用户名: 密码: 验证码:
细菌觅食优化算法的改进及应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
优化问题是人们在科学研究和生产实践中经常遇到的问题,人们已经对大量的最优化问题进行了深入的研究,并将其拓展成为了一门重要的学科门类。传统以梯度为基础的最速下降法、线性规划、单纯形方法等优化方法,在问题的目标函数是凸集、连续可微可导等情况下,具有较高的计算效率。但在实际应用的物流配送中心的选址、设备资源的最优分配、车间在制品的产品调度与布局等领域中,出现了许多大规模、非线性、多极值、多约束、非凸性等现象,这就使得传统的优化方法难以进行数学建模,从而给以仿生为特征的群智能计算方法提供了广阔的应用舞台,并诞生了一批模拟生物行为的“启发式方法”,这其中的典型代表包括遗传算法GA、蚁群优化算法ACO、粒子群优化算法PSO和细菌觅食优化算法BFO等。相关研究表明,现有群智能算法或多或少地存在着“早熟”、“晚熟”甚至“不熟”的收敛性缺陷与问题,因此许多学者将视角瞄向了在不同的群智能算法之间取长补短,确定改进各种优化算法性能的方式与途径。
     在以上主要的群体智能优化算法中,GA、ACO、PSO都是基于高等生物作为启发对象,形成的一种“生成+检验”为特征的自适应人工智能计算技术,而BFO等算法,则是从微生物的行为机制出发,通过模拟细菌对环境感知的变化,而形成的一种新优化方法。由于微生物智能仿生技术问世的时间太短,国际学术界目前对BFO等相关研究尚有许多空白,这一新型的智能仿生算法还远未获得学术界应有的足够重视。因此,本文尝试对微生物的行为机制及其生理特性进行建模仿真,探讨这一新型智能计算方法的改进方式,从而丰富仿生优化算法中的微生物智能计算这一领域,继而对其他仿生优化算法提供一定意义上的技术借鉴,为本文提供针对现有生物体系优化算法融合改进的新途径、新视角。
     本研究采用规范分析和实验研究为主的研究方法,对仿生优化的思想基础、主要门类和算法框架程式进行了探讨,阐述了仿生优化算法性能比较的问题测试函数、算法优劣的性能比较指标和算法迭代中的种群多样性度量指标,并对基本的BFO算法原理、实现步骤进行了深入分析,讨论了BFO算法中现有趋化算子、繁殖算子和迁移算子在程序执行中表现出的主要问题,进而利用测试函数对算法的各种参数设置进行了实验,提出了BFO算法参数设置的部分规律,基于最优觅食理论对BFO算法进行了实验,讨论了细菌在趋化过程中的不同觅食方式对算法性能的主要影响。
     在以上理论分析的基础上,本文尝试对群智能算法进行算法思想的理论融合,试图分析现有不同群智能算法的特征,基于高等生物的群体协作、生物种群的基因进化和统计学习的分布估计三个层面,对现有算法的微观行为层面、基因改进层面和宏观指导层面进行改进,以提高BFO基本算法的测试性能,并使之具备协调进化和学习适应等多重智能,从而达到提高算法的搜索速度和精度的目的。本文尝试构建的改进BFO算法不仅具有方法上的创新,而且对现有智能计算技术具有较为积极的思想参考,从而具有一定意义上的理论创新。论文的主要研究成果表现在以下几个方面:
     (1)系统总结了仿生优化群智能计算的基本原理和主要方法,分析了现有算法性能比较的无免费午餐定理(NFL),阐述了算法性能比较所使用的标准测试函数、性能比较和种群多样性评价指标,揭示了各种群智能计算方法的思想基础,为后续文章所提及的算法优化及其改进研究提供评价体系和理论上的参照。
     (2)深入研究了细菌觅食优化算法的基本原理,分析了现有的趋化、繁殖和迁移算子在算法寻优中的局限性,对算法中的基本参数进行了分析,讨论了相关参数设置的经验和取值借鉴,比较了PSO和BFO中的两种觅食行为策略,分别利用细菌能量和适应度来模拟非常规和常规觅食策略,验证了不同觅食策略对算法性能的影响,最后提出了针对细菌觅食优化的四个方面的改进目标和具体改进行为策略。
     (3)分析了生物在觅食过程中的竞争和协作两种主要行为,探讨了基于协作思想的鱼群算法和学习思想的粒子群算法的主要思想。基于鱼群算法的思想,赋予细菌感知群体状态的能力,可以进行优值跟踪(追尾群体最优)和聚群(向群体中心位置好的靠拢),提出了环境感知BFO算法,提高了问题求解的精度。基于PSO的自我学习和社会学习思想,提出了协作BFO,使得算法具有更大概率获得全局最优解。
     (4)分析了生物进化的适者生存、物种选择和遗传学说理论,讨论了基于生物进化的广义进化计算方法,分析了以进化思想为基础的遗传算法及其进化计算的基本思想。基于差分进化的思想,在细菌繁殖时通过群体内个体间的差分合作与竞争,来实现细菌群体的优化,从而对趋化周期结束后的维度退化现象进行修正,差分算子明显提高了BFO算法的精度、鲁棒性和全局最优获取能力。基于生命体免疫系统的思想,设置了基于免疫体的克隆繁殖算子,在趋化周期完成后对精英细菌进行克隆、高频变异和随机交叉,从而引导算子搜索,使得算法对部分测试函数具有很好的适用性,并能快速收敛,找到全局最优解。
     (5)分析了最新出现的智能计算的分布估计的方法,探讨了分布估计引入智能计算的可能性,从而可以充分利用实际问题的先验信息,完成从宏观指导思想上的建模。基于分布估计中的高斯分布思想,在细菌趋化周期结束后的繁殖环节,引入了高斯分布繁殖的概念,从宏观上对较优秀的部分细菌进行统计建模,明显提高了BFO算法的精度和鲁棒性,对部分测试函数具有很大的适应性。基于现有细菌繁殖的真实生长曲线,打破BFO算法的三层嵌套框架,模拟了细菌在优化过程中的菌群自由分布规律,建立了细菌自我繁殖和消亡的系统模型,进而从另一个侧面对前述BFO算法的相关性能进行佐证。
     (6)利用标准测试函数对改进细菌觅食优化的算法性能进行测试验证,在MATLAB软件平台上设计和开发了相应的计算机程序附后,针对实际优化中的连续空间和离散空间,采用神经网络预测问题和车间作业调度问题对算法性能进行验证,拓展了连续性BFO的应用空间,为神经网络的权重求解和作业调度优化提供了一种新的信息处理和智能计算工具。
Optimization is the problems that people encountered frequently in the scientific research and production practice, and a large number of optimization problems has been researched in-depth, then develop its been an important disciplines. Conventional optimization such as steepest descent method, linear programming, simplex method that method gradient-based have high computational efficiency when its objective function of the problem is such circumstances as convex, continuous and differentiable. But in the practical application of logistics distribution center location, the optimal allocation of resources, equipment, plant products, products in areas such as scheduling and layout, there were many large-scale, nonlinear, and more extreme, more constrained, non-convex and other phenomena, which makes it difficult for traditional optimization methods of mathematical modeling to give a group of intelligent bionic characterized by calculation to provide a broad application of the stage, and the birth of a number of simulated biological behavior of the "heuristics", This is one of the typical including genetic algorithms, ant optimization algorithms, particle swarm optimization and bacterial foraging algorithm and so on. Research shows that these group intelligent algorithms more or less exist some convergence defects and problems of"premature", "late" or even "familiar", so many scholars view aimed at the different groups intelligent algorithms in the between each other and determine various ways and means to improve the performance of the optimal algorithm.
