L., Acer buergerianum Miq., Fraxinus rhynchophyila Hance., Acer mono Maxim., Morus mongolica Schneid., Morus alba Linn., Rosa roxburghii Tratt. and Xanthoceras sorbifolia Bunge. in succession.
     ②The apparent quantum yield (Φ), dark respiration rate (R_d) and light compensation points (LCP) was affected by soil moisture apparently and had notable threshold response to RWC. According to the utilization of low light intensity, the sequence was Rhus typhina L., Morus mongolica Schneid., Fraxinus rhynchophyila Hance., Morus alba Linn., Acer buergerianum Miq., Acer mono Maxim., Rosa roxburghii Tratt. and Xanthoceras sorbifolia Bunge.. According to the consume photosynthesis production, the sequence was Morus mongolica Schneid., Rhus typhina L., Fraxinus rhynchophyila Hance., Morus alba Linn., Xanthoceras sorbifolia Bunge., Acer buergerianum Miq., Rosa roxburghii Tratt. and Acer mono Maxim.. Based on the ability of shade enduring, the sequence was Fraxinus rhynchophyila Hance., Rosa roxburghii Tratt., Rhus typhina L., Acer buergerianum Miq., Morus mongolica Schneid., Morus alba Linn., Xanthoceras sorbifolia Bunge. and Acer mono Maxim.
     (2) Soil moisture effected CO_2 response process of gas exchange parameters
     ①Research on CO_2 response process of gas exchange parameters under different soil moisture is meaningful to clarify the response characteristic to CO_2 concentration and soil moisture. When RWC was higher than 75%, T_r and Gs appeared degressive trend, but P_n did not; When RWC was 60%~75%, P_n reduced slowly after CO_2 saturation points, T_r and Gs reduced sharply, while WUE maintained higher value. With the increase of water threatening, the CO_2 saturation points of P_n, T_r and Gs reduced notably and the trait of fighting a drought was improved. P_n, T_r and Gs all kept at very low level under severe water stress.
     ②The carboxylation efficiency (CE), CO_2 compensation points (Γ) and photorespiration rate (R_p) had notable threshold value to the variety of soil moisture. The CE and R_p increased gradually and reached to the maximal value when RWC was about 70%, and then fell gradually. WhileΓpresented the opposite rule. When RWC was about 60.1%~70.3%, it reached to the minimal value. Rosa roxburghii Tratt. had the highest CE, the next was Fraxinus rhynchophyila Hance.. The results also presented that all of the eight trees are typical C_3 plants, and the R_p of Fraxinus rhynchophyila Hance. and Rosa roxburghii Tratt. was higher than that of others.
     (3) The response process and mechanism of daily dynamics of photosynthesis characteristic parameters to the variety of soil moisture
     ①Soil moisture effected daily dynamics process of gas exchange parameters notably
     When RWC was higher than 75%, the curve type of P_n, T_r and Gs was single curve, and the difference of WUE was unapparent; When RWC was 60%~75%, Fraxinus rhynchophyila Hance., Acer buergerianum Miq., Morus alba Linn. and Acer mono Maxim. did not present notable midday photosynthesis depression, and the curve type of T_r, Gs and WUE was double curve; When RWC was 45%~60%, the curve type of P_n, T_r and Gs was double curve, and the curve type of WUE of Rosa roxburghii Tratt., Acer buergerianum Miq. and Xanthoceras sorbifolia Bunge. was single curve, the other trees’curve was double curve; When RWC was lower than 40%, P_n and T_r presented severe middy depression and typical concave curve. The WUE of the other trees all maintained higher value except Morus alba Linn..
     ②Soil moisture effected photosynthesis efficiency significantly
     When RWC was higher than 75%, the daily average value of P_n in eight trees was equable; When RWC was 60%~75%, the P_n of other trees maintained maximal except Acer mono Maxim., Fraxinus rhynchophyila Hance. had the highest P_n, and had unconspicuous differentia with Morus alba Linn.; When RWC was 45%~60%, Acer mono Maxim. had the highest P_n, Morus alba Linn. was the second, and Acer buergerianum Miq. had the minimal P_n.
     When RWC was higher than 75%, the T_r in eight trees changed obviously, among them, Rhus typhina L. had the highest T_r, Acer buergerianum Miq. was second, and Acer mono Maxim. had the minimal T_r; When RWC was 60%~75%, the T_r maintained the highest, Rhus typhina L., Morus alba Linn. and Xanthoceras sorbifolia Bunge. had higher T_r than Rosa roxburghii Tratt., Acer mono Maxim., Fraxinus rhynchophyila Hance., Acer buergerianum Miq. and Morus mongolica Schneid.; When RWC was 45%~60%, Morus alba Linn. had the highest T_r.
     When RWC was higher than 75%, Acer mono Maxim. had the highest WUE, Fraxinus rhynchophyila Hance. was the second, and Acer buergerianum Miq. had the minimal WUE; When RWC was 60%~75%, Fraxinus rhynchophyila Hance. had th highest WUE, Morus mongolica Schneid. was second, and Rhus typhina L. had the minimal WUE; When RWC was 45%~60%, the WUE maintained the highest, Fraxinus rhynchophyila Hance. had the highest WUE, the other was Morus mongolica Schneid., Xanthoceras sorbifolia Bunge., Acer mono Maxim., Morus alba Linn., Acer buergerianum Miq., Rosa roxburghii Tratt. and Rhus typhina L. in turn, in addition, Acer buergerianum Miq., Rosa roxburghii Tratt. and Rhus typhina L. had unconspicuous differentia.
     ③Soil moisture affected photosynthesis photoinhibition, the increase of thermal dissipation was the main mechanism to resist photoinhibition
     When RWC was higher than 75%, photosynthesis photoinhibition did not occurred in eight trees, the fall of P_n in the afternoon was caused by non-stomatal limitation; When RWC was 45%~75%, obvious photosynthesis photoinhibition appeared in eight trees, and the degree of photoinhibition fell with the melioration of water stress,. The reason causing P_n fall turned from stomatal limitation to non-stomatal limitation after 13:00. When RWC was lower than 40%, the photosynthetic apparatus photooxidation was destroyed. Nonphotochemical quenching coefficient hoist in the middy under different soil moisture, indicating that the increase of thermal dissipation was one of the main mechanism to resist photoinhibition and relief middy photosynthesis depression.
     (4) The leaf gas exchange parameters had seasonal variation and diurnal dynamics
     In CK condition, the P_n of Morus alba Linn. and Acer buergerianum Miq. showed a single curve; In T_1 disposal, the maximal value and daily average value of Morus alba Linn. and Acer buergerianum Miq. all reached to the highest in July, and to the lowest in September. the P_n showed a double curve in May and September, and single curve in July. In T_2 disposal, Morus alba Linn. showed a single curve, Acer buergerianum Miq. showed a double curve in May, and a single curve in July and September. The maximal value and daily average value of Morus alba Linn. presented obvious seasonal variation, and had conspicuous differentia in different growth period.
     In CK condition, the T_r of Morus alba Linn. was the highest in July, and had conspicuous differentia with the T_r in May and September, but the T_r of Acer buergerianum Miq. had unconspicuous differentia in May and July. The daily average value of two trees had conspicuous differentia. In T_1 disposal, two trees took on double curve in May and July; In T_2 disposal, two trees took on transpiration middy depression in May, and put up single curve in July and September. The Tr of Morus alba Linn. was higher than that of Acer buergerianum Miq. obviously; In T_3 disposal, the Tr of two trees always maintained very low value.
     The curve of WUE of two trees changed tardily, and took on unconspicuous double curve. In a word, the WUE in the forenoon was higher than that in the afternoon. The WUE of Acer buergerianum Miq. was higher than that of Morus alba Linn. in different growth period. The maximum value of WUE took on in T_2 disposal under different water disposal, the next is in T_1 disposal. The WUE in May was higher.
     (5) The photosynthesis photoinhibition, photochemistry efficiency and thermal dissipation in different growth period
     In CK condition, Morus alba Linn. and Acer buergerianum Miq. did not take on obvious photoinhibition and electron transport efficiency depression. The value of maximal quantum yield of PSⅡin the dark (F_v/F_m), actural photochemistry efficiency of PSⅡ(Φ_(PSⅡ)) and non-photochemical quenching coefficient (NPQ) was higher in July, the next was in May. In T_1 and T_2 disposal, two trees all took on obvious photoinhibition and electron transport efficiency depression, and the time occurring photoinhibition brought forward. Morus alba Linn. had higher ability to resist photoinhibition and electron transport efficiency than that of Acer buergerianum Miq.. Two trees had higher ability to consume surplus energy.
     In CK condition, the fall of P_n was caused by non-stomatal limitation. In T_1 disposal, the fall of P_n in the forenoon was caused by stomatal limitation, and then turned to non-stomatal limitation in the afternoon. In May and September, the turning point occurring non-stomatal limitation was at 13:00, and brought forward 11:00 in July. With the aggravation of water stress, the time occurring non-stomatal limitation forward. In T_3 disposal, the fall of P_n was caused by non-stomatal limitation.