     The main groups in the above intelligent optimization algorithm, GA, ACO, PSO is inspired by objects based on higher organisms, and its form an adaptive artificial intelligence computing technology characterized by "generation + test", but BFO is an algorithms starting from the mechanism of microbial behavior, simulating the bacteria perception to the environment changes, forming a new optimization method. Since the time was too short that micro-organisms intelligent bionic technology advents, there are many gaps in this new type of intelligent bionic algorithm in the international academic community, and it’s far from the adequate attention should receive from academic community. Therefore, this article attempts to analyze the microbial mechanisms and physiological characteristics for modeling and simulation, and to explore the improvement way of this new calculation method, for enriching the bionic optimization algorithm in the field of microbial intelligent computing, and then provided a sense of technology learn to other bionic optimization algorithm, provided us with new ways and new perspectives for the existing biological systems optimization approaches.
     This research based in normative analysis and experimental research methods, analyze the ideological basis, the main categories and algorithms program of the bionic optimization; and its also discussed the performance comparison test function, the merits of the algorithm performance comparison index and the diversity of the population algorithm iteration metrics of bionic optimization problem. and then we discussed the basic principles and achievement steps of BFO algorithm, analysis and discuss the main problems in the execution of a program showing in BFO algorithm existing operator chemokine breeding and migration, then the algorithm was experimentally proposed algorithm parameter settings useing the test function. Finally, the article seting some experiments to the BFO algorithm based on optimal foraging theory, discussed different feeding methods algorithm performance that the bacteria effects in the process of chemotaxis.
     Based on above theoretical analysis, the article attempts to implyment algorithm Theoretical integration in swarm intelligence algorithm, attempts to analyze the different features of existing swarm intelligence algorithm, based on group collaboration in higher organisms, the genetic evolution of biological populations and statistical study of the distribution estimated three levels, to improve the test performance of basic BFO from the micro-behavior, genetic improvement and macro guidance, and make it evolve with the coordination of multiple intelligence and learning to adapt, so as to improve the algorithm search speed and accuracy purposes. This paper attempts to build the BFO algorithm not only has some innovation in method, but also has some sense of the theoretical innovation with more positive thinking for the existing smart computing reference. The main thesis research in the following areas:
     (1) summarizes the basic principles and the main method of group intelligent computing in bionic optimization, analyze the no free lunch theorems (NFL) of existing algorithms to compare the performance, describes the standard test functions and the indicators that the algorithm used to compare the performance and to assessment population diversity, revealing the ideological basis of the group intelligent calculation, giving some evaluation system and theoretical reference for algorithm optimization and its improvement for the follow-up article. (2) study the basic principles in-depth of bacterial foraging optimization, analyze the algorithm limitations in algorithm optimization of the current trend, breeding and migration operator, getting some experience and learn from the analysis and discussion, compare the PSO and BFO in the foraging behavior of the two strategies, use the bacteria energy and fitness to simulate unconventional and conventional feeding strategies to verify the different feeding strategies on the performance of the algorithm impact, concludes with four improvement goals and improving behavioral strategies in bacterial foraging optimization.
     (3) analyzed the two main acts of competition and collaboration in biological food processes in the food, discussed the collaborative and learning idea of fish-based algorithm and particle swarm algorithm. Algorithm based on the idea of fish group, giving the bacteria the ability to perceive the state population, can tracking the excellent value and move closer to the community center, presented environmental awareness BFO algorithm to improve the problem solution accuracy. PSO-based self-learning and social learning ideas, put forward the collaboration BFO, makes the algorithm has a greater probability to obtain the global optimal solution.
     (4) analyzed the survival of the fittest, species selection and the genetics theory of biological evolution, discussed a broad evolutionary computation method,and analyzed the main ideas based on genetic algorithms and evolutionary computation. Bacteria based on differential evolution ideas to achieve bacterial population optimal through the difference between individuals within the group cooperation and competition, thus to amend the dimensions degradation of cycle, the differential operator improved significantly BFO algorithm accuracy, robustness and the ability to obtain the global optimum. Based on the idea of life immune system, this article set up clonal reproduction operator based on immune-body, and to clone elite bacteria, to variate high-frequency and to cross random after the period of chemotactic completion, so to guide the operator search, making the algorithm has good applicability on some test function, and can converge quickly to find the global optimum.
     (5) analyzeing the latest smart way of distribution of estimates, discussing the possibility of estimates algorithms of distribution introducing to intelligent computing, which can take full advantage of the practical problems of prior information, to complete the model from the guiding in the macro ideology. Based on the Gaussian distribution ideas, in the breeding cycle after the end of bacteria chemotaxis, we introducting the concept of Gaussian distribution breeding which to build statistical modeling from the macro based the best part of the bacteria, new algorithm improves significantly the BFO accuracy and robustness, and has great adaptability to some test function. Based on the real bacteria growth curve, breaking three nested frames of BFO algorithm, this article simulate the law of bacterial flora free distribution in the optimization process, established the system model of self-reproduction and self-demise of the bacteria, then privoded some evidence for the above BFO algorithm related to performance from another side.
     (6) use standard test functions to test the validation of the performance for bacteria foraging optimization algorithm improvement, and designed and developed a corresponding computer program in the MATLAB software platform that attached. For the actual optimization of continuous space and discrete space, we use neural networks prediction model and job shop scheduling problem to verify the performance of the new algorithm, extends the application space of the continuity BFO, and provides a new information processing and intelligent computing tools for weight optimization of neural network model and the job scheduling solution optimization.
引文
[1]R Fletcher Practical Methods ofOptimization[M]Now-York:Wiley—Interscience,1987
    [2]施光燕,董加礼最优化方法[M]北京:高等教育出版社,2002
    [3]Byron s G and Joel w Introduction to Optimization Theory[J]Englewood Cliffs,New-Jersey,1973
    [4]王凌智能优化算法及其应用[M]清华大学出版社,2001
    [5]J Holland,Adaptation in Natural and Artificial Systems[M],The University of Michigan Press,AnnArbor,1975
    [6]Colomi A,Dorigo M,Maniezzo V Distributed optimization by ant colonies[A],Proceedings ofECAL’91,EuropeanConference onArtificialLife[C]Paris,France:ElsevierPublishing,1991:P134—142
    [7]Eberhart R C,Kennedy J A New-Optimizer Using Particle Swarm Theory[A],Proc The Sixth IntSymposium on Micro Machine and Human Science[C],Nagoya Japan:IEEE Robotics and AutomationSociety,1 995:P39—43
    [8]李晓磊,冯少辉,钱积新一种基于动物自治体的寻优模式:鱼群算法[J]系统工程理论与实践,2002,11:P112—115
    [9]Miiller,S,Airaghi,S,&Marchelo,J,et al(2000)Optimization algorithms based on a model ofbacterial chemotaxis[A]In Animals to animats 6:Proceedings of the 6th international conference onsimulation of adaptive behavior[C]MIT Press P375——384
    [10]Passino K M Biomimicry of Bacterial Foraging for Distributed Optimization and Control[J]IEEEControl Systems Magazine(S0272—1 708),2002,22(3):P52—67
    [11]钟一文智能优化方法及其应用研究[D]浙江大学2005年
    [12]张军、詹志辉等计算智能[M]清华大学出版社2009年11月P8
    [13]Dorigo M,Maniezzo V Colorni A Ant system:optimization by a colony of cooperation agents[J]IEEE Transaction on System,Man,and Cybernetics—Part B,1996,26(1):P29-41
    [14]高尚,杨静宇群智能算法及其应用[M]中国水利水电出版社2006年5月,P10
    [15]Gambardella L u Dorigo M,Solving symmetric and asymmetric TSPs by ant colonies[A]Proceedings of the IEEE International Conference on Evolutionary Computation(ICEC’96)[c]NagoyaJapan,1996:622
    [16]Stutzle L Hhoos H The MAX MIN ant system and local search for the traveling salesman problem[A]in Proceedings of the IEEE internations Conference on Evolutionary Computation(ICEC’97)[c]Indianapolis,USA,1997:P309
    [17]Bemd Bullnheimer,Richard F Hartl,Christine Straub A new rank based version of the ant system acomputational study[DB/OL]http://www wu wien ac at/am[1 8]Bonabeau E,Dorigo M,Theraulaz G Inspiration for optimization from social insect behavior[J]Nature,2000,406(6):P39—42
    [19]张纪会,徐心和一种新的进化算法一蚁群算法[J]系统工程理论与实践,1999,19(3):P84—87
    [20]胡小兵,黄席樾对一类带聚类特征TSP问题的蚁群算法求解[J]系统仿真学报2004,16(2):P2683
    [21]徐精明,曹先彬,王煦法多态蚁群算法[J]中国科学技术大学学报2005,35(1):P59—65
    [22]Bullnheimer B,Hartl R E Strauss C A new-rank—based version of the ant system:a computationalstudy[J]Central European Journal for Operations research and Economics,1999,7(1):P25—38
    [23]Karl T Approach by ant tabu agents for traveling salesman problem[A]Proceedings of the IEEEInternational Conference on Systems[C],Man,and Cybernetics,2001,5:P3429—3434
    [24]Colomi A,Dorigo M,Maniezzo V Ant system for Job—shop scheduling[J]Belgian J Oper Res StatistComput Sci 1994,34:P39—53
    [25]Leguizamon q Michalewicz A new version of ant system for subset problems[A]Proceedings of the1999 Congress on Evolutionary Computation[A],1999:P1459—1464
    [26]Schoofs L,Naudts B Ant colonies are good at solving constraint satisfaction problems[A],Proceedings ofthe 2000 Congress on Evolutionary Computation[C],2000,2:Pl 190—1 195
    [27]Ahn S H,Lee S q Chung T C Modified ant colony system for coloring graphs[A]Proceedings of the2003 Joint Conference of the 4th international Conference on Information[C],Communications and SignalProcessing andthe4thPacificRimConference onMultimedia,2003,3:Pl 849—1 853
    [28]Gambardella L M,Dorigo M HAS—SOP:a hybrid ant system for the sequential ordering problem[R]Technical Report IDSIA一1 1—97,IDSIA,Lugano,Switzerland,1 997
    [29]Maniezzo V Carbonaro A An ANTS heuristic for the frequency assignment problem[J]FutureGeneration Computer Systems,2000,16(8):P927—935
    [30]Liang Y C,Smith A E An ant colonyoptimization algorithm foer the redundancy allocationproblem(RAP)[J]IEEE Transactions on Reliablity,2004,53(3):P41 7-423
    [31]DeA SilvaRM,RamalhoG L Ant systemforthe set covering problem[A]Proceedings ofthe 2001IEEE International Cenference on Systems[C],Man,and Cybernetics,2001,5:P3129—3133
    [32]E O Wilson Sociobiology:The New-Synthesis[M]Cambridge:Belknap Press,1975