引文
白克智,匡廷云.植物生理学在全球气候变化研究中的作用.见:吴相钰,赵微平,匡廷云,等主编.植物生理学补充教材.北京:科学出版社,1996,1–8
    蔡永萍,李玲,李合生等.霍山县3种石斛叶片光合特性及其对光强的响应.中草药,2005,36(4):586–590
    曹军胜,刘广全.油松光合特性的研究.安徽农业科学,2005,33(4):608–609
    常杰,蒋高明.第一届全国植物生理生态学学术研讨会纪要.植物学通报,1999,6(6):719
    常宗强,冯起,苏永红等.额济纳绿洲胡杨的光合特征及其对光强和CO_2浓度的响应.干旱区地理,2006,29(4):496–502
    陈根云,颜日辉,李立人.水稻Rubisco小亚基前体cDNA的克隆及其产物向豌豆叶绿体的运输.植物生理学报,1998,24(3):293–299
    陈洪国.四种常绿植物蒸腾速率、光合速率日变化及对环境的影响.福建林业科技,2006,33(1):76–79
    陈进勇,朱瑾,李炜民等.干旱条件下冷季型草光合蒸腾特性的研究.西北植物学报,2006,26(8):1638–1643
    陈拓,秦大河,李江风等.自然生长树木气孔导度对CO_2浓度升高的响应.兰州大学学报,2OOO,36(4):112–116
    陈小凤,李杨瑞,叶燕萍等.利用叶绿素荧光参数和净光合速率评价引进禾本科牧草的抗旱性.草业科学,2007,24(5):53–57
    陈新军,张光灿,周泽福等.黄土丘陵区丁香叶片气体交换参数的日变化及光响应.中国水土保持科学,2004,2(4):102–107
    陈永霞,杨永康.浙江楠苗期生长和光合特性研究.江苏林业科技,2005,32(1):8–10
    崔骁勇,陈佐忠,杜占池.半干旱草原主要植物光能和水分利用特征的研究.草业学报,2001,10(2):14–21
    崔晓阳,宋金凤,张艳华.不同土壤水势条件下水曲柳幼苗的光合作用特征.植物生态学报,2004,28(6):794–802
    邓慧平,吴正方,周道玮.全球气候变化对小兴安岭阔叶红松林影响的动态模拟研究.应用生态学报,2000,11(1):43–46
    
    董华英,董婕.黄土高原植被建设中的问题探讨.国土与自然资源研究,2007,(1):64–65
    樊巍.农林复合系统的林网对冬小麦水分利用效率影响的研究.林业科学,2000,36(4):16–20
    范晶,张玉红.黑龙江省次生林主要组成树种光合能力与叶片含氮量研究.植物研究,2005,25(3):344–347
    冯建灿,胡秀丽,毛训甲.叶绿素荧光动力学在研究植物逆境生理中的应用.经济林研究,2002,20(4):14–18
    冯金朝,周宜君.沙冬青对土壤水分变化的生理响应.中国沙漠,2001,21(3):223–226
    冯立田,赵可夫.活体叶绿素荧光与耐盐作物筛选.山东师大学报(自然科学版),1997,12(4):436–439
    冯玉龙,曹坤芳,冯志立.生长光强对4种热带雨林树苗光合机构的影响.植物生理与分子生物学学报,2002,28(2):153–160
    冯玉龙,冯志立,曹坤芳.砂仁叶片光破坏的防御.植物生理学报,2001,27(8):483-488
    付为国,李萍萍,卞新.镇江北固山湿地芦苇光合日变化的研究.西北植物学报,2006,26(3):496–501
    傅松玲,刘胜清.石灰岩地区几种树种抗旱性特性的研究.水土保持学报,2001,15(5):89–94
    高辉远,邹琦,陈敬锋等.大豆光合午休原因的分析.作物学报,1994,20(3):357–362
    高辉远,邹琦.大豆光合日变化的类型及其影响因素.大豆科学,1992,11:219–225
    高辉远,邹琦.田间大豆及盆栽大豆光合日变化的比较.八一农学院学报,1992,15:1–6
    高照全,邹养军,王小伟等.植物水分运转影响因子的研究进展.干旱地区农业研究,2004,22(2):200–204
    龚垒.树木的光合作用与物质生产.北京科学技术出版社,1989
    关义新,戴俊英,林艳.水分胁迫下植物叶片光合的气孔和非气孔限制.植物生理学通讯, 1995,31(4):293–297
    郭江红,王百田,田晶会等.黄土半干旱区土壤水分对侧柏叶片水气交换影响.水土保持学报,2004,18(2):157–160
    郭连生,田有亮.对几种针阔叶树种耐旱性生理指标的研究.林业科学,1989,25(5):389–394
    郭连旺,许大全,沈允钢.棉花叶片光合作用的光抑制和光呼吸的关系.科学通报,1995,40 (20):1 885–1 888
    郭连旺,许大全.自然条件下珊瑚树(Viburnum odoratissimum)叶片光合作用的光抑制.植物生理学报,1994,20(1):46–54
    郭培国,李荣华.夜间高温胁迫对水稻叶片光合机构的影响.植物学报,2000,42(7):673–678
    
    郭延平,张良诚,洪双松.温州蜜柑叶片光合作用的光抑制.园艺学报,1999,26(5):281–286
    郭志华,张宏达,李志安等.鹅掌楸苗期光合特性研究.生态学报,1999,19(2):164–169
    韩蕊莲,梁宗锁,邹厚远.不同干旱条件下沙棘耗水特性的初步研究.沙棘,1991,4:33–35
    韩士杰,周玉梅,王琛瑞.红松幼苗对CO_2浓度升高的生理生态反应.应用生态学报,2001,12(1):27–30
    何军,许兴,李树华等.水分胁迫对牛心朴子叶片光合色素及叶绿素荧光的影响.西北植物学报,2004,24(9):1 594–1 598
    贺康宁,田阳,史常青等.黄土半干旱区集水造林条件下林木生长适宜的土壤水分环境.林业科学,2003,39(1):10–16
    胡会庆,刘安国,王维金.油菜光合速率日变化的初步研究.华中农业大学学报,1998,17(5):430–434
    胡新生,王世绩.树木水分胁迫生理与耐旱性研究进展及展望.林业科学,1998,34(2):78–89
    黄俊,郭世荣,吴震.6个不结球白菜品种光合特性的研究.西北植物学报,2006,26(6):1 183–1 189
    黄占斌,山仑.不同供水作物水分利用效率和光合速率日变化的时段性及其机理研究.华北农学报,1999,14(1):47–52
    黄占斌,山仑.春小麦水分利用效率日变化及其生理生态基础的研究.应用生态学报,1997,8(3):263–269
    黄占斌,山仑.水分利用效率及其生理生态机理研究进展.生态农业研究,1998,6(4):19–23
    惠红霞,许兴.外源甜菜碱对盐胁迫下枸杞光合功能的改善.西北植物学报,2003,23(12):2 137–2 142
    贾玉彬,王文全,华章保等.土壤水分与毛白杨蒸腾耗水关系的研究.河北林果研究,1997,12(3):279–283
    贾志清,孙保平,刘涛等.黄家二岔小流域不同树种蒸腾作用研究.水土保持通报,1999,19(5):12–15
    蹇洪英,邹寿青.地毯草的光合特性研究.广西植物,2003,23(2):181–184
    蒋高明,韩兴国,林光辉.大气CO_2浓度升高对植物的直接影响-国外十余年来模拟实验研究之主要手段及基本结论.植物生态学报,1997,21(6):489–502
    蒋高明,何维明.毛乌素沙地若干植物光合作用、蒸腾作用和水分利用效率种间及生境间差异.植物学报,1999,4(10):1 114–1 124
    蒋高明,朱桂杰.高温,强光环境条件下3种沙地灌木的光合生理特点.植物生态学报,2001, 25(6):525–531
    蒋高明.植物生理生态学.北京:高等教育出版社,2004,65–68,161–169
    蒋明义,荆家海,王韶唐.水分胁迫与植物膜脂过氧化.西北农业大学学报,1991,5(6):88-72
    焦树仁.樟子松固沙林生态系统的结构与功能.沈阳:辽宁科学技术出版社,1989
    接玉玲,杨洪强,崔明刚等.土壤含水量与苹果叶片水分利用效率的关系.应用生态学报.2001,12(3):387–390
    金则新,柯世省.云锦杜鹃叶片光合作用日变化特征.植物研究,2004,24(4):447–452
    景蕊莲.作物抗早研究的现状和思考.干早地区农业研究,1999,17(2):79–85
    巨关升,武菊英,赵军锋等.观赏狼尾草光合特性的研究.核农学报,2005,19(6):451–455
    康博文,侯琳,王得祥.几种主要绿化树种苗木耗水特性的研究.西北林学院学报,2005,20(1):29–33
    康绍忠,张建华,梁宗锁等.控制性交替灌溉一种新的农田节水调控思路.干旱地区农业研究1997,15(1):1–5
    柯世省,金则新,陈贤田.浙江天台山七子花等6种阔叶树光合生态特性.植物生态学报,2002, 26(3):363–371
    李得耀,叶济宇,沈允钢.雨天对菠菜光合效率得影响.植物生理学通讯,1991,27:413–415
    李伏生,康绍忠,张富仓.CO2浓度、氮和水分对春小麦光合、蒸散及水分利用效率的影响.应用生态学报,2003,14(3):387–393
    李国泰. 8种园林树种光合特征与水分利用效率比较.林业科学研究,2002,15(3):291–296
    李合生.现代植物生理学.北京:高等教育出版社,2001,85–183
    李洪建,柴宝峰,王孟本.北京杨水分生理生态特性研究.生态学报,2000,20(3):417–422
    李慧卿,马文元.沙生植物抗旱性的主要指标及分析方法.干旱区研究,1998,15(4):12–15
    李建建,常雅君,郁继华.高温胁迫下黄瓜幼苗的某些光合特性和PSⅡ光化学活性的变化.植物生理学通讯,2007,43(6):1 085-1 088
    李建明,邹志荣.温室番茄节水灌溉指标的研究.沈阳农业大学学报,2002,31(1):110–112
    李俊,于沪宁,刘苏峡.冬小麦水分利用效率及其环境影响因素分析.地理学报,1997,52(6):551–560
    李平,李晓萍.低温光抑制胁迫对不同抗冷性的籼稻抽穗期剑叶叶绿素荧光的影响.中国水稻科学,2000,14(2):88–92
    李少昆,赵明,徐启封等.我国常用玉米自交系光合特性的研究.中国农业科学,1999,32(2):112-115
    李淑容,谈锋.杜仲对不同光强度的适应性研究.西南师范大学学报,1995,20(3):290–296
    李树华,许兴,何军等.水分胁迫对牛心朴子光合生理特性影响的研究.西北植物学报, 2004,24(1):100–104
    李小磊,张光灿,周泽福等.黄土丘陵区不同土壤水分下核桃叶片水分利用效率的光响应.中国水土保持科学,2004,3(1):43–47
    李雪华,蒋德明,骆永明等.不同施水量处理下樟子松幼苗叶片水分生理生态特性的研究.生态学杂志,2003,22(6):17–20
    李燕,薛立,吴敏.树木抗旱机理研究进展.生态学杂志,2007,26(11):1 857-1 866
    李银芳,杨戈,蒋进.盆栽条件下不同供水处理对六个树种蒸腾速率的影响.干旱区研究,1994,11(3):39–44
    梁霞,张利权,赵广琦.芦苇与外来植物互花米草在不同CO_2浓度下的光合特性比较.生态学报,2006,26(3):842–848