    [33]C W Reynolds Flocks,herds and schools:a distributed and behavioral model[J]ACM ComputerGraphics,1987,21(4):P25—34
    [34]F Heppner,U Grenander A stochastic nonlinear model for coordinated bird flocks[M]The UbiquityofChaos W3shington:AAAS Publications,1990
    [35]王俊伟粒子群优化算法的改进及应用[D]沈阳:东北大学,2006
    [36]R C Eberhart,Y Shi Guesteditorial:special issue on particle swarm:Simper,maybe better[J]IEEETrans On Evol Comput,2004,8(3):P201—203
    [37]Clerc M and Kennedy J The Multi—Dimensional Particle Swarm:Explosion,Stability,Convergence ina Complex Space[J]IEEE Transaction on and on Evolutionary Computation,2002,6(1):P58—73
    [38]I C Trelea The particle swarm optimization algorithm:convergence analysis and parameterselection[J]Information Processing Letters,2003,85:317-325
    [39]Van den Bergh F An Analysis of Particle Swarm Optimizer[D]PhD Dissertation South Africa:Department ofComputer Science,University ofPretoria,2002
    [40]F Van den Bergh and A P Engelbrecht A study of particle swarm optimization particle trajectories[J]Information Sciences,2006,1 78(8):P93T-071
    [41]Emara H M and Fattah H A Continuous swarm optimization technique with stability analysis[A]InProceedings ofAmerican Control Conference[C]Cairo:Egypt,2004:P2811-2817
    [42]高尚,汤可宗,蒋新姿等粒子群优化算法收敛性分析[J]科学技术与工程,2006,6(12):P1625—1627,1631
    [43]金欣磊,马龙华,吴铁军,钱积新基于随机过程的PSO收敛性分析[J]自动化学报,2007,33(12、:P1263~1268
    [44]张丽平粒子群优化算法的理论及实嘲D]浙江大学2005
    [45]Kennedy J and Mendes R Population structure and particle swarm performance[A]Proceedings ofthe IEEE Congress on Evolutionary Computation(CEC 2002)[C]Honolulu,HI USA,2002,2:P1671—1676
    [46]Kennedy J Small worlds and mega—minds:effects of neighborhood topology on particle swarmperformance[A]Proceedings of IEEE Congress on Evolutionary Computation[C]Piscataway,NJ:IEEEService Center,1999:P1931—1938
    [47]J Kennedy and R Mendes Neighborhood topologies in fully—informed and best—of nelghborh[)(]dparticle swarms IEEE Transactions on Systems,Man,and Cybernetics,Part C,2006,36(4),515-519
    [48]Suganthan P.N Particle swarm optimiser with neighborhood operator[A]Proc of the Congress onEvolutionary Computation[C]Washington DC,1999:P1958—1962
    [49]Hu X,Eberhart R C Multi—objective Optimization Using Dynamic Neighborhood Particle SwarmOptimization[A]In:Proceedings ofthe IEEE Congress on Evolutionary Computation[C]2002:1677—1681
    [50]Liang J J,Suganthan P N Dynamic multi—sv~arlTl particle swarm optimizier Swarm IntelligenceSymp,2005(6):P124—129
    [51]Angeline P.J Using Selection to Improve Particle Swarm Optimization[A]IEEE InternationalConference on Evolutionary Computation[C]Anchorage,Alaska,1998
    [52]Lovbjerg M,Rasmussen T K and Krink T Hybrid particle swarm optimizer with breeding andsubpopulations[A],Proceedings of the Genetic and Evolutionary Computation Conference[C],SanFrancisco,California,2001:P469—476
    [53]Natasuki Higasshi and Hitoshi Iba Particle swarm optimization with Gaussian mutation[A]Proc ofthe Congress on Evolutionary Computation[C]Indianapolis:2003:P72—79
    [54]Hendtlass T A combined swarm differential evolution algorithm for optimization problems[A]In Proc14th Int Conf.Industrial and Engineering Applications of Artificial Intelligence and Expert System[C],2001:P11—1 8
    [55]Liang J J,Suganthan P N Dynamic multi—swarm particle svcarlTl optimizier with local search[J]ProcIEEE Congr Evol Computer 2005:P522—528
    [56]Liu B,W3ng L,Jin Y H Improved particle svcarlTl optimization combined with chaos[J]Chaos,Solitons Fractals,2005,25(5):P1261—1271
    [57]Sun J,Feng B,Xu W B Particle swarm optimization with particles having quantum behavior[J]ProcIEEE Congr Evol Comput,2004:P325—33 1
    [58]Baskar S,Suganthan PN A Novel Concurrent Particle Swarm Optimization[A]Proceedings of the2004 Congress on Evolutionar Computation[C]Piscataway,NJ:IEEE Press,2004:P792—796
    [59]Brits R,Engelbrecht A F,Bergh F van den A niching particle swarm optizizer[A]4th Asia—PacificConf Simulated Evolutionary learning[c],2002:P692—696
    [60]Eberhart R C and Shi Yuhui Evolving artificial neural networks[A]Proc 1998Int’l Conf On NeuralNetworks and Brain[C],Beijing,P R C,1998:P5—13
    [61]Tandon V Closing the gap between CAD/CAM an optimized CNC end milling[D]Indianapolis:(Master’s thesis)Purdue School ofEngineering an Technology,Indiana University Purdue University,2001
    [62]D N Jeyakumar,T Jayabarathi and T Raghunathan Particle svcarlTl optimization for various types ofeconomic dispatch problems[J]Electrical Power and Energy Systems,2006,28(1):P36—42
    [63]Coello CAC,Pulido G L Lechuga M S Handling multiple objectives with particle swarmoptimization[J]IEEE Trans On Evol Comput,2004,8(3):P256—279
    [64]Abido M A Opitmal design of power—system stabilizers using particle swarm optimization[J]IEEETrans On Energy Conversion,2002,1 7(3):P406—41 3
    [65]Eberhart R C and Shi Yuhui Particle swarm optimization:Developments,applications,andresources[A]In Proceedings of the 2001 Congress on Evolutionary Computation[C]Washington:Piscataway,2001:P81-86
    [66]张勤粒子群算法在机械优化设计中的应用[J]煤矿机械,2005,5:P26—27
    [67]赵辉,刘鲁源,张更新基于微粒群优化算法的最优电力系统稳定器设计[J]电网技术,2006,30r3、:P32—35
    [68]肖健梅,李军军,王锡淮求解车辆路径问题的改进微粒群优化算法[J]计算机集成制造系统,2005,11(4):P577—581
    [69]刘华蓥,林玉娥,齐名军求解约束优化问题的改进粒子群算法[J]大庆石油学院学报,2005,29r4、:P73—75
    [70]夏蔚军,吴智铭,张伟,杨根科微粒群优化在Job—shop调度中的应用[J]上海交通大学学报,2005,39(3):P381—385
    [71]高海昌_冯博琴,朱利智能优化算法求解TSP问题[J]控制与决策,2006,21(3):P241—248
    [72]Goldberg D E,Genetic Algorithms in Search,Optimization,and Machine Learning[M],Reading MAIAddison—Wesley,1 989
    [73]Rumelhart D E,Hinton G E,Williams R J Learning internal representations by error propagation[J]Parallel Distributed Processing,1 986(1):P3 1 8-362
    [74]Farmer J,Packard N,Perelson A The immune system,adaptation and machine learning[J]Physica D,1 986(22):Pl 87—204
    [75]Adleman L M Molecular Computation of Solution to Combinatorial Problems[J]Science,1994,66(11):P1021—1024
    [76]李晓磊,冯少辉,钱积新一种基于动物自治体的寻优模式:鱼群算法[J]系统工程理论与实践,2002,11:P112—115
    [77]Kohonen T The self-organizing map[J]Proceedings ofthe IEEE,1990(78):P1464—1480
    [78]Angeline P J,Sauders G u Pollack J B An evolutionary algorithm that constructs recurrent neuralnetworks[J]IEEE Trans Neural Networks,1 994(5):P54—65
    [79]Hancock P J,Smith L S,Phillips W A A biologically supposed error—correcting learning rule[D]Artifical Neural Networks—ICANN一91 Amsterdam:North—Holland,1991(1):P531—536
    [80]刘小龙神经网络在管理学科量化研究中的应用[J]科技管理研究2009(3):P301—303
    [81]Liu Y Passino K M,Polycarpou M Stability analysis ofm—dimensional asynchronous swarms with afixed communication topology[J],IEEE Trans on Automatic Control,2003,48(1):P76--95
    [82]Mishra S A hybrid least square—fuzzy bacteria foraging strategy for harmonic estimation[J]IEEETransaction ofEvolutionary Computation 2005,9(1):P61—73
    [83]Datta T,Misra I S,Mangar~B B,Imtiaj S Improved adaptive bacteria foraging algorithm inoptimization of antenna array for faster convergence[D]Progress in Electromagnetics Research C 2008,(1):P143—157
    [84]Majhi R,Panda G,Sahoo G Efficient prediction of stock market Indices using adaptive bacterialforaging optimization(ABFO)and BFO based techniques[J]Expert Systems with Applications Availableonline 24 January 2009(Elsevier)
    [85]Chen H,Zhu Y,Hu K Self-adaptation in bacterial foraging optimization algorithm[A]Proceedingsof the 3rd International Conference on Intelligent System and Knowledge Engineering[C]Xiamen,China,Nov 2008:P1026—1031
    [86]Biswas A,Dasgupta S,Das S,Abraham A:Synergy of PSO and bacterial foraging optimization:acomparative study on numerical benchmarks[A]Proceeding of the Second International Symposium onHybrid Artificial Intelligent Systems[C]Salamanca Spain,Nov 2007:P255—263
    [87]Bakwad K M,Pattnaik S S,Sohi B S Hybrid bacterial foraging with parameter free PSO[A]WbrldCongress onNature andBiologicallyInspiredComputing[C](NaBIC 2009):P1077—1081
    [88]Tang W J,Wu Q H,Saunders J R A bacterial swarming algorithm for global optimization[A]IEEECongress on Evolutionary Computation[C](CEC2007):P1207—1212
    [89]Chu Y Mi H,Liao H A fast bacterial swarming algorithm for high—dimensional function optimization[A]IEEECongress onEvolutionaryComputation[C](CEC 2008):P3135—3140
    [90]Dasgupta A,Dasgupta S,Das S,Abraham A A synergy of differential evolution and bacterialforaging optimization for global optimization[J]Neural Network Wbrd 2007,1 7(6):P607—626
    [91]Kim,D H,Abraham,A,Cho,J H A hybrid genetic algorithm and bacterial foraging approach[J]Information Sciences 2007.177:P391 8—3937
    [92]Luh GC,Lee SW.A bacterial evolutionary algorithm for the Job shop scheduling problem[J],J ofChineseInstitute ofIndustrialEngineers,2006,23(3):Pl 85~191
    [93]Das S,Biswas A,Dasgupta S Bacterial foraging optimization algorithm:Theoretical foundations,analysis,and applications[J]Foundations of Comput Intel,2009(3):P23—55
    [94]Abraham A,Biswas A,Dasgupta S Analysis of reproduction operator in bacterial foragingoptimization lA]IEEE Congress on Evolutionary Computation[C](CEC 2008):P1476—1483
    [95]Biswas A,Das S,Dasgupta S Stability analysis of the reproduction operator in bacterial foragingoptimization lA]IEEE ACM International Conference on Soft Computing as Transdisciplinary Scienceand Technology[C](CSTST 2008),Paris,France,2008:P568—575
    [96]L1 M S,Tang W J,Tang W H Bacteria foraging algorithm with varying population for optimal powerflow-[c]LNCS 4448:Proc Evol Wbrkshops,2007:P32—41
    [97]Tripathy M,Mishra S Bacteria foraging—based to optimize both real power loss and voltage stabilitylimit[J]IEEE Transactions on Power Systems,2007,22(1):P240—248