    梁一民,侯喜录,李代琼.黄土丘陵区林草植被快速建造的理论与技术.土壤侵蚀与水土保持学报,1999,5(3):1–5
    梁英,冯力霞,田传远.高温胁迫对球等鞭金藻3011和8701叶绿素荧光特性的影响.水产学报,2009,33(1):37–54
    梁宗锁,李有新.影响夏玉米单叶WUE的冠层因子分析.西北农业学报,1996,5(1):13–16
    廖建雄,王根轩.干旱、CO_2和温度升高对春小麦光合、蒸发蒸腾及水分利用效率的影响.应用生态学报,2002,13(5):547–550
    林世青,许春辉.叶绿素荧光动力学在植物抗性生理学,生态学和农业现代化中的应用.植物学通报,1992,9(1):1–16
    林舜华,项斌,毹明.CO_2倍增对几种植物的生态生理影响.植物生态学报,1995,16(1):1–4
    林植芳,林桂珠,孔国辉等.生长光强对亚热带自然林两种木本植物稳定碳同位素比、细胞间CO_2浓度和
    水分利用效率的影响.热带亚热带植物学报,1995,3(2):77–82
    刘昌明,王会肖,等著.土壤-作物-大气界面水分过程与节水调控.北京:科学出版社,1999
    刘丹,程辉斗,陆富等.水分胁迫对小麦叶绿体果糖-1,6-双磷酸酯酶活性的影响.云南农业大学学报,1991(6):198–202
    刘家尧,衣艳君,张承德等.活体叶绿素荧光诱导动力学及其在植物抗盐生理研究中的应用.曲阜师范大学学报(自然科学版),1997,23(4):80–83
    刘建伟,刘雅荣,王世绩.不同杨树无性系光合作用与其抗旱能力的初步研究.林业科学,1994,30(1):83–87
    刘孟雨,陈培元.水分胁迫条件下气孔与非气孔因素对小麦光合的限制.植物生理学通讯.1990,4(4):29–27
    刘鹏,赵世杰,孟庆伟等.冷锻炼对甜椒叶片光合作用及其低温光抑制的影响.植物生理与分子生物学学报,2002,28(1):51–58
    刘淑明,孙丙寅,孙长忠.油松蒸腾速率与环境因子关系的研究.西北林学院学报,1999,14(4):27–30
    刘贤赵,康绍忠.不同生长阶段遮荫对番茄光合作用、干物质分配与叶N、P、K的影响.生态学报,2002,22(12):2 264–2 271
    刘允芬,于贵瑞,王利军.红壤丘陵区双季稻表观光合量子效率的研究.中国生态农业学报,2004,12(4):49–52
    卢桂宾.环境条件对黄土丘陵区旱坡地枣树蒸腾的影响.东北林业大学学报,2001,29(4):131–133
    卢毅军,葛滢,应求是等.杭州石荠苧和石荠苧光合特性对不同土壤水分的可塑性响应.科技通讯,2004,20(6):517–522
    罗俊,林彦铨,吕建林等.水分胁迫对甘蔗叶片光合性能的影响.中国农业科学,2000,33(4):100–102
    马博英,金松恒,徐礼根等.低温对三种暖季型草坪草叶绿素荧光特性的影响.中国草地学报,2006,28(1):58–62
    马忠明.有限灌溉条件下作物-水分关系的研究.干早地区农业研究,1998,16(2):75–79
    孟平,张劲松,高峻.山茱萸幼树光合及水分生理特性.林业科学研究,2005,18(1):47–51
    潘辉,朱炜,鲍晓红等.福建省火炬松人工林生长特性的研究.林业科学.2003,39(1):47–51
    潘瑞炽,郑先念,温兆清.土壤干旱期间墨兰的水分生理变化.云南植物研究,1994,16(4):379–384
    潘占兵,蒋齐,郭永忠等.柠条蒸腾特征及影响因子的研究.中国生态农业学报,2006,14(2):70–71
    彭世彰,丁加丽,徐俊增.晚稻蒸腾速率及其影响因素试验研究.节水灌溉,2005,3(1):1–4
    彭镇华,董林水,张旭东等.黄土高原水土流失严重地区植被恢复策略分析.林业科学研究,2005,18(4):471–478
    邱国雄.植物光合作用的效率.余淑文.植物生理学和分子生物学.北京:科学出版社,1992,236–243
    邱扬,傅伯杰,王军等.黄土丘陵小流域土壤水分空间异质性及其影响因子.应用生态学报,2001,12(5):715–720
    渠春梅,韩兴国,苏波等.云南西双版纳片断化热带雨林植物叶片δ13C值的特点及其对水分利用效率的指示.植物学报,2001,43(2):186–192
    茹桃勤,李吉跃,孔令省等.刺槐耗水研究进展.水土保持研究,2005,12(2):135–140
    阮成江,李代琼.黄土丘陵区沙棘的蒸腾特性及影响因子.应用与环境生物学报,2001,7(4):327–331
    桑林,林卫东.云南拟单性木兰生理学的初步研究.云南师范大学学报,2005,25(5):66–70
    山仑,徐萌.节水农业及其生理生态基础.应用生态学报,1991,2(1):70–76
    山仑.提高农田水分利用效率的途径.植物生理学通讯,1997,33(6):475-476山仑.植物生理学与国土整治.植物生理学通讯,1994,30(3):218–227
    单长卷,梁宗锁,康绍忠等.黄土高原陕北丘陵沟壑区不同立地条件下刺槐水分生理生态特性研究.应用生态学报,2005,16(7):1 205–1 212
    上官周平,邵明安.改善旱区作物水分利用的生理调控机制.水利学报,1999,7(10):33–35
    沈允钢,施教耐,许大全.动态光合作用.北京:科学出版社,1998:126–152
    沈允钢,王天铎.光合作用:从理论到农业.上海:上海科学技术出版社,1978
    师生波,李惠梅,王学英等.青藏高原几种典型高山植物的光合特性比较.植物生态学报2006,30(1):40–46
    苏冬梅,廖飞勇.夏季自然高温对桉树光合速率和暗呼吸速率的影响.生态科学,2001,20(1):21–24.
    孙广玉.两个大豆品种光合作用日变化的研究.见:邹琦,等主编.作物抗旱生理生态研究,山东科学技术出版社,1994:184–187
    孙国荣,刘波,赵光伟.烤烟伸根期的光合特性及其对土壤水分的响应.植物研究,2002,22(1):46–50
    孙景生,刘祖贵,肖俊夫等.冬小麦节水灌溉的适宜土壤水分上、下限指标研究.中国农村水利水电,1998,9:10–12
    孙景生.CO2浓度增加对植物生长及其水分利用效率的影响.世界农业,1996,3(1):46–47
    台培东,郭书海,宋玉芳等.草原地区不同生态类型的植物生理特性的比较研究.应用生态学报,2002,11(1):53–56
    唐鸿寿,刘桐华,余彦波.小麦光合作用午休的生态因子研究.生态学报,1986,6:128–132
    陶汉之.茶树光合作用日变化的研究.作物学报,1991,17:444–452
    滕建国,高长启,林玉梅.加拿大黄桦幼苗光合特性的研究.吉林林业科技,2006,35(2):5–7
    田晶会,贺康宁,王百田.不同土壤水分下黄土高原侧柏生理生态特点分析.水土保持学报,2005,19(2):175–178
    涂璟,王克勤.干旱地区造林树种的水分生理生态的研究进展.西北林学院学报,2003,18(3):26–30
    汪炳良,徐敏,史庆华等.高温胁迫对早熟花椰菜叶片抗氧化系统和叶绿素及其荧光参数的影响.中国农业科学,2004,37(8):1245–1250
    王爱民,祖元刚.大兴安岭不同演替阶段白桦种群光合生理生态特征.吉林农业大学学报,2005,27(2):190–193
    王百田,杨雪松.黄土半干旱地区油松与侧柏适宜土壤含水量研究.水土保持学报,2002,16(1):80–83
    王百田,张府娥.黄土高原主要造林树种苗木蒸腾耗水特性.南京林业大学学报(自然科学版),2003,27(6):93–97
    王邦锡,何军贤,黄久常.水分胁迫导致冬小麦叶片光合作用下降的非气孔因素.植物生理学报,1992,18(1):77–84
    王宝山,赵思齐.干旱对小麦幼苗膜脂过氧化及保护酶的影响.山东师范大学学报(自然科学版),1987,2(2):29-37
    王斌瑞,王百田.黄土高原径流林业.北京:中国林业出版社,1996
    王建林,于贵瑞,王伯伦等.北方粳稻光合速率、气孔导度对光强和CO_2浓度的响应.植物生态学报,2005,29(1):16–25
    王进鑫,黄宝龙,项斌等.不同供水条件下侧柏和刺槐幼树的蒸腾耗水与土壤水分应力订正.应用生态学报,2005,16(3):419–425
    王克勤,王斌瑞,王震洪.金矮生苹果水分利用效率研究.生态学报,2002,22(5):723–728
    王克勤,王立.不同土壤水分下金矮生苹果叶片蒸腾速率研究.西南林学院学报,1999,19(1):9–13
    王克勤.集水造林与水分生态.北京:中国林业出版社,2002,16–25
    王淼,代力民,姬兰柱.土壤水分状况对长白山阔叶红松林主要树种叶片生理生态特性的影响.生态学杂志,2002,21(1):1–5
    王淼,郝占庆,姬兰柱等.高O02浓度对温带三种针叶树光合光响应特性的影响.应用生态学报,2002,13(6):646–650
    王荣富,黄正来,张云华.粳籼稻亚种苗期叶片荧光特性的研究.安徽农业大学学报,2003,30(1):1–5
    王万里.植物对水分胁迫的响应.植物生理学通讯,1981,7(5):55–59
    王玉辉,周广胜.松嫩平原盐碱化草地羊草叶片生理生态特性分析.应用生态学报,2O00,11(3):12–19
    王月福,于振文,潘庆民.土壤水分胁迫对耐旱性不同的小麦品种水分利用效率的影响.山东农业科学,1998,21(3):5–7
    王云龙,许振柱,周广胜.水分胁迫对羊草光合产物分配及其气体交换特征的影响.植物生态学报,2004,28(6):803–809
    王志琴,杨建昌,朱庆森.土壤水分对水稻光合速率与物质运转的影响.中国水稻科学, 1996,10(4):235–240
    韦记青,蒋水元,唐辉等.岩黄连光合与蒸腾特性及其对光照强度和CO_2浓度的响应.广西植物,2006,26(3):317–320
    温达志,叶万辉,冯惠玲等.外来入侵杂草薇甘菊及其伴生种基本光合特性的比较.热带亚热带植物学报,2000,8(2):139–146
    温达志,周国逸,张德强等.四种禾本科牧草植物蒸腾速率与水分利用效率的比较.热带亚热带植物学报,2000,增刊:67–76
    吴海卿,段爱旺,杨传福.冬小麦对不同土壤水分的生理和形态响应.华北农学报,2000,15(1):92–96
    吴琦,张希明.水分条件对梭梭气体交换特性的影响.干旱区研究,2005,22(1):79–84
    项文化,田大伦,闰文德等.白栎光合特性对二氧化碳浓度增加和温度升高的响应.浙江林学院学报,2004,21(3):247–255
    肖春旺,同广胜.不同浇水量对毛乌素沙地沙柳幼苗气体交换过程及其光化学效率的影响.植物生态学报,2001,25(4):444–450
    肖冬梅,王淼,姬兰柱.水分胁迫对长白山阔叶红松林主要树种生长及生物量分配的影响.生态学杂志,2004,23(5):93–97
    肖文发,徐德应,李鹏森等.杉木人工林叶光合与蒸腾作用的时空特征.林业科学,2002,38(5):38–46
    谢会成,姜志林,叶镜中.麻栎光合作用的特性及其对CO2倍增的响应南京林业大学学报(自然科学版),2002,26(4):67–70