    [98]Karp R M reducibility among combinatorial problems[M]Complexity of computer computationsNew-York:Plenurn Press,1997
    [99]Poole D,Mackworth A,Goebel R Computational Intelligence:A Logical Approach[M]Oxford:Oxford University Press,1997
    [100]蔡自兴,徐光佑人工智能及其应用[M]北京:清华大学出版社,2004
    [101]Haykin S Neural Netwoeks:A Comprehensive Foundation[M]Prentice Hall PTR Upper SaddleRiver,1998
    [102]Zadeh LA Fuzzy logic[J]Computer,1998,21(4):P83—93
    [103]Back T hammel U,Schwefel H P Evolutionary computation:Comments on the history and currentstate[J]Evolutionary Computation,1997,1(4):P3—17
    [104]Kennedy J,Eberhart R C Swarm Intelligence[M]San Mateo:Morgan kaufmann,2001
    [105]Engelbrecht A P Fundamentals of Computational Swarm Intelligence[M]Hoboken:John Wiley&Son,2005
    [106]王辉,钱锋群体智能优化算法[J]化工自动化及仪表,2007,34(5):P7—13
    [107]Wblpert,D H and Macready wG No free lunch theorems for optimization[J]IEEE Transac—tions onEvolutional Computation,1997,1(1):P67—82
    [108]Christensen S and Oppacher F What can w-e learn from No Free Lunch?A first attempt tocharacterize the concept ofa searchable function[A]Proceeding ofGECCO[C]Morgan Kaufmann,2001:P1219—1226
    [109]Yao X,Liu Y Lin G M Evolutionary programming made faster[J]IEEE Transactions onEvolutionary Computation,1999,3(2):P82—102
    [110]任子晖,王坚加速收敛的粒子群优化算法[J]控制与决策2011年2月26(2):P201—206
    [111]常先英粒子群优化算法的改进及其应用[D]华南理工大学2009
    [112]彭喜元,彭宇,戴毓丰群智能理论及应用[J]电子学报2003年12月,p1982—1988
    [113]Jacques Riget,Jakob S Vesterstrom A diversity guided particle swarm optimization The ARi~SO[DB/OL]http://citeseer nj nec com/riget02/diversityguided html
    [114]Akazemi B,Mohan C K Multi2 phase generalization of the particle swarm optimizationalgorithm[A]Proceedings ofthe 2002 Congress on Evolutionary Computation[C]Honolulu,HI USA,12—17Mldv 2002 1 P489—494
    [115]LEvbjerg M,Krink T Extending particle swarms with self organized criticalitylA]Proceedings ofthe Fourth Congress on evolutionary computation(CEC22002)[c]Honolulu,HI USA,2002 2P1588—1593
    [116]李晓磊,钱积新基于分解协调的人工鱼群优化算法研究[J]电路与系统学报,2003,8(1):P1—6
    [117]Riget J,Vesterstroem J S A Diversity Guided Particle Swarm Optimizer—the ARPSO[R]TechnicalReport,University ofAarhus,EVALife,2002[11 8]StephensD,Krebs J ForagingTheory[M]Princet onUniv.Press,1986:P87—99
    [119]Alberts B,Bray D,Lewis J,RaffM,Roberts,K JWatsonMolecular Biology ofthe Cell[M]GarlandPublishing,1989:P902—903
    [120]Berg H Motile behavior ofbacteria Phys[J]Today,Jan,2000:P24—29
    [121]李任峰,何启盖,周锐等细菌鞭毛研究概况及进展[J]微生物学通报2005,32(6):P124—127
    [122]刘小龙,李荣钧,杨萍基于高斯分布估计的细菌觅食优化算法[J]控制与决策2011 8
    [123]林卫星,Peter X Liu,李文磊,陈炎海,欧超细菌生存优化在非线性模型辨识中的应用[J]系统仿真学报第21卷第10期,2009年5月
    [124]储颖等,基于粒子群优化的快速细菌群游算法[J],数据采集与处理,第25卷第4期,2010 7
    [125]TM Yi,YHuang,M Simon,J Doyle Robust perfect adaptation in bacteria chemotaxis through integralfeedback control[C]PNAS,vol 97,April 25,2000:P4649—4653
    [126]韩宗先,冉景盛动物的觅食对策『J]生物学教学2007,v01(32)第2期
    [127]孙儒泳动物生态学原理[M](第三版)北京:北京师范大学出版社,2001 P259-263
    [128]Fretwell,D S,Lucas,H L,On territorial behavior an other factors influencing habitat distribution inbirds[J]Acta Biotheoretica 1970,(19):P16 32
    [129]Stephens D W,Krebs J R Foraging theory[M]NJ:Princeton university press,1986
    [130]秦全德,李荣钧模拟生物理想自由分布模型的粒子群算法[J]控制与决策已录用
    [131]Wbotton L 1998 Effects ofdisturbance on species diversity:a multitrophic perspective[J]AmericanNaturalist,152:P803-825
    [132]王德利,高莹竞争进化与协同进化[J]生态学杂志2005,24(10):P11 82-11 86
    [133]Eberhart R C and Shi Yuhui Comparing inertia weights and constriction factors in particle svcarlTlopti mization[A]Proc IEEE Int Confon Evolutionary Computation[C],San Diego,2000:P84—88
    [134]高尚,杨静宇群智能理论及其应用研究[M]北京:中国水利水电出版社,2006
    [135]L Rechenberg:Evolutions strategie Optimierung technischer Systeme nach Prinzipien derbiologischen Evolution[M]Fromman—Verlag,Stuttgart,1 994
    [136]Rainer Storn,Kenneth Price Differential wolutlon A simple and efficient heuristic for globaloptimization over continuous spaces[J]Journal ofGlobal Optimization,1997,11(4):P341—359
    [137]J S Chun,H K Jun坚,J S Yoon Shape Optimization of Electromagnetic Devices Using ImmuneAlgorithm lA]IEEE Transactions on CEFC’96 ComiC],1996:P2—11
    [138]Mitsuo Gen and Runwei Cheng Genetic algorithms&Engineering Design[M]John Wiley&Sons,Inc,NewYork,1997
    [139]Fred Glover,Heuristics for Integer programming using surrogate constraints[J]Decision Sciences,1977,8(1):P156—166
    [140]David E Goldberg,Genetic in search,optimization and machine learning[M]Addison—WesleyPublishing Co,Reading,Massachusetts,1989
    [141]李难生物进化论[M]北京:高等教育出版社,1982:P73—85
    [142]张芳,李玉奎群体遗传学[M]北京:中国农业出版社,1999:P65
    [143]MAYR,ERNST著,涂长晟等译生物学哲学[M]沈阳:辽宁教育出版社,1992:P33
    [144]Hollland J H A new-kind of turnpike theorem[J]Bulletin of the American MathematicalSociety,1969:P1311-1317