    谢田玲,沈禹颖,邵新庆.黄土高原4种豆科牧草的净光合速率和蒸腾速率日动态及水分利用效率.生态学报,2004,24(8):1 679–1 686
    徐克章,黑田荣喜,平野贡.水稻叶片的光合日变化.植物生理学通讯,1994,30(5):340–344
    徐志防,罗广华,王爱国.强光及活性氧对大豆光合的影响.植物学报,1999,41(8):862–866
    许长成,张建华.干旱条件下冬小麦不同叶龄叶绿素荧光及叶黄素循环组分的变化.植物生理学报,1999,25(1):29–37
    许大全.光合作用气孔限制分析中的一些问题.植物生理学通讯,1997,33(4):241–244
    许大全.光合作用效率.上海:上海科学技术出版社,2001,163–172
    许大全.田间小麦叶片光合效率日变化与光合“午睡”的关系.植物生理学报,1992,18(3):279–284
    许为钢,胡林,周春菊等.陕西关中地区不同小麦品种光合特性及其演替.西北农业学报,1999,8(2):11–15
    严昌荣,韩兴国,陈灵芝.温带落叶林叶片δ13C的空间变化和种间变化.植物报,1998,40(8):853–859
    严巧娣,苏培玺.不同水分条件下葡萄叶片光合特性的比较.西北植物学报,2005,25(8):1 601–1 606
    阎秀峰,孙国荣,李敬兰.羊草和星星草光合蒸腾日变化的比较研究,植物研究,1994,14(3):287–291
    阎秀峰,孙国荣,肖玮.生长不同年数星星草光合能力比较研究.植物生态学报,1998,22(3):231–236
    杨建昌,朱应森,王志琴等.土壤水分对水稻产量与生理特性的影响.作物学报,1995,21(1):110–114
    杨建民,王中英.短枝型与普通型苹果叶片光合特性比较研究.中国农业科学,1994,27(4):31–36
    杨建伟,梁宗锁,韩蕊莲等.不同干旱土壤条件下杨树的耗水规律及水分利用效率研究.植物生态学报,2004,28(5):630–636
    杨俊霞,郭宝林,鲁韧强等.美国黑莓的土壤含水量对美国黑莓光合特性的影响.果树学报,2003,20(2):116–119
    杨维西.试论我国北方地区人工植被的干化问题.林业科学,1996,32(1):78–84
    杨文斌,任建民,贾翠萍.柠条抗旱生理生态与土壤水分关系的研究.生态学报,1997,17(3):239–244
    杨文治,邵明安.黄土高原土壤水分研究.北京:科学出版社,2000
    姚雅琴,汪沛洪,胡东维等.水分胁迫下小麦叶肉细胞超微结构变化与抗旱性的关系.西北植物学报,1993,13(1):1-7
    余清珠,高文秀,王进鑫等.人工幼林蒸腾规律的研究.陕西林业科技,1992,4:5–9
    余叔文,汤章城.植物生理与分子生物学.北京:科学出版社,1998
    余颜波等.植物光效生态学研究-小麦光合午休的原因.生态学报,1985,5(4):336–341
    曾凡江,张希明.柽柳的水分生理特性研究进展.应用生态学报,2002,13(5):611–614.
    曾小平,赵平,蔡锡安等.不同土壤水分条件下焕镛木幼苗的生理生态特性.生态学杂志,2004,23(2):26–31
    曾小平,赵平,彭少麟等.三种松树的生理生态学特性研究.应用生态学报,1999,10(3):275–278
    张成军,陈国祥,施大伟.两种高产小麦旗叶光合功能衰退特性比较.植物研究,2005,25(2):163–168
    张盹明,王继和.干旱沙区2种梨树光合特性的研究.西北植物学报,2001,21(1):94–100
    张光灿,刘霞,贺康宁等.金矮生苹果叶片气态交换参数对土壤水分的响应.植物生态学报. 2004,28(1):66-72
    张建国,李吉跃,沈国舫.树木耐旱特性及其机理研究.北京:中国林业出版社,2000
    张教林,曹坤芳.夜间低温对2种热带雨林树种幼苗叶绿素荧光的影响.武汉植物学研究,2003,21(4):356–360
    张金屯.黄土高原植被建设的理论与技术问题.水土保持学报,2005,18(5):120–123
    张黎萍,荆奇,戴廷波等.温度和光照强度对不同品质类型小麦旗叶光合特性和衰老的影响.应用生态学报,2008,19(2):311–316
    张木清,陈如凯.甘蔗苗期低温胁迫对叶绿素a荧光诱导动力学的影响.福建农业大学学报,1999,28(1):1–7
    张其德,卢从明,刘丽娜.CO_2倍增对不同基因型大豆光合色素含量和荧光诱导动力学参数的影响.植物学报,1997,39(10):946–950
    张其德,温晓刚,卢从明等.盐胁迫下CO_2加倍对春小麦一些光合功能的影响.植物生态学报2000,24(3):308–311
    张启昌,杜凤国,夏富才等.美国椴光合蒸腾的生理生态.北华大学学报,2000,1(5):436–438
    张守仁.叶绿素荧光动力学参数的意义及讨论.植物学通报,1999,16(4):444–448
    张岁岐,山仑,薛青武.营养与作物抗旱性.娄成后,王学臣.作物产量形成的生理学基础.北京:中国农业出版社,2001,189–200
    张往祥,曹福亮.高温期间水分对银杏光合和光化学效率的影响.林业科学研究,2O02,15(6):672–679
    张卫强,贺康宁,朱艳艳等.黄土半干旱区油松苗木蒸腾特性与影响因子的关系.中国水土保持科学,2007,5(1):49–54
    张喜焕,刘宁,郭建民.杨梅属两种植物光合特性对CO_2浓度升高响应的比较研究.贵州科学, 2006,24(2):71–74
    张小全,徐德应,赵茂盛等.CO_2增长对杉木中龄林针叶光合生理生态的影响.生态学报,200,20(5):390–396
    张永强,姜杰.水分胁迫对冬小麦叶片水分生理过程的影响.干旱区研究,2001,18(1):57–61
    张振贤,梁书华,陈利平.田间大白菜光合速率日变化与“午睡”现象的研究.植物学报,1994,36(增刊):97–101
    张正斌.作物抗旱节水的生理遗传育种基础.北京:科学出版社,2003
    赵昌恒,方乐金.银木的光合与水分生理特性的研究.林业科学研究,2006,19(2):261–263
    赵俊芳,杨晓光,王志敏等.不同水分条件下旱稻水分利用效率的研究.中国生态农业学报,2003,11(4):111–113
    赵平,曾小平,彭少麟等.海南红豆夏季叶片气孔交换、气孔导度和水分利用效率的日变化.热带亚热带植物学报,2000,8(1):35–42
    赵世杰,许长成,孟庆伟等.田间小麦叶片光合作用的光抑制.西北植物学报,1998,18(4):521–526
    赵天宏,王美玉.大气CO2浓度升高对植物光合作用的影响.生态环境,2006,15(5):1 096–1 100
    赵雨森,焦振家,王文章.樟子松蒸腾强度的研究.东北林业大学学报,1991,19(5):l13–l18
    郑国生,邹琦.不同天气条件下田间大豆光合日变化的研究.中国农业科学,1993,26:44–50
    郑丕尧.作物生理学导论.北京:北京农业大学出版社,1992
    郑有飞,颜景义,张卫国.小麦气孔阻力对气象条件的响应.中国农业气象,1995,16(3):9–13
    周海燕,黄子琛.不同时期毛乌素沙区主要植物种光合作用和蒸腾作用的变化.植物生态学报,1996,20(2):120–131
    周艳虹,黄黎锋,喻景权.持续低温弱光对黄瓜叶片气体交换、叶绿素荧光猝灭和吸收光能分配的影响.植物生理与分子生物学学报,2004,30(2):153–160
    朱万泽,王金锡.引种台湾桤木的水分生理特性.武汉植物学研究,2004,22(6):539–545
    朱万泽,吴永波,薛建辉.贡嘎山地区黄背栎的光合特性.南京林业大学学报(自然科学版), 2006,30(1):25–28
    邹琦.作物光合作用午休研究进展.见:邹琦等主编.作物抗旱生理生态研究,山东科学技术出社,1994:164–171
    Azcon-Bieto J, Farquhar G D, Caballero A. Effect of temperature, oxygen concentration, leaf age and seasonal variations on the CO2 compensation point of Lolium perenne L. Planta, 1981, 152: 497–504
    Baker N R. Herbicides, in Barker N R. Percival M P (eds ), Topics in Photosynthesis Vol. 10, Elsevier, Amsterdam l991b : 347
    Barker D H, Stark L R, Zimpfer J F, et al. Evidence of drought-induced stress on biotic crust moss in the Mojave Desert. Plant, Cell and Environment, 2005, 28 (7): 939–947
    Baroli I, Melis A. Photoinhibitory damage is modulated by the rate of photosynthesis and by the photosystemⅡlight-harvesting chlorophyll antenna size. Planta, 1998, 205: 288–296
    Bazzaz F A. The responses of natural ecosystems to the rising global CO2 levels. Annu. Rev. Ecol. Syst., 1990, 21: 167–196
    Beeilling D J, Woodward F I. leaf stable carbon isetope composition records increased water-use efficiency of C3 plants in sponse to atmospheric CO2 enrichment. Functional Ecology, 1995, 9: 394–401
    Beerling D.J. Carbon isotope discrimination and stomatal responses of mature Pinus sylvestris L. trees exposed in situ for three years to elevated CO2 and temperature. Acta Oecologica, 1997, 18: 697–712
    Belkhodja R, Lenz F, Turner D, et a1. Chlorophyll fluorescence as a possible tool for salinity tolerancescreening in Barley (Hordenm vulgare L. ). Plant Physio1., 1993, 104: 667–673.