    [145]董聪进化理论与进化计算,当前的状态与问题[J]科技导报1998(10):P22
    [146]况颐,熊吉春进化算法及进化理论初探[J]信阳师范学院学报(自然科学版)vol 13 2000(10):P487—489
    [147]周听,凌兴宏遗传算法理论及技术研究综述[J]计算机与信息技术P38
    [148]R Storn and K V Price Differential evolution—A simple and efficient heuristic for globaloptimization over continuous spaces[J]J GlobalOptim,1997,11(4):P341—359
    [149]刘波,王凌,金以慧差分进化算法研究进展[J]控制与决策,2007,22(7):P721—729
    [150]Yung—Chien Lin,Kao—Shing Hwang,and Feng—Sheng Wang Hybrid Differential Evolution withMultiplier Updating Method for Nonlinear Constrained Optimization Problems[A]CEC2002{C],volumel,872—877.Piscataway,New-Jersey,Mav 2002
    [151]周艳平,顾幸生差分进化算法研究进展[J]化工自动化及仪表,2007,34(3):Pl-5
    [152]贾东立,郑国莘基于混沌和高斯局部优化的混合差分进化算法[J]控制与决策Vol 25 No 6,2010年6月:P899—902
    [153]He S,Wu Q H,Wen J Y et al A particle swarm optimizer with passive congregation[J]BioSystems2004,78:P135—147
    [154]Jerne NK The immune system[J]SciAm,1973(229):P52—60
    [155]Farmer J,Packard N,Perelson A The immune system,adaptation and machine learning[J]PhysicaD,1986(22):Pl 87—204
    [156]杨孔雨,葛新权免疫进化理论与应用[M]社会科学文献出版社2008—09一01,P1
    [157]Kazuyuki Mori,Makoto Buk iyama,Toyoo Fukuda Immune Algorithm with Searching DiversityanditsApplicationtoResourceAllocationProblem[J]TIEE Japan,1993,X13-C(10):P872—878
    [158]Forrest S,Perelson A S,Allen L Self-nonself discrimination in a computer[J]IEEE Symposium onResearch in Security and Privacy,1 994:P202—21 2
    [159]Castro L N,Zuben F J Artificial Immune System:Part I-Basic Theory and Applications[M]SchoolofComputing and Electrical Engineering Brazil:State University ofCampinas,No DCART 01/99
    [160]莫宏伟人工免疫系统原理与应用[M]哈尔滨:哈尔滨工业大学出版社,2002
    [161]LiCheng Jiao,Lei Wang Anovel Genetic Algorithm Based on Immunity[J]Systems,Man,AndCybernetics,Part A:Systems And Humans,2000,30(5)
    [162]Ashish Ahuja,SaNoy Das,Anil Pahwa An AIS—ACO Hybrid Approach for Multi—ObjectiveDistribution System Reconnguratlon[丁l IEEE Transactions on Power Systems,2007,22(3)
    [163]HongWei Ge,Liang Sun,YanChun Liang An Effective PSO and AIS—Based Hybird IntelligentAlgorithm for Jop—Shop Scheduling[J]IEEE Transactions on Systems,Man,and Cybernetics Part A:Systems and Humans,2008,38(2)
    [164]Dasgupta D,Ji Z Artifical Immune Systems(AIS)research in the last fives[A]In proceedings ofCongress on Evolutionary Computation(CEC),2003:P528—535
    [165]Larra Naga F,Lozano J A Estimation of distribution algorithms—A new tool for evolutionarycomputation[M]Boston:Kluwer Academic Publishers,2002
    [166]Baluja S,Population—Based Incremental Learning:A Method for Integrating Genetic Search BasedFunction Optimization Learning[R]Technical report CMU—CS一94—163 Carnegie Mellon University,1994
    [167]Holland J,Adaptation in Natural and Artificial Systems[M]Ann Arbor:University ofMichigan Press,1975
    [168]Muhlenbein H,Paab G From recombination of genes to the estimation of distribution I Binaryparameters[R]Parallel Problem Solving from Nature—PPSN IV Berlin:Springer Verlag,1996:P178—1 87
    [169]Tsutsui S,Pelikan M,Goldberg D E Evolutionary algorithm using marginal histogram models incontinuous domain[R]University ofIllinois atUrbana—Champaign,Urbana,2001
    [170]Sebag M,Ducoulombier A Extending population—based incremental learning to comtinous searchspaces[A]InParallelProblem SolvingfromNature—PPSNV[c],1998:P41 8-427
    [171]Larra Naga F,Etxeberria R,Lozano J A,et al Optimization in continuous domains by learning andsimulation of Gaussian networks[A]Proc of the 2000 Genetic and Evolutionary Computation ConfW~rkshop Program[C]Las Vegas,2000:P201—204
    [172]Rudlof S,Koppen M Stochastic hill climbing by vectors ofnormal distributions[A]Proc ofthe 1 stOnline Workshop on Soft Computing[C]Nagoya,1 996:P60—70
    [173]周树德,孙增圻分布估计算法综述[J]自动化学报V0133,N02 2007年2月
    [174]Bonet De,J S,Isbell C L,Viola P MIMIC:Finding optima by estimating probability densitiesAdvances in Neural Information Processing Systems[M],Cambridge:MIT Press,1997 9:P424—430
    [175]Baluja S,Davies S Using optimal dependency—trees for combinatorial optimization:Learning thestructure ofthesearch space[A]In:Proceedings ofthe 14th International Conference on Machine LearningSanFrancisco[C],CA:MorganKaufmann,1997 P30—38
    [176]Pelikan M,MAuhlenbein H The bivariate marginal distribution algorithm[J]Advances in SoftComputing Engineering Design and Manufacturing,London,Springer—Verlag,1999,P521—535
    [177]Harik G Linkage Learning via Probabilistic Modeling in the ECGA[A]Illigal Report No 99010[C],Illinois Genetic Algorithms Laboratory,University of Illinois,Urbana—Champaign,Illinois,1 999
    [178]MAuhlenbein H,Mahnig L Ochoa A R Schemata,distributions and graphical models inevolutionary optimization[J]Journal ofHeuristics,1999,5:P215-247