    Berry J A, Bjorkman O. Photosynthetic response and adaptation to temperature in higher plants. Annu. Rev. Plant Physio1., 1980, 31: 491–543
    Bert G, Drake D, Miquel A, et al. More efficient plants: a consequence of rising atmospheric CO_2. Annu. Rev. Plant Physiol. Plant Mol. Biol., 1997, 48: 609–639
    Bertamini M, Nedunchezhian N. Photoinhibition of photosynthesis in mature and young leaves of grapevine. Plant Science, 2003, 164 (4): 635–644
    Beyel V, Brüggemann W. Differential inhibition of photosynthesis during pre-flowering drought stress in Sorghum bicolor genotypes with different senescence traits. Physiologia Plantarum, 2005, 124(2): 249–259
    Bilger W, Bjorkman O. Role of xanthophyII cycle in photoprotection elucidated by measurements of light-induced absorbance changes, fluorescence and photosynthesis in leaves of Hedera canariensis. Photosynthesis Research, 1990, 25: 173–185
    Bjoerkman O, Gauhl E, Nobs M A. Comparative studies of Atriplex with and without carboxylation photosynthesis, Carnegie Institute of Washington Year Book, 1970, 68: 620–623
    Bjokman O, Demming A B. Regulation of photosynthetic light energy capture, conversion and dissipation in leaves of higher plants. In: Schulze E D and M M Caldwell eds. Ecophysiology of photosynthesis. 1993, 17–47
    Bongi G, Oreto F I. Gas exchange propertic of salt stressed olive (Olea europea L.) leaves. Plant Physiol., 1989, 90: 1 408–1 416
    Bowes G. Facing the inevitable: plants and increasing atmospheric CO_2. Annu. Rev. Plant Physiol. Plant Mol. Biol., 1993, 44: 309–332
    Bowes G. Growth at elevated CO_2: photosynthetic responses mediated through Rubisco. Plant, Cell and Environment, 1991, 14: 795–806
    Brestic M, Conic G, Fryer M J, et a1. Does photorespiration protect the photosynthetic apparatus in French bean leaves from photoinhibition during drought stress? Planta, 1995, 196: 450–457
    Brevedan E R. Effects of moisture deficits on 14C translocation in corn (Zes mays L.). Plant physiol., 1973, 52: 436–439
    Centritto M, Loreto F, Massacci A, et al. Improved growth and water use efficiency of cherry saplings under reduced light intensity. Ecological Research, 2000, 15 (4): 385–392
    Chandra R, Sirohi G S. Carbon dioxide compensation concentration in relation to growth nitrogen and moisture stress. Indian J. Physiol., 1983, 26 (4): 331–337
    Chandrasekar V, Sairam R K, Srivastava G C. Physiological and biochemical responses of hexaploid and tetraploid wheat to drought stress. Journal of Agronomy & Crop Science, 2000, 185 (4): 219–227
    Chapin F S, Bloom A J, Field C B, et al. Plant responses to multiple environmental factors. Bio.Science, 1987, 37 (1): 49–57
    Chaves M M, Santos T P, Souza C R, et al. Deficit irrigation in grapevine improves water-use efficiency while controlling vigour and production quality. Annals of Applied Biology, 2007, 150 (2): 237–252
    Chazdon R L, Pearcy R W. Photosynthetic responses to light variation in rainforest species. II. Carbon gain and photosynthetic efficiency during light-flecks. Oecologia, 1986, 69: 524–531
    Chen Z, Spreitzer R J. How various factors influence the CO_2/O_2 specificity of ribulose-1, 5-bisphosphate carboxylase/oxygenase. Photosynth Res., 1992, 31: 157–164
    Clifford S C, Stronach I M, Black C R, et al. Effects of elevated CO_2, drought and temperature on the water relations and gas exchange of groundnut (Arachis hypogaea) stands grown in controlled environment glasshouses. Physiologia Plantarum, 2000, 110 (2): 78–88
    Coleman J S, Bazzaz F A. Effects of CO_2 and temperature on growth and resource of co-occurring C3 and C4 annuals. Ecology, 1992, 73: 1 244–1 259
    Coombs J (eds), Qiu G W translated. Techniques for measuring photo productivity and photosynthesis rate. Science Press, 1986, 63–96
    Cowan I, Farquhar G D. Stomatal function in relation to leaf metabolism and environment. Symp. Soc. Exp. Bio., 1977, 31: 471–505
    Cowan I. Stomatal behavior and environment. Adv. Bot. Res., 1977, 4: 217–228
    Cure J D, Acock B. Crop responses to carbon dioxide doubling: A literature survey. Agric. For Meteorol., 1986, 38: 127–145
    Curtis P S, Wang X. Ameta_analysis of elevated CO_2 effects on woody plant mass, form, and physiology. Oecologia, 1998, 113: 299–313
    Damesin C, Rambal S, Joffre R. Between-tree variations in leafδ13C of Quercus pubescens and Quercus ilex among Mediterranean habitats with different water availability. Oecologia, 1997, 111: 26–35
    Davies F S, Flore J A. Short-term flooding effects of gas exchange and quantum yield of rabbiteye blueberry (Vaccinium ashei Reade). Plant Physiol., 1986, 81: 289–292
    Demmig-Adams B, Adams W W. Photoprotection and other responses of plants to light stress. Annual Review of Plant Physiology and Plant Molecular Biology, 1992, 43: 599–626.