    [179]Pelikan M,Goldberg D E,Cant~u—Paz E Bayesian Optimization Algorithm,Population Sizing,andTime to Convergence[A]IlliGAL Report No 2000001[c],Illinois Genetic Algorithms Laboratory,University of Illinois at Urbana Champaign,Urbana,Illinois,2000
    [180]Pelikan M,Goldberg D E,Cantu—Paz E BOA:The Bayesian optimization algorithm[A]In:Proceedings ofthe Genetic and Evolutionary Computation Conference GECCO一99[c],Orlando,FL:1999P525—532
    [181]Michalski R S Learnable evolution model:Evolutionary processes guided by machine learning[J]Machine Learning 2000,38:P9—40
    [182]Wojtusiak J,Michalski R S The LEM3 System for Non—darwinian Evolutionary Computation and ItsApplication to Complex Function Optimization[A]Reports of the Machine Learning and InferenceLaboratory[C],MLl 05—2,George Mason University,Fairfax,VA,Oct 2005
    [183]Zhang Q,MAuhlenbein H On the convergence of a class of estimation ofdistribution algorithms[J]IEEE Transactions on Evolutionary Computation,2004,8(2):P127—136
    [184]Corno E Reorda M S,Squillero G The selfish gene algorithm:a new evolutionary optimizationstrategy[A]In:Proceedings of the 13th Annual ACM Symposiurn on Applied Computing(SAC’98)[c]Atlanta,Georgia,USA:1 998 P349—355
    [185]TuZ,LuYA robust stochastic genetic algorithm(StGA)for global numerical optimization[J]IEEETransaction on Evolutionary Computation,2004,8(5):P456—470
    [186]Han K H,Kim J H Quanturn—Inspired Evolutionary Algorithm for a class of combinatorialoptimization[J]IEEE Transactions on Evolutionary Computation,2002,6(6):P580—593
    [187]Cho D Y Zhang B T Evolutionary continuous optimization by distribution estimation withvariational Bayesian independent component analyzers mixture model[J]Lecture Notes in ComputerScience,2004,3242:P212-221
    [188]Pe na J M,Robles V Larra-naga F,Herves V Rosales F,Perez M S GA—EDA:Hybrid evolutionaryalgorithm using genetic and estimation of distribution algorithms[J]Lecture Notes in Computer Science,2004,3029:P361—371
    [189]周德庆微生物学教程[M]北京:高等教育出版社,2002
    [190]Kim D H,Cho J H Adaptive tuning of PID controller for multivariable system using bacterialforaging based optimization[A]LNCS 3528[c]:AWIC 2005,2005:P231-235
    [191]Kim D H,Cho C HBacterial foraging based neural network fuzzy learning[A]IICAI 2005[c],2005:P2030—2036
    [192]Chatterjee A,Matsuno FBacteria foraging techniques for solving EKF—based SLAM problems[A]Proc International Control Conference[C](Control 2006),Glasgow-,UK,2006
    [193]Chen H,Zhu Y,Hu K Multi—colony bacteria foraging optimization with cell—to—cell communicationfor RFID network planning[J]Applied Soft Computing,2010,10:P539—547
    [194]曾强,杨育,王小磊,梁学栋一类Job—Shop多目标优化调度方法[J]计算机工程与应用2010,46(23),P215-21 8
    [195]JAIN A S,MEERAN S Deterministic Job—shop scheduling:Past,present and future[J]EuropeanJournal ofOperationalResearch,1999,113:P390—434
    [196]王凌车间调度及其遗传算法[M]北京:清华大学出版社,2003,P9—1 8
    [197]JainA S,SMeeran A State—of-the—ArtReview-of Job—Shop Scheduling Techniques[J]EuropeanJournal ofOperations Research,1999,113(2):P390—434
    [198]Qian B,Wang L,Huang D X,et al An effective hybrid DE—based algorithm for multi—objective flow-shop scheduling with limited buffers[J]Computers&Operations Research,2009,36(1):P209—233
    [199]Lawrence,S Resource constrained project scheduling:an experimental investigation of heuristicscheduling techniques[M]GSIA,Carnegie Mellon University,1984
    [200]崔静静,孙延明改进细菌觅食算法求解车间作业调度问题[J]计算机应用研究2011 9
    [201]Hornik,K,Stinchcombe,M,White,H Multilayer feedforward networks are universalapproximators[J]Neural Networks 2(1989):P359—366
    [202]Kimoto,T,Asakawa,K,Yoda,M,Takeoka,M,Stock Market Prediction System With ModularNeural Networks[A],Proceedings IJCNN[C]1990,Vol 1,Pl 6
    [203]Freisleben,B,Stock Market Prediction with Backpropagation Networks[A],Industrial andEngineering Applications of Artificial Intelligence and Expe~Systems 5th International ConferenceIEA/AIE一92[C],Paderbom Germany,June 9-12,1992 Proceedings,P451~60
    [204]Wasserman L,Barnard E Avoiding false local minima by proper initialization of connections[J]IEEE Transaction on Neural Networks,1 992,v013(6),P899—905
    [205]Brown M,An P.C,Harris C J Wang H,How biased is your multi—layer perception[A]Proceedingsofthe 1993 World Congress on Neural Networks[C],P507—51 1
    [206]Skapura D Building Neural Networks[M]Addison—Wesley,New York,1996
    [207]姬春煦,张骏基于主成分分析的股票指数预测研究[J]计算机工程与科学2006,V0128,N08,P122—124
    [208]智晶基于主成分的遗传神经网络股票指数预测研究[J]计算机工程与应用2009,45(26),p210
    [209]黄酷基于RBF神经网络的上证指数预测研究[D]中国科学技术大学硕士学位论文,2009
    [210]刘成竹基于时间序列和神经网络的股票指数预浏研究[D]华中师范大学硕士学位论文,2009
    [211]吕金虎,陆君安混沌时间序列分析及其应用[M]武汉大学出版社2002年
    [212]曾毅成基于改进BP神经网络的上证指数预测[D]厦门大学硕士学位论文,2006年
    [213]杨海深,傅红卓基于贝叶斯正则化BP神经网络的股票指数预测[J]科学技术与工程V019N012,June 2009
    [214]王莎BP神经网络在股票预测中的应用研究[D]中南大学硕士学位论文,2008年
    [215]汪东基于支持向量机的选时和选股研究[D]上海交通大学博士学位论文,2007年

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700