    Demmig-Adams B, Biorkman O. Comparison of the effect of excessive light on chlorophyll fluorescence (77K) and photon yield of O_2 evolution in leaves of higher plants. Planta, 1987, 171: 171–184
    Demmig-Adams B. Carotenoids and photoprotection in plants: a role for the xanthophyII zeaxanthin. Bioehemica et Biophysica Acta, 1990, 1020: 1–24
    Dewar R C, Medlyn B E, Mcmurtrie R E. Acclimation of the respiration and photosynthesis ratio to temperature: insights from a model. Global Change Biology, 1999, 5 (5): 615–622
    Dickmann D I, et al. Photosynthesis, water relation and growth of tow hybrid populus genotypes during severe drought. Can. J. For. Res., 1992, 22 (8): 1 092–1 106
    Downton W J S, Grant W J R, Loveys B R. New Phytol., 1987, 105: 71–80
    Downton W J S, Miihouse J. Chlorophyll fluorescence and water relations of salt-stressed plants, Plant Science letters, 1985, 37 (3): 205–212
    Drake B G, Gonzalez-Meler M A, Long S P. More efficient plants, a consequence of rising atmospheric corbon dioxide. Annu. Rev. P1ant Physiol. Plant Mol. Biol., 1997, 48: 609–639
    Eamus D. The interaction of rising CO_2 and temperatures with water use efficiency. Plant, Cell and Environment, 1991, 14: 843–852
    Ehleringer J R, Klassen S, Clayton C. Carbon isotope discrimination and transpiration efficiency in common bean. Crop. Sci., 1991, 31 (6): 1 611–1 615
    Eickmeier W G, Casper C, Osmond C B. ChlorophyII fluorescence in the resurrection plants Selaginella lepidophylla (Hook. & Grey.) spring during high-light and desiccation stress, and evidence for zeaxanthin-associated photoprotection. Planta, 1993, 189: 30–38
    Elizabeth A A, Alistair R. The response of photosynthesis and stomatal conductance to rising CO_2: Mechanisms and environmental interactions.Plant, Cell and Environment, 2007, 30 (3): 258–270
    Ellsworth D S. CO_2 enrichment in a maturing pine forest: are CO_2 exchange and water status in the canopy affected?. Plant, Cell and Environ., 1999, 22: 461–472
    Else M A, Couplamd D. Decreased root hydraulic conductivity reduces leaf water potential,initiates stomatal closure and slow leaf expansion in flooded plants of castor oil (Ricinus communis) despite diminished delivery of ABA from the roots to shoots in xylem sap. Physiol. Plant, 2001, 111: 46–54
    Emile S. G, John A. S, Callie J. S. An afforestation system for restoring bottomland hardwood forests,biomass accumulation of Nuttall oak seedlings interplanted beneath eastern cottonwood. Restoration Ecology, 2004, 12(4): 525–532
    Falk S, Samuesson G. Recovery of photosynthesis and photosystemⅡfluorescence in Chlamydomonas reinhardtiiafter exposure to three levels of high light. Physiol. Planta, 1992, 85: 61–68
    Farage P K, Long S P. The occurrence of photoinhibition in an overwintering crop of oil-seed rape (Brassia napus L.) and its correlation with changes in crop growth. Planta, 1991, 185: 279–286
    Farage P K, Long S P. The occurrence of photoinhibition in an over-wintering crop of oil-seed rape (Brassicanapus L.) and its correlation with changes in crop growth. Planta, 1991, 185: 279–286
    Farquhar G D, Sharkey T D. Stomatal conductance and photosynthesis. Ann. Rev. Plant Physiol., 1982, 33: 317–321
    Fernández J E, Moreno F, Gund N G, et a1. Stomatal control of water use in olive tree leaves. Plant and Soil, 1997, 190: 179–192
    Fernandez R T, Perry R L, Flore J A. Drought response of young apple trees on three rootstocks.II gas exchange, chlorophyll fluorescence, water relations and leaf abscise acid. Journal of the American Society for Horticultural Science, 1997, 122 (6): 841–848
    Filella I, Llus J, Pinol J, et a1. Leaf gas exchange and fluorescence of Phillyrea latifolia, Pistacia lentiscus and Quercus ilex saplings in severe drought and high temperature conditions. Environmental and Experimental Botany, 1998, 3: 213–220
    Flexas J, Escalona J M, Medrano H. Water stress induces different levels of photosynthesis and electron transport rate regulation in grapevines. Plant, cell and environment, 1999, 22 (1): 39–48
    Flexas J, Ribas-CarbóM, Bota J, et al. Decreased rubisco activity during water stress is not induced by decreased relative water content but related to conditions of low stomatal conductance and chloroplast CO_2 concentration. New Phytologist, 2006, 172 (1): 73–82
    Flore J A, Lakso A N. Horticultural Reviews, 1989, 11: 111–157
    Folkers A, Hüve K, Ammann C, et al. Methanol emissions from deciduous tree species: dependence on temperature and light intensity. Plant Biology, 2008, 10 (1): 65–75
    Folkers A, Hüve K, Ammann C, et al. Methanol emissions from deciduous tree species: dependence on temperature and light intensity. Plant Biology, 2008, 10 (1): 65–75
    Forrester M L, Krotkov G, Nelson C D. Effect of oxygen on photosynthesis, photorespiration and respiration in detached leaves. I. Soybean. Plant Physiol., 1966, 41: 422–427
    Franklin L. A., Osmond C. B., Henley W. J. Two components of onset and recovery during photoinhibition of Ulva roundata. Planta, 1992, 186: 399–408
    Frey N M. Dry matter accumulation in kernels of maize. Crop Science, 1982, 21: 118–122
    Gaastra P. Photosynthesis of crop plants as influence by light, carbon dioxide, temperature and stomatal diffusion resistance. Lab Plant Physiol. Res. Agric. Univ. Wageningen, 1959, 59: 1–68
    GalléA, Haldimann P, Feller U. Photosynthetic performance and water relations in young pubescent oak (Quercus pubescens) trees during drought stress and recovery. New Phytologist, 2007, 174 (4): 799–810
    Galmés J, Medrano H, Flexas J.Photosynthetic limitations in response to water stress and recovery in Mediterranean plants with different growth forms. New Phytologist, 2007, 175 (1): 81–93
    Gavloski J E, Whitefield G H. Effect of restricted watering on sap flow and growth in Corn (Zeamays L.). Canada Journal Plant Society, 1992, 172: 361–368
    Genty B, Briantais J M, Baker N R, et al. The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochimica Biophysica Acta, 1989, 990: 87–92
    Giersch C, Rubison S P. Regulation of photosynthetic carbon metabolism during phosphate limitation of photosynthesis in isolated spinach chloroplasts. Photosynth Res., 1987, 14: 211–217
    Gimenez C, Mitchell V. G., Lawlor D. W. Regulation of photosynthetic rate of two sunflower hybrids under water stress. Plant Physiology, 1992, 98: 516–524
    Goldsworthy A, Day P R. Further evidence for reduced role of photorespiration in low compensation point species. Nature, 1970, 228: 687–688
    Goulden M L, Munger J W, Fan S M, et al. Exchange of carbon dioxide by a deciduous forest: response to interannual climate variability. Science, 1996, 271: 1 576–1 578
    Grassi G, Magnani F. Stomatal, mesophyll conductance and biochemical limitations to photosynthesis as affected by drought and leaf ontogeny in ash and oak trees. Plant, Cell and Environment, 2005, 28 (7): 834-849
    Greer D H, Berry J A, Bjorkman O. Photoinhibition of photosynthesis in intact bean leaves: Role of light and temperature, and requirement for chloroplast-protein synthesis during recovery. Planta, 1986, 168: 253–260
    Gunderson C A. Foliar gas exchange responses of two deciduous hardwoods during 3 years of growth inelevated CO_2. Plant, Cell and Environ., 1993, 16: 797–807
    Guy F M, Julieta N A, Khanyisa B M, et al. Photosynthetic and gas exchange characteristics of dominant woody plants on a moisture gradient in an African savanna. Global Change Biology, 2004, 10 (3): 309–317
    Haldimann P, Feller U. Growth at moderately elevated temperature alters the physiological response of the photosynthetic apparatus to heat stress in pea (Pisum sativum L.) leaves. Plant, Cell and Environment, 2005, 28 (3): 302–317
    Hanks R J. Limitations to efficient water use crop production. New York: American Society of Agronomy Inc, 1983: 393–411
    Hartel H, Lokstein A. Relationship between quenching of maximum and dark-level chlorophyII fluorescence in vivo: dependence on photosystem II antenna size. Bioehemicaet Biophysica Acta. 1995, 1228: 91–94
    Haupt-Herring S, Fock H P. Exchange of oxygen and its role in energy dissipation during drought stress in tomato plants. Physio1. Plant., 2000, 110: 489–495
    Hergrrt G W. Cropping systems for soil and water conservation in the great plains. In:Proceedings of International Conference on Dryland Farming. Amarillo/Bushland, Texas USA, 1988
    Hill D. Crop water production function. Advances in irrigation, 1983, 2: 61–69
    Hodges J D. Patterns of photosynthesis under natural environmental conditions. Ecology, 1967, 43: 234–242
    Horton P, Rubm A V, Waltes R G. Regulation of light harvesting in green plants: indication by nonphotochemical quenching of chlorophyII fluorescence. Plant Physiology, 1994, 106: 415–420
    Hsiao T C, Xu L K, Ferreira M I, et al. Predicting water use efficiency of crops. Acta Horticulturae, 2000, 537: 199–206
    Huber S C, Rogers H H, Israel D W. Effect of CO_2 enrichment on photosynthesis and photosynthate partitioning in soybean leaves. Physiologia Plantarum, 1984, 62: 95–101.
    Infante J M, Domingo F. Quercus ilex transpiration as affected by a prolonged drought period. Biologia Plantarum, 2003, 46 (1): 49–55
    Iryna I T, Michael M B. Effect of delayed fruit harvest on photosynthesis, transpiration and nutrient remobilization of apple leaves. New Phytologist, 2004, 164 (3): 441–450
    Itaj P A. Physiology of plant under drought. Ann Rev of Plant Physiol., 1964, 15: 363–374
    Jackson M B, Hall K C. Early stomatal closure in waterlogged pea plants is mediated by abscisic acid in theabsence of foliar water deficits. Plant Cell Environ., 1987, 10: 121–130
    Jarvis A J, Mansfield T A, Davies W J. Stomatal behavior, photosynthesis and transpiration under rising CO_2. Plant, Cell and Environment, 1999, 22 (6):639–648
    Jia H, Li D. Relationship between photosystemⅡelectron transport and photosynthetic CO_2 assimilation responses to irradiance in young apple tree leaves. Photosynthetica, 2002, 40: 139–144
    Johnson D.W., Ball T., Walker R.F. Effects of elevated CO_2 and nitrogen on nutrient uptake in pondrosa pine seedlings. Plant Soil., 1995, 168–169, 535–545.
    Jones H G, Luton M T, Higgs K, et al. Experimental control of water status in an apple orchard. J. Hortical Sci., 1983, 58: 301–308
    Jones H J. Plant and Microclimate: A Quantitative Approach to Environmental Plant Physiology. Cambridge University Press, Cambridge, 1983, 134
    Joseph M. C, Peter B. R. Leaf-level light compensation points in shade-tolerant woody seedlings. New Phytologist, 2005, 166 (3): 710–713
    Kaiser W M. Effects of water deficient on photosynthetic capacity. Plant Physiol., 1987, 71: 142–151 Kallarackal J, Milburn J A, Baker, D. A. Aust. J. of plantphys, 1990, 17: 79–90
    Kaoru K, Stephen S, Mulkey S, et al. Seasonal leaf phototypes in the canopy of a tropical dry forest: photosynthetic characteristics and associated. Oecologia, 1997, 109: 490–498
    Keutgen N, Lenz F. Responses of strawberry to long-term elevated atmospheric ozone concentrations. Gartenbauzt. Lssens chaft, 2001, 66 (1): 27–33
    Kimball B A, Kobayashi K, Bindi M. Responses of agriculture crops to flee-air CO_2 enrichment. Advancein Agronomy, 2002, 77: 293–368
    Kimball B A, Manuey J R, Nakayama F S, et al. Effects of increasing atmospheric on CO_2 vegetation. Vegetatio, 1993, 104/105: 65–75
    Kirkham M B, He H, Bolger T P, et a1. Leaf photosynthesis and water use of big bluestem under elevated carbon dioxide. Crop. Sci., 1991, 31 (5): 1 589–1 594
    Kitao M, Lei T T, Koike T, et al. Susceptibility to photoinhibition of three deciduous broadleaf tree species with different successional traits raised under various light regimes. Plant Cell Environ., 2000, 23: 81–89
    Knapp A K. Gas exchange dynamics in C3 and C4 grasses consequences of differences in stomatal conductance. Ecology, 1993, 74: 113–123
    Kozaki A, Takeka G. Photorespiration protects C3 plants from photooxidation. Nature, 1999, 384: 557–560 Kramer P J. Effects of wilting on the subsequent intake of water by plants. A. mer. J. Bot., 1950, 29: 828–832
    Kramer P. Outer space in plants. Science, 1957, 125: 633–635
    Krause G H, Schmude C, Garden H. Effects of ultraviolet radiation on the potential efficiency of photosystemⅡin leaves of tropical plants. Plant Physiology, 1999, 121: 1 349–1 358
    Krause G H. Photoinhibition of photosynthesis: an evaluation of damaging and protective mechanisms. Physiologia Plantarum, 1988, 74: 566–574
    Krishna R S, Mawson B T, Yeung E C, et a1. Utilization of induction and quenching kinetics of chlorophyll a fluorescence for in vivo salinity screening studies in wheat. Canadian Journal of Botany, I993, 71 (1): 87–92
    Kruskopf M, Flynn K J. Chlorophyll content and fluorescence responses cannot be used to gauge reliably phytoplankton biomass, nutrient status or growth rate. New Phytologist, 2006, 169 (3): 525–536
    Lal A, Ku M S B, Edwards G E. Analysis of inhibition of photosynthesis due to water stress in the C3 species Hordeum vulgare and Vicia faba: Electron transport, CO_2 fixation and carboxylation capacity. Photosynthesis Research, 1996, 49: 57–69.
    Lambers H, Poorter H. Inherent variation in growth rate between higher plants: A search for physiological causes and ecological consequences. Advances in Ecological Research, 1992, 23: 188–216
    Lange O. Untersuchungen ueber waermehaushalt und hitzeresistenz mauretanischer wauesten und savannenpflanzen. Flora, 1957, 147: 595–651
    Larcher W. 1980. Physiological Plant Ecology. Li B ed. Beijing: Academic Press
    Lawlor D W, Fock H. Photosynthesis and photorespiratory CO_2 evolution of water stressed sunflower leaves. Planta, 1976, 126: 247–254
    Leberkuecher J G, Eichmerier W G. Reduced photoinhibition with stem curling in the resurrection plant Seloginella Iepidophylla. Oecologia, 1991, 88: 597–604
    Lewis J D, Tinger T. Seasonal patterns of photosynthetic light response in Douglas-fir seedling subjected to elevated atmospherics CO_2 and temperature. Tree Physiology, 1999, 19: 243–252
    Liu H Q, Jiang G M, Zhang Q D, et al. Change of gas exchanges in leaves of different cultivars of wheat released in different years. Journal of Integrative Plant Biology, 2002, 44 (8): 913–919
    LlusiàJ, Pe?uelas J, Munné-Bosch S. Sustained accumulation of methyl salicylate alters antioxidantprotection and reduces tolerance of holm oak to heat stress. Physiologia Plantarum, 2005, 124 (3): 353–361
    Lobell D B, Asner G P. Climate and management contributions to recent trends in US agricultural yields. Science, 2003, 299: 1 032
    Long S P, Humphries S, Falkowski P G. Photoinhibition of photosynthesis in nature. Annu. Rev. Plant Physiol. Mol. Biol., 1994, 45: 633–662
    Massacci A, Lanneii I M A. The effect of growth at temperature on photosynthetic characteristics and mechanisms of photoprotection of Maize leaves. Jexp. Bot., 1995, 46: 119–127
    Mcelrone A J, Forseth I N. Photosynthetic responses of a temperate Liana to Xylella fastidiosa infection and water stress. J. Phytopathology, 2004, 152 (1): 9–20
    Medgley G F, et al. Gas exchange in arid-adapted shrubs: When is efficient water use a disadvantage? South African J. of botany, 1993, 59 (5): 491–495
    Medrano H, Keys A J, Lawlor D W, et al. Improving plant production by selection for survival at low CO_2 concentrations. J. Exp.Bot., 1995, 46: 1 389–1 396
    Melanied J, Thomasc H. Nickel toxicity in mycorrhizal birch seedlings infected with Lactarius rufus or Scleroderma flavidum. I. Effects on growth, photosynthesis, respiration and transpiration. New Phytol., 1988, 108 (4): 451–459
    Methy M, Damesin C, Rambal S. Drought and photosystem II activity in two Mediterranean oaks. Annals of Forest Science, 1996, 53: 255–262
    Midgley G F, Aranibar J N, Mantlana K B, et al. Photosynthetic and gas exchange characteristics of dominant woody plants on a moisture gradient in an African savanna. Global Change Biology, 2004, 10 (3): 309–317
    Mielke M S, Olive M A, Martinez C A, et al. Leaf gas exchange in a clonal eucalypt plantation as related to soil moisture, Leaf water potential and microclimate variables. Trees, 2000, 14: 263
    Mitton J B, Garant M C. Variation in allozymes and stomatal size in pinyou (Pinusedulis, Pinaceae), associated with soil moisture. American Journal of Botany, 1998, 85: 1 262–1 265
    Mohanty P, Boyer J S. Chloroplast response to low leaf water potentials.Ⅳ. Quantum yield is reduced. Plant Physiol, 1976, 57: 704–709
    Monclus R, Dreyer E, Villar M, et al. Impact of drought on productivity and water use efficiency in 29 genotypes of Populus deltoides×Populus nigra. New Phytologist, 2006, 169 (4): 765–777
    Monneveus P, Mekkaoui M E, Xu X. Physiological basis of salt-tolerance in wheat chlorophyll fluorescence as a new tool for screening tolerant genotypes. In wheat breeding prospects and future approaches. Varna Bulgarin, 1990, 1–33
    Monsi M, Saeki T. Ueber den lichtfaktor in den pflanzenge-sellschanften und seine bedeutung fuer die stoff production. Jpn. J. Bot., 1953, 14: 22–52
    Monteith J L. Principles of Environmental Physics. Lonon: Eward Arnold, 1973
    Mooney H A, Canadell J, Chapin F S, et al. Ecosystem physiology response to global change. In: Implication of global change for natural and managed ecosystem: a synthesis of GCTE and related research. Cambridge, UK: Cambridge University Press, 2000
    Moraels S F, Abadia A, Gomez J. Effects of combined NaCl and CaCl2 salinity on photosynthetic parameters of barley grown in nutrient solution. Physiol. Plant., 1992, 86: 419–426
    Morecroft M D, Woodward F I. Experimental investigations on the environmental determination ofδ13C at different altitude. Journal of Experimental Botany, 1990, 41 (231): 1 303–1 308
    Morison J I L, Gifford R M. Stomatal sensitivity to carbon dioxide and humidity. Plant Physiol., 1983, 71: 789–796
    Mousseau M, Saugier B. The effect of increased CO2 on gas exchange and growth of forest tree species. Journal of Experimental Botany, 1992, 43: 1 121–1 130
    Murray D R. Plant response to carbon dioxide. Ameri. J. Bot., 1995, 82 (5): 690–607
    Myers B J. et al. Water stress and seedlings growth of two ecucalypt species from contrasting habitats. Tree Physiol., 1989, 5: 207–218
    Naumann J C, Young D R, Anderson J E. Linking leaf chlorophyll fluorescence properties to physiological responses for detection of salt and drought stress in coastal plant species. Physiologia Plantarum, 2007, 131 (3): 422–433
    Niknam S R,Mccomb J. Salt tolerance screening of selected Australian woody species a review. Forest Ecology and Management, 2000, 139: 1–19
    Nobel P S. Achievable productivities of certain CAM plants: Basis for high values compared with C3 and C4 plants. New Phytologist, 1991, 119: 183–205
    Nobel P S. Leaf anatomy and water use efficiency. Turner N C, Kramer P J. Adaptation of plants to water and high temperature stress. New York: Wiley, 1980, 43–55
    Noble P S. Physiochemical and Environment Plant Physiology (Second Edition). San Diego: AcademicPress, 1999, 293–349
    Noguès S, Alogre L. An increase in water deficit has no impact on the photosynthetic capacity of field-grown Mediterranean plants, Funct. Plant Bio., 2002, 29: 621–630
    Norby R J, Wuilschleger C A, Gunderson D W, et a1. Tree responses to rising CO_2 in field experiment: Implications for the future forest. Plant, Cell and Environment, 1999, 22: 683–714
    ?gren E. Photoinhibition of photosynthesis in willow leaves under field conditions. Planta, 1988, 175: 229–236
    Oquist G, Chow W S, Anderson J H. Photoinhibition of photosynthesis represents a mechanism for the long-term regulation of photosystemⅡ. Planta, 1988, 186: 450–460
    Osmond C B, Bj?rkman ?. Simultaneous measurement of O_2 effects on net photosynthesis and glycolate metabolism in C3 and C4 species of Atriplex. Carnegie Institution of Washington Yearbook, 1972, 77: 141–148
    P??kk?nen E, Vahala J, Pohjolai M, et al. Physiological, stomatal and ultrastructural ozone responses in birch (Betula pendula Roth.) are modified by water stress. Plant, Cell and Environment, 1998, 21 (7): 671–684
    Park H. Physiological response of Panax ginseng to light. Proceding of the 3rd International Ginseng Symposium (South Korea), 1980, 151–158
    Park Y I, Chow W S, Anderson J M, et al. Differential susceptibility of photosystemⅡto light stress in light-acclimated pea leaves depends on the capacity for photochemical and non-radiative dissipation of light. Plant Sci., 1996, 115: 137–149
    Pells E J, Sinns J P, Eckardts N, et al. Response of radish to multiple stresses II. Influence of season and genotype on plant response to ozone and soil moisture deficit. New Phytol., 1993, 123 (1): 153–163
    Peri P L, Moot D J, Mcneil D L. A canopy photosynthesis model to predict the dry matter production of cocksfoot pastures under varying temperature, nitrogen and water regimes. Grass and Forage Science, 2003, 58 (4): 416–430
    Polley H W, Johnson H B, Mayeux H S. Increasing CO_2 comparative responses of the C4 grass Schizachyrium and grassland invader Prosopis. Ecology, 1994, 75: 976–988
    Powles S B. Photoinhibition of photosynthesis induced by visible light. Annu. Rev. Plant Physiol., 1984, 35: 15–44
    Rao N H. Real time adaptive irrigation scheduling under a limited water supply. Agriculture WaterManagement, 1992, 20: 267–279
    Rascher U, Bobichl E G, Lin G H, et al. Functional diversity of photosynthesis during drought in a model tropical rainforest. Plant, Cell and Environment, 2004, 27 (10): 1 239–1 256
    Raschke k. Ueber die physicalischen beziehungen zwishchen waermeueber angszahl, strahlung austausch, temperature und transpiration eines Blattes. Planta, 1956, 48: 200–238
    Raven J A. The cost of photoinhibition to plant communities. In: Baker N R and Bowyer J R eds. Photoinhibition of photosynthesis: from molecular mechanism to the field. London: Bios Scientific Publishers. 152–158
    Reich P, Walters M, Ellsworth D, et al. Photosynthesis, nitrogen relations in Amazonian tree species I. Patterns among species and communities. Oecologia, 1994, 97: 62–72
    Roden J S, Wiggins D J, Ball M C. Photosynthesis and growth of two rain forest species in simulated gaps under elevated CO2. Ecology, 1997, 75: 385–393
    Rogers H H. Responses of selected plant species to elevated carbon dioxide in the field. J. Environ. Qual., 1985, 12: 569–574
    Rohacek K. Chlorophyll fluorescence parameters. The definitions, photosynthetic meaning and mutual relationships. Photosynthetica, 2002, 40 (1):13–29
    Rowland-Bamford A J, Backer J T, Allen L H, et al. Acclimation of rice to changing atmospheric carbon dioxide concentration. Plant Cell Environ., 1991, 14: 577–583
    Salvucci M E, Crafts-Brandner S J. Inhibition of photosynthesis by heat stress: the activation state of Rubisco as a limiting factor in photosynthesis. Physiol. Plant, 2004, 120: 179–186
    Schansker G, Van Rensen J S V. Performance of active photosystem II centers in photoinhibition pea leaves. Photosynth. Res., 1999, 62: 175–184
    Scholes J D, Press M C, Zipperlen S W. Differences in light energy utilization and dissipation between dipterocarp rain forest tree seedlings. Oecologia, 1997, 109: 41–48
    Schreiber U, Biiger W, Neubauer C. Chlorophyll fluorescence as a nondestructive indicator for rapid assessment of in vivo photosynthesis. Ecological Studies, 1994, 100: 49–70
    Seiler J. R., Johnson J. D. Physiological morphological responses of three half-sib families of loblolly pine to water-stress conditioning. Forest Science, 1988, 34: 487–495
    Senock R S, Leuschner C. Axial water flux dynamics in small diameter roots of a east growing tropical tree. Plant and Soil, 1999, 208: 57–71
    Sharkey T D. Estimation the rate of photorespiration in leaves. Physio1. plant, 1988, 73: 147–152
    Silvia A, Marta C, Monica G. Estimation of Mediterranean forest transpiration and photosynthesis through the use of an ecosystem simulation model driven by remotely sensed data. Global Ecol. Biogeogr., 2004, 13 (4): 371–380
    Simillie R M, Nott R. Salt tolerance in crop plants monitored by Chlorophyll fluorescence in vivo. Plant Physiol., 1982, 70: 1 049–1 054
    Smith E W, Tolbert N E, Ku H S. variables affecting the CO_2 compensation poit. Plant physiol, 1976, 58: 143–146
    Smith S D, Huxman T E, Zitzer S F, et a1. Elevated CO_2 increasing productivity and invasive species success in an arid ecosystem. Nature, 2000, 408: 79–82
    Somersalo S, Krause G H. Photoinhibition at chilling temperature and effects of freezing stress on cold acclimated spinach leaves in the field, a fluorescence study. Physiol Plant, 1990, 79: 617–622
    Song J, FenG G, Zhang F S. Salinity and temperature effects on germination for three salt resistant euhalophytes, Halostachys caspica, Kalidium foliatum and Halocnemum strobilaceum. Plant and Soil, 2006, 279: 201–207
    Staeha P A, Sand J K. Seasonal changes in temperature and nutrient control of photosynthesis, respiration and growth of natural phytoplankton communities. Freshwater Biology, 2006, 51 (2):249–262
    Stanhill G. Water use efficiency. Advances in Agronomy, 1986, 39: 53–85
    Strand M,Lundmark T.Effect of forest hardening and freezing stress on in vivo chlorophyll fluorescence of scots pine seedlings. Plant Cell Environ., 1988, 18: 998–1004
    Szarek S R, Holthe P A, Ting I P. Minor physiological response to elevated by the CAM plant Agave vilmoriniana. Plant Physiol., 1987, 83: 938–940
    Tanner C B, Sinclar T R. Efficient water use in crop production: Re-search or research. H M Taylor, W R Jordan, T R Sinclair. Limitation to efficient water use in crop production. American Society of Agronomy, Inc, 1983, 1–25
    Tartachnyk I I, Blanke M M. Effect of delayed fruit harvest on photosynthesis, transpiration and nutrient remobilization of apple leaves. New Phytologist, 2004, 164 (3): 441–450
    Tearl D. Crop water relations. Lonon: A Wiley-Inter Science Publication, 1982
    Thomas D S, Turner D W. Banana (Musa sp) leaf gas exchange and chlorophyll fluorescence in response to soil drought, shading and lamina folding. Scicntia Horticulture, 2001, 90 (1): 93–108
    Thomas S C, Jasienski M, Bazzaz F A. Early vs. asymptotic growth responses of herbaceous plants to elevated CO_2. Ecology, 1999, 80 (5): 1 552–1 567
    Thomas, H. Characteristics of Dactylis glomerata L., Lolium perenne L. and L. multiflorum Lam. Plants. Annals of Botany, 1986, 57: 211–223
    Tissue D T, Griffin K L, Thomas R B. Effects of low and elevated CO_2 on C3 and C4 annuals.Ⅱ. Photosynthesis and leaf biochemistry. Oecologia, 1995, 101: 21–28
    Turner N C. Plant water relations and irrigation management. Agricultural Water Management, 1990, 17: 59–73
    Undersander D J. Management of sorghum under limited irrigation. Agron. J., 1986, 78: 28–32
    Van kooten G, SNEI J F H. The use of chlorophyll fluorescence nomenclature in plant stress physiology. Photosynth. Res., 1990, 25 (4): 147–150
    Veli C O, Huseyin A O, Syed M S N, el a1. Photosystem II and cellular membrane stability evaluation in hexaploid wheat seedling under salt stress conditions. Journal of Plant Nutrition, 2000, 23 (2): 275–283
    Veto N E, Finegan B, Newton AC. The photosynthetic characteristics of sapling of eight canopy tree species in a disturbed Neotropical rain forest. Photosynthetica, 1999, 36: 407–422
    Walker B, Steffen W. An overview of the implication of global change for natural and managed terrestrial ecosystem. Conservation Ecology, 1997, 1: 2–20
    Wallin G, Sk?rby L and Selldén G. Long-term exposure of Norway spruce, Picea abies (L.) Karst., to ozone in opentop chambers. III. Effects on the light response of net photosynthesis in shoots of different ages. New Phytol., 1992, 121 (3): 387–394
    Walter H. Die vegetation der Erde in oeko-physiologischer betrachtung. Band I. Die tropischen und subtropischen Zonen. Jena GDP: Verlag Gustav Fischer, 1964
    Wang N, Nobel P S. Doubling the CO_2 concentration enhanced the activity of carbohydrate metabolism enzymes, source carbohydrate production, photo assimilate transport, and sink strength for Opuntia ficus-indica. Plant Physiol., 1996, 110: 893–902
    Warren C R, Adams M A. Distribution of N, rubisco and photosynthesis in Pinus pinaster and acclimation to light. Plant, Cell and Environment, 2001, 24 (6): 597–609
    Wilson K, Carlson T, Bunce J. Feedback significantly influences the simulated effect of CO_2 on seasonal evapotraspiration from two species. Plant Cel and Environment, 1992, 15: 543–552
    Wingler A, Quick W P, Bungard R A, et a1. The role of photorespiration during drought stress: an analysis utilizing barley mutants with reduced activities of photorespiratory enzymes. Plant Cell Environ., 1999, 22: 361–373
    Wong S C. Elevated atmospheric partial pressure of CO_2 and plant growth.I.Interaction of nitrogen nutrition and photosynthetic capacity in C3 and C4 plants. Oecologia, 1997, 44: 68–74
    Woodward F I. Stomatal numbers are sensitive to increases in CO_2 from preindustrial levels. Nature, 1987, 327: 617–618
    Xu D Q, Shen Y K. In: Pessarakli M (ed) Handbook of Photosynthesis. Marcel Dekker, New York, 1997, 451–459
    Yan Y, Yan C Q, Cao B H. Some photosynthetic responses to salinity resistance are transferred into the somatic hybrid descendants from the wild soybean Glycine cyrtoloba ACC547. Physiologia Plantarum, 2007, 129: 658–669
    Yordanova R Y, Uzunova A N. Effects of short-term soil flooding on stomata behaviour and leaf gas exchange in barley plants. Biologia Plantarum, 2005, 49 (2): 317–319
    Zapata J M, Gasulla F, Esteban-Carrasco A, et al. Inactivation of a plastid evolutionary conserved gene affects PSⅡelectron transport, life span and fitness of tobacco plants. New Phytologist, 2007, 174 (2): 357–366
    Zelitch I. Control of plant productivity by regulation of photorespiration. Bio. Science, 1992, 42: 510–516 Zelitch I. Increased rate of net photosynthetic carbon dioxide uptake caused by the inhibition of glycolate oxidase. Plant Physio1., 1966, 41: 1 623–1 631
    Zelitch I. The effect of glycidate, an inhibitor of glycolate synthesis, on photorespiration and net photosynthesis. Arc. Biochem. Biophy. 1974, 163: 367–377
    Zhang G C, Liu X, He K N. Fitting soil moisture environment of trees growth on Loess Plateau in semi-arid region. Journal of Soil and Water Conservation, 2001, 15 (4): 1–5

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